

Abstract—SQL Injection Attack (SQLIA) is a type of code

injection technique that threatens confidentiality, integrity, and

availability of web databases. The attacker mostly exploits

incorrectly filtered user inputs such as text fields in web

applications and tries to insert malicious SQL statements into a

legitimate query via the vulnerable user input. By doing so, the

attacker can access, insert, modify, or delete critical

information in a database without proper authorization. In this

survey, we describe and categorize types of SQLIA, and analyze

existing detection and prevention techniques against such

attacks.

Index Terms—SQL injection, attacks, cyber security.

I. INTRODUCTION

The rapid growth of internet made web applications one of

the most popular communication channels. SQL injection is

among the oldest such attacks, but even today stands as a

serious threat to confidentiality, integrity, and availability of

web databases. Last five OWASP (The Open Web

Application Security Project) reports for the top 10 web

application vulnerabilities showed that SQL injection is

ranked first among other vulnerabilities [1].

In a successful SQL injection attack (SQLIA), the attacker

tricks a web application in executing a malicious SQL

statement. The malicious statement is, for example, sent via

user input fields in web forms. If the application fails to

validate the input properly, the malicious statements are

injected into legitimate queries and forwarded to the DBMS

[2]-[5].

In Section II, we list threats posed by SQLIA in detail. In

Section III, we describe how a simple attack is performed in

detail. In Section IV, we categorize different types of attacks

on relational databases and describe what threat category the

attack falls into. In Section V, we survey some defense

mechanisms against injection attacks.

II. THREADS POSED BY SQL INJECTION ATTACKS

The harm done by SQLIA can be disastrous because a

successful SQL injection can read sensitive data from the

database, modify database data (Insert/Update/Delete),

execute administrative operations on the database such as

shutdown the DBMS, recover the content on the DBMS file

system and execute commands (xp cmdshell) to the operating

system [4]. We can categorize the threats posed by SQLIA as

follows:

Manuscript received May 25, 2017; revised July 4, 2017.

Gülsüm Yiğit and Merve Arnavutoglu are with the Electronics and

Computer Engineering Department, University of Gaziantep, Turkey (e-mail:

gulsmyigit@gmail.com, merve.arnavutoglu@gmail.com).

Bypassing Authentication: If there is no proper

validation on username and password, an attacker can login

to the system without knowing the correct username or/and

password.

Destroying Integrity: Via injected SQL statements, an

attacker may modify/delete data items in the database

systems.

Breaching Confidentially: SQL injection may enable an

attacker to learn about content that is otherwise not accessible.

Depending on the type of the vulnerability, the information

leaked can go from a simple boolean result to disclosure of

the whole database.

Bypassing Authorization: With a successful injection, an

attacker can query any parts of the database bypassing of any

access control mechanism [4].

Loss of Availability: For systems that allow function calls

to DBMS, an attacker can shut down or crash the database

service thus rendering it unavailable to other legitimate users.

III. SQL INJECTION ATTACK

 We now demonstrate a typical SQLIA on the login page

of a vulnerable web application. Suppose that, on the login

page, ‘login.php’, we have a submit button and two text

boxes; one for the username and the other for the password.

<input type="text" id="username"

name="username" value="">

<input type="password" id="password" name="password"

value="">

When the user enters the username and password, it will be

posted to ‘login.php’ via HTTP_POST method. Application

will check if any record exists in, say, the USERS table. In

the ‘login.php’, a query will be executed through the user

inputs.

$username = $_POST['username'];

$password = $_POST['password'];

$query="Select * from USERS

where username='$username' and

password='$password'";

Assume that a valid username and password pair is

‘Admin’ and ‘12345’. Once the user enters the following

inputs to the two textbox of username and password, the

following query will dynamically be constructed.

$username = "Admin";

$password = "12345";

$query = "Select* from USERS

where username = 'Admin' AND

password = '12345'";

SQL Injection Attacks Detection & Prevention Techniques

Gülsüm Yiğit and Merve Arnavutoğlu

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

351DOI: 10.7763/IJCTE.2017.V9.1165

The above query has no problems, it returns all records in

the USERS table where username is Admin and password is

12345. If any matching entry is found, the user is

authenticated. Now suppose that the attacker injects the

following code in the username input field.

