

Abstract—The efficiency of processing queries in an

embedded database is critical for the system performance. The

principal mechanism through which an embedded database

maintains an optimal level of performance is the database query

optimizer. It reduces the response time of a given query and the

total time of processing queries. Nevertheless, because of the

optimizer’s importance to the robustness and flexibility of an

embedded database, we outline the embedded database query

optimization by generating an optimal query processing plan.

In this paper, an approach is presented which is able to generate

an optimal query processing plans for a given user query. The

approach uses dynamic programming to determine optimal

query plans for a given query.

Index Terms—Embedded databases system, optimization,

query plan, query cost.

I. INTRODUCTION

In the last years the deployment of embedded real-time

systems has increased dramatically. At the same time, the

amount of data that needs to be managed by embedded

real-time systems is increasing, thus requiring an efficient

and structured data management. Hence, database

functionality is needed to provide support for storage and

manipulation of data in embedded real-time systems.

However, a database that can be used in an embedded

real-time system must fulfill requirements both from an

embedded system and from a real-time system, i.e., at the

same time the database needs to be an embedded and a

real-time database [1]. The main objectives for an embedded

database are low memory usage, i.e., small memory footprint,

portability to different operating system platforms, efficient

resource management, e.g., minimization of the CPU usage,

ability to run for long periods of time without administration,

and ability to be tailored for different applications. In

addition, development costs must be kept as low as possible,

with short time-to-market and reliable software.

An embedded database is an integral part of such

applications or application infrastructures. Unlike traditional

DBMSs, database functionality is delivered as part of the

application or application infrastructure. These databases run

with or as part of the applications in embedded systems [2].

Embedded databases provide an organized mechanism to

access large volumes of data for applications. Instead of

Manuscript received January 15, 2017; revised March 17, 2017.

B. Selmi is with the National Engineering School of Manouba, Manouba

University, Tunisia (e-mail: boubaker.selmi@hotmail.fr).

H. Gharsellaoui was with National Engineering School of Carthage,

Carthage University, Tunisia (e-mail: gharsellaoui.hamza@gmail.com).

S. Bouamama is with FCIT, University of Jeddah, KSA, National

Engineering School of Manouba, Manouba University, Tunisia (e-mail:

Sbouamama@uj.edu.sa).

providing full features of traditional DBMSs, such as

complex query optimization and handling mechanisms,

embedded databases provide minimal functionality such as

indexing, concurrency control, logging, and transactional

guarantees. It is actually a broad technology category that

includes: database systems with differing application

programming interfaces (SQL as well as proprietary, native

APIs); database architectures (client-server and Peer-to-Peer);

storage modes (on-disk, in-memory, and combined);

database models (relational-oriented, object-oriented), [2].

Nowadays, there are many embedded databases on the

market, but, they vary widely from vendor to vendor.

Existing commercial embedded database systems, e.g.,

Polyhedra, RDM, Velocis, Pervasive, SQL, Berkeley DB,

and TimesTen, have different characteristics and are

designed with specific applications in mind. They support

different data models, e.g., relational vs object-oriented

model, and operating system platforms. Moreover, they have

different memory requirements and provide different types of

interfaces for users to access data in the database. Application

developers must carefully choose the embedded database that

their application requires, and find the balance between the

functionality an application requires and the functionality

that an embedded database offers. Thus, finding the right

embedded database, in addition of being a quiet time

consuming, costly, concurrency control, transaction

scheduling, and logging and recovery.

The rest of the paper is organized as follows. Section II

presents some related works to the embedded databases.

Section III presents the background of our approach within

the heuristic used and the method which is dynamic

programming. Section IV discusses the approach for query

plan generation. Finally, the conclusion is provided in

Section V.

II. RELATED WORKS

We present some works dealing with embedded and

real-time systems. ODEA [3] is a platform for the embedded

applications to achieve the QoS metrics which are the

timeliness of transactions and the temporal freshness of data

but not totally guaranteed. It adds an object-manager module

that provides the organization of the main memory, the

creation and deletion of RT objects and the concurrency

control for these objects. Anti-Caching [4], the authors

implement a prototype to overcome the restriction that all

data fit in main memory where cold data is moved to disk and

hot data stays in main memory, where the main memory is

the primary storage device not the disk like the traditional

DBMS. Data are stored even in the memory or in the disk not

like the traditional DBMS, data can be in the memory and the

Embedded Database Query Processing Plan Generation

Using Dynamic Programming

B. Selmi, H. Gharsellaoui, and S. Bouamama

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

329DOI: 10.7763/IJCTE.2017.V9.1161

disk. QeDB (Quality-aware real-time Embedded DataBase)

[5] is a database for data-intensive real-time applications

running on embedded devices where not all the data can be fit

into main-memory. QeDB is an extension of Berkeley DB. It

has been designed to improve and support the QoS in the

embedded applications, which are the timeliness of

transactions and the freshness of data by using a novel

feedback control technique [6] and exploiting Multiple

Input/Output (MIMO) operations. eXtremeDB Fusion [7] is a

solution for military and aerospace, it is a small footprint

embedded real time DataBase for MilAero

(Military-Aerospace). Also used in other various fields such

as: control flights, fusion of sensor data, radio,

telecommunications and driver support… eXtremeDB

Fusion offers a small code pattern (50K) with advanced

features by providing: high availability of data; hybrid

storage data from the memory and disk. SQLite [8] is an

open-source embedded relational database to meet the needs

of embedded systems which is small, fast, simple, reliable

and easy-to-port. SQLite has such special advantages such as

powerful, fast, simple interface as well as small footprint,

easy to control without any external dependencies and no

setup or administration needed so it's especially suitable for

applications in embedded environment. SQLite transactions

are Atomic, Consistent, Isolated, and Durable (ACID

Properties).

In [9], the authors optimize SQLite COMMIT strategy by

using the FileManager to optimize the response time of

transactions. Also, to reduce the frequency of executing

COMMIT by wrapping up necessary sequences in one

transaction:

1- Wrap all sequences of SQL statements during mobile

device connection initial.

2- Wrap all sequences of SQL statements for transferring

each file. FileManager is an application program that

manages file storing and provides file-searching service. It

stores files and database files in the Flash Cards. The users

transfer files to the Flash Cards. At this time, the mobile will

update related information into the database which is stored

in the flash memory.

LGeDBMS [10] is a small DBMS for mobile embedded

system with flash memory. It has been designed to meet those

features:

1- Optimized to flash memory with LFS design principle,

2- Compact size suitable for consumer electronics

appliances,

3- Transaction process based on flash memory

characteristics.

The LGeDBMS process makes only an atomic and durable

update operation to reduce as possible the unnecessary

management cost. To be resist for a system crash, LGeDBMS

uses a PID mapping table visioning scheme for

logging/recovery. However, LGeDBMS method reduces the

number of I/Os by writing a final PID mapping table than

writing a log for each data change. Embedded RFID

Middleware [11] is software intermediate between the

embedded system software (embedded operating system,

embedded database) and application software. It uses the

functions and services offered by embedded operating system

in goal to provide the development environment for the

application. Embedded RFID middleware is designed to deal

the limits of embedded systems, which are: power

consumption optimization of embedded system software;

Real-Time support; and limited resources (it must have a

complete control of resources, design optimization algorithm,

and control the use of resources). In [12], the authors propose

an algorithm to optimize the embedded query by using a

practical swarm optimization (PSO). The previous version of

PSO finds at each iteration 2 solutions, pbest (fitness

achieved till current iteration) and gbest (global best solution).

Based on this, the authors design a new version of PSO,

which is named "dynamic PSO algorithm