$username = "'; DELETE *

from USERS; --";

$password = "";

Then, we have the following query in the runtime:

$query = "Select* from USERS

where username = ''; DELETE *

from USERS; --' AND password = ''";

Once the above query is executed, DELETE statement will

be forwarded to DBMS which will, in return, completely

delete ‘USERS’ table. Note that, in SQL, double dashes (e.g.,

- -) are used to add comments in an SQL query. Attacker

comments out the last appended string by the system.

Therefore, the password value is irrelevant and may be set to

any string.

IV. SQL INJECTION TECHNIQUES

Depending on the application and the properties of the

underlying DBMS, some injections are more effective than

others. For example, the injection given in Section III, only

works for those DBMSs that support multi statement queries.

(Note that the query sent in the previous example has two

SQL statements each ending with semicolons.) If we do not

have such a DBMS, other forms of injections may still be

possible.

In this section, we categorize and present different

methods of SQL injections that appears in the literature. We

also point out what kind of threat they pose on the database.

Tautologies [3]: As part of this technique, the attacker

modifies SQL statements by changing the WHERE clause of

the query and using tautological terms with OR operator to

get distinct results. The OR operator and the terms are

appended to the query in such a way that the query always

evaluates to TRUE. These attacks are generally used to

bypass authentication control mechanisms or access data

which is otherwise not readable.

Let's consider the login example in Section III. If the

attacker injects the following text, the resulting query looks

like the following in the runtime:

$username="' OR 1=1 --";

$query = "SELECT *FROM USERS

WHERE username = '' OR 1=1 --' AND password=''";

Even if no username and password pair is sent to the

DBMS, since 1=1 always evaluates to true, the result set will

contain all records in ‘USERS’ table. If the application uses

the size of the result set to authenticate the user, the attacker

will pass the authentication without supplying a valid

username and password pair.

The same attack can be used to bypass authorization

mechanisms as well. Suppose that the app lists the credit

cards of an authenticated user with a specific type (‘DEBIT’

or ‘CREDIT’) which is inputted via the string variable $type.

If the following query is used, the app will list all credit cards

belonging to all users:

$type = "' OR 1=1 --"

$query = "SELECT creditNo FROM USERS

WHERE type = '$type' AND

userId = $userID”

Logically incorrect queries [6]: In this approach, the

attacker injects illegal or incomplete SQL statement in such a

way that the error message leaks the schema of the

underlying database. (Schema of the database is needed to

carry out other future attacks.) This attack is possible if the

DBMS error messages are allowed to be displayed in the

client side.

Suppose the following page concatenates the string value

of $t with a query without proper validation [6]:

www.examplewebsite.com/index.php?t=98

And then tries to make a logically incorrect query attack by

changing the URL as the follows:

www.examplewebsite.com/index.php?t=98’

When the query is rejected, the default error messages

containing debugging information like column names, table

names will be returned from the database. In this case, an

error message contains the following query in the browser:

SELECT* FROM USER WHERE id=98';

From the error message, the attacker learns that the name

of one of the columns is ‘id’, and the name of the associated

table is ‘USER’. Attacker can now use this knowledge to

conduct more strict attacks to the database.

PiggyBacked Queries [7]: The attacker poses a threat to

the integrity of the data by appending a malicious query to the

original query string. The SQL injection example provided in

Section III can be categorized as PiggyBacked query where

the intended query is extended by a ‘DELETE’ statement.

The goal of the PiggyBacked queries is to extract, add or

modify data. Here is a common form of this approach:

original SQL Statement + ";" + INSERT

(UPDATE, DELETE, DROP) + <rest of the

injected query>

Note that the additional queries are separated by semicolon

and this attack vector would be possible only if the database

supports execution of multiple queries in one statement.

Let's rephrase the previous example by dropping the table

USERS instead of deleting all the data in the USERS table.

The attacker injects the following code in the username input

field

$username = "'; DROP TABLE USERS--";

which results in the following SQL statement in the

runtime that drops ‘USERS’ table from the database after

execution of this statement.

$query = "SELECT * FROM USERS

WHERE username = ''; DROP TABLE USERS--'AND

password = ''";

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

352

In general, by injecting Piggybacked queries, the attacker

sends a malicious SQL statement that can execute a ‘DROP’,

‘DELETE’, ‘UPDATE’ or ‘INSERT’ query to destroy the

integrity of the data.

Union Queries [8]: This type of attacks is in SQL

manipulation category since it is doing operations on

‘UNION SELECT’ which injects malicious SQL query

patterns to the original safe query to get data related to other

tables from database. The purpose of this query is to extract

data and to bypass authentication [9]. Here is common form

of this attack:

original SQL Statement + ";" + UNION SELECT + <rest of

the injected query>

The rules for combining two or more statement using

union query are as follows [9]:

● Column name and order of columns of queries should

be same.

● The data types of the columns on tables in the query

should be compatible.

Assume the following query is executed from the database:

$id = 1234;

$query = SELECT id,username,phone

FROM EMPLOYEE WHERE id ='$id';

This query is going to select all information in

EMPLOYEE table where id=1234. But what if the attacker

inserts a UNION SELECT statement to id value:

$id = "1 UNION ALL SELECT creditCardId

from CREDITCARD_TABLE";

$query = "SELECT id,username,phone FROM EMPLOYEE

WHERE id = 1 UNION ALL SELECT creditCardId from

CREDITCARD_TABLE";

The result of the first query will be joined to the result of

second query which returns all the credit card user. This

approach threats confidentiality of data like personal

information,financial information etc..

Stored Procedure [10]: This approach is in function call

injection category which is a technique of inserting different

database function calls like operating system call. This type

of attacks deals with stored built-in functions using SQL

injection. Stored procedures run directly on database engine

[4].

Once an attacker determines which backend database is in

use, stored procedures provided by that specific database can

be executed, including procedures that interact with the

operating system [11]. In addition, since stored procedures

are often written in special scripting languages, they can

contain other types of vulnerabilities, such as buffer

overflows[11].

Let’s consider the same example ‘login’ system. If the

attacker's input for username is

$username = "'; SHUTDOWN; --";

This injection causes the stored procedure to generate the

following query:

$query = "SELECT* FROM USER

WHERE username= ''; SHUTDOWN; --' AND password=''";

At this point, it works like a piggybacked SQLIA which

separates multiple queries by semicolon. In this example, the

first query is executed then, at the same time the second query

is executed which causes DBMS to shut down.

Inference Based Attacks: The attacker injects SQL

queries in such a way that regarding to logical answers

database behave differently. The inference based attacks can

be divided into 2 categories, BLIND injection and TIMING

injection.

BLIND Injection Attacks [12]: Sometimes, developers

hide error message details which help malicious users to

make attacks to the database. In this situation attacker,

instead of an error message face to a generic page provided

by developer [6]. Therefore, making SQLIAs would be more

difficult.

By this approach, attacker can still steal data by asking

true/false questions via injected malicious SQL query,

meaning that the attacker does not need to see any error

messages in order to run his/her attack on the database.

For example, let’s say we have an example web site that

has different profiles and each user has an ID number

assigned to each user to identify their profile.

Let’s say ID=2000, belongs to userA. When the below

URL is loaded, it is going to display the user’s details which

are retrieved from a database such as name, date of birth,

profile photo etc.

http:www.examplesocialwebsite.com?ID=2000

The SQL statement used for this request is

SELECT name, description, profilePhoto, DOB FROM

USERS

WHERE id = 2000

The attacker may change the request to the following:

http:www.examplesocialwebsite.com?ID=2000 AND 1=2

The SQL statement changes to

SELECT name, description, profilePhoto, DOB FROM

USERS

WHERE id = 2000 AND 1=2

This will cause the query to return false, and ‘Page not

found’ will be displayed. The attacker then proceeds to

change the request to

http:www.examplesocialwebsite.com?ID=2000 AND 1=1

And the SQL statement changes to

$query = "SELECT name, description, profilePhoto, DOB

FROM USERS WHERE id = 2000 AND 1=1"

If the application is secured, both queries would be

unsuccessful, because of input validation. However, if the

second one returns true, meaning that the details of user with

ID 2000 are shown, then this is clear that the page is

vulnerable SQLIA.

TIMING Injection Attacks [4]: In this type of attacks,

attacker gathers information based on response time delays in

the database's responses. This attack is similar to blind

injection technique and attacker can then measure the time

the page takes to load to determine if the injected statement is

true [6].

This technique uses an if-then statement for injecting

queries. Note that, WAITFOR and SLEEP are keywords

along the branches, which causes the database to delay its

response by a specified time [4].

Considering the previous example, first the attacker

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

353

http://www.examplesocialwebsite.com/?ID=2000

measures how long it takes for the web server to respond to a

normal query. Then attacker issues the following request:

http:www.examplesocialwebsite.com?ID=2000 AND if(1=1,

sleep(10), false)

Since the 1=1 is always true, the database will pause by 10

seconds, and it indicates that the web application is

vulnerable to timing attacks.

Alternate Encodings [13]: In this type of attacks,

attackers change the injected query by using alternate

encoding, such as hexadecimal, ASCII, and Unicode.

Because by this way they can escape from developer’s filter

which scan input queries for special known "bad character".

Lets again consider the login example, if the following input

is inserted into the username field.

$username = "0; exec (0x73587574 64 5f776e)--";

Then the query is going to be as follows:

$query="SELECT * FROM USERS

WHERE username=0; exec (0x73587574 64 5f77 6e)-- AND

password=''";

In this example, char () function takes hexadecimal

encoding of characters and converts it into actual characters.

This encoded string is translated into SHUTDOWN

command which causes database to shut down.

V. DETECTION AND PREVENTION TECHNIQUES FOR SQL

INJECTION

A proper defense mechanism should exhibit the following

properties [4].

Detection: The defense system should be able to detect

and identify an SQL injection attempt.

Prevention: The defense system should have perfect

knowledge of SQL injection vulnerabilities and be able

pinpoint such vulnerabilities within the application.

Many frameworks in the literature have been used and/or

proposed to detect and prevent SQL injection vulnerabilities

in Web applications. We now list some of the most notable

ones.

A. Pattern Matching Algorithm [14]

In this approach, Aho-Corasick pattern matching

algorithm is used to detect and prevent SQLIA. The

algorithm has two phases: static and dynamic phase:

In static phase, user generated SQL queries are compared

with the static pattern list which has sample of well known

attack patterns [14]. If the generated SQL exactly match with

one of the patterns given in static pattern list, then it means

there is an attempt to SQLIA. Otherwise, anomaly score

value of the pattern which is high matching score in static

pattern list will be calculated for this query in dynamic phase

by Aho Corasick algorithm. If the anomaly score value is

more than a given threshold value, and an alarm returns to the

administrator. As soon as the alarm received by administrator,

the query will be analyzed manually. If administrator detects

an SQLI attack attempt, then the query will be rejected and

static pattern list will be updated by this malicious pattern.

B. SQLRand [15]

The basic idea behind SQLRand is randomizing SQL

commands in which the template query inside the application

will be randomized. In this way SQL commands which are

injected by a malicious user will not be encoded, therefore

the proxy will not recognize the injected commands and the

attack will not be successful.

In SQLRand, proxy server is used between web server and

database server. In this technique, SQL keywords are

modified by appending a random integer which is not easy to

be guessed by the attacker. Before SQL statements enter the

database, the modified SQL keywords are decoded into

original SQL commands by the proxy. In this approach,

random integers will not be appended to any other SQL

commands (which are injected by the malicious user),

therefore the proxy will not recognize these injected

commands and lead to invalid expressions [15].

For filtering the database error messages, the proxies can

be used. Proxy hides the error messages which are generated

by database because of malicious queries. Remember that,

error messages help the malicious user (attacker) to gather

data from database table schema.

C. Query Tokenization Method [16]

This method consists of tokenizing the original query and

the query with injection. The tokenization is done for both

original and injected query. These tokens form an array. The

lengths of arrays obtained from original query and query with

injection are compared if there is a match there is not an SQL

injection, otherwise there is an attempt to SQLIA.

Fig. 1 is an example for this approach.

Fig. 1. Query tokenization [16].

In the above query, if Query Tokenization method is

applied for detecting SQLIA, the tokens are going to be as

follows:

Token0="SELECT*FROM", Token1= "Table", Token2=

"WHERE", Token3= "attribute=", Token4= "Input". The

tokenization is done by detecting a space, single quote or

double dashes and all strings before each symbol constitute a

token [16]. Therefore, the corresponding array of tokens will

be as Fig. 2.

Fig. 2. Array of tokens [16].

Fig. 3. Token detection [16].

By the same approach, tokenization is done for Fig. 3 as

shown in Fig. 4.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

354

Fig. 4. Tokenization applied to injected query [16].

The main idea of this method is detection of SQLIA, by

comparing lengths of the resulting arrays from the two

queries. The array length of original query, as shown in the

figure is 5, and the length of the injected query is 9. Therefore,

since the length of the arrays are different, according to

Query Tokenization method, there is an attempt to SQLIA.

D. Parse Tree Validation Approach [17]

A parse tree is a data structure which is the parsed

representation of a statement. Parsing a statement requires

knowledge of the language grammar that the statement was

written in. Therefore, when an attacker injects a malicious

SQL query as an input, then the parse tree of the original

query and query with injection do not match. In this

technique, parse tree of particular statement and its original

statement is compared at run time. The execution of

statement is stopped unless there is a match [17]. Here is an

example for this approach. Fig. 5 indicates the parse tree of

original query for login system.

$query = "SELECT *FROM usertable

WHERE username ='greg' AND password='secret'";

Fig. 5. Parse Tree for original query [17].

While identifiers indicate table names and attributes,

literals indicate strings, numbers etc.. The following figure

has a tautology based attack attempt. The malicious SQL is:

$query = "SELECT* FROM usertable

WHERE username ='greg' AND password='secret'--AND

password='tricky'";

In Fig. 6, the parse tree of the original query and injected

query are different. In the injected query, one more comment

node is displayed.

Fig. 6. Parse tree for malicious(injected) query [17].

Although, this method has strengths, it has also

weaknesses: adding overhead computation and listing of

inputs (black list or white list).

E. Manual Approach [18]

This approach is used for detection and prevention of

SQLI vulnerabilities. It can be used in two ways.

Defensive Programming: In this way, developer

implements the code in such a way that user's input can not

contain any malicious SQL commands. Developers are doing

this by using black and white lists. A blacklist is a basic

access control mechanism that allows everyone access,

except for the members of the black list (i.e. list of denied

accesses). A white list is a list or register of entities that, for

some reason, are being provided a particular privilege, access

etc. SQL DOM, Safe Query Objects, PreparedStatement in

the JDBC API, and special APIs provided by DBMSs are in

this category.

Code Review: This approach is a SQL Injection detection

technique with low cost but time consuming [19].

VI. CONCLUSION

In this paper, we have reviewed the survey of most popular

SQL Injection attacks (SQLIA), vulnerabilities, detection,

and prevention techniques for SQLIA.

REFERENCES

[1] J. Williams, Open Web Application Security Project. Top Ten most

Critical Web Application Vulnerabilities, 2016.

[2] A. P. A. M. Kaurl, “Token sequencing approach to prevent Sql

injection attacks,” IOSR Journal of Computer Engineering, vol. 1, no.

21-37, 2012.

[3] W. G. Halfond, J. Viegas, and A. Orso, “A classification of

sql-injection attacks and countermeasures,” in Proc. the IEEE

International Symposium on Secure Software Engineering, 2006, vol. 1,

pp. 13–15.

[4] A. Tajpour, M. Z. Heydari, M. Masrom, and S. Ibrahim, “Sql injection

detection and prevention tools assessment,” in Proc. 2010 3rd IEEE

International Conference on Computer Science and Information

Technology (ICCSIT), 2010, vol. 9, pp. 518–522.
[5] Z. Djuric, “A black-box testing tool for detecting Sql injection

vulnerabilities,” in Proc. 2013 Second International Conference on

Informatics and Applications (ICIA), 2013, pp. 216–221.

[6] A. Tajpour, M. Massrum, and M. Z. Heydari, “Comparison of Sql

injection detection and prevention techniques,” in Proc. 2010 2nd

International Conference on Education Technology and Computer

(ICETC), 2010, vol. 5, pp. V5–174.
[7] M. Medhane, “Efficient solution for Sql injection attack detection and

prevention,” International Journal of Soft Computing and Engineering

(IJSCE), vol. 3, pp. 396–398, 2013.
[8] S. McDonald, “Sql injection: Modes of attack, defense, and why it

matters,” White Paper, Government Security, 2002.
[9] D. Kar and S. Panigrahi, “Prevention of Sql injection attack using

query transformation and hashing,” in Proc. 2013 IEEE 3rd

International on Advance Computing Conference (IACC), 2013, pp.

1317–1323.

[10] M. Howard and D. LeBlanc, Writing secure code, Pearson Education,

2003.

[11] P. Y. Jane and M. Chaudhari, “Sqlia: Attack s by Sql injection attack

and their detection mechanism,” International Journal of Engineering

Research and Technology, vol. 2, 2013.

[12] R. A. McClure and I. H. Kruger, “Sql dom: Compile time checking of

dynamic sql statements,” in Proc. 27th International Conference on

Software Engineering, 2005, 2005, pp. 88–96.

[13] A. Tajpour and M. J. zade Shooshtari, “Evaluation of Sql injection

detection and prevention techniques,” in Proc. 2010 Second

International Conference on Computational Intelligence,

Communication Systems and Networks (CICSyN), 2010, pp. 216–221.

[14] M. A. Prabakar, M. Karthikeyan, and K. Marimuthu, “An efficient

technique for preventing Sql injection attack using pattern matching

algorithm,” Emerging Trends in Computing, Communication and Nan-

otechnology (ICE-CCN).

[15] S. W. Boyd and A. D. Keromytis, “Sqlrand: Preventing sql injection

attacks,” in Proc. International Conference on Applied Cryptography

and Network Security, Springer, 2004, pp. 292–302.

[16] L. Ntagwabira and S. L. Kang, “Use of query tokenization to detect and

prevent sql injection attacks,” in Proc. 2010 3rd IEEE International

Conference on Computer Science and Information Technology

(ICCSIT), 2010, vol. 2, pp. 438–440.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

355

[17] G. Buehrer, B. W. Weide, and P. A. Sivilotti,

“Usingparsetreevalidation to prevent Sql injection attacks,” in Proc. of

the 5th international workshop on Software engineering and

middleware, 2005, pp. 106–113.

[18] M. Junjin, “An approach for Sql injection vulnerability detection,” in

Proc. Sixth International Conference on Information Technology: New

Generations, 2009. ITNG’09, 2009, pp. 1411–1414.

[19] R. A. BakerJr, “Codereviewsenhancesoftwarequality,” in Proc. of the

19th international conference on Software engineering, 1997, pp. 570–

571.

Gülsüm Yiğit received the BS degree in computer engineering from Zirve

University, Gaziantep, Turkey, in 2014. She is currently a master student in

Electronics and Computer Engineering Department from Gaziantep

University. Her research interests include cloud security, secure multiparty

computation.

Merve Arnavutoğlu completed her undergraduate degree at the Zirve

University, Gaziantep, Turkey, in 2014. She is currently doing her master

degree at Gaziantep University in Electronics and Computer Engineering

Department. Her research areas are the privacy, security of iBeacon

technology.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

356

Image Processing Techniques and Methods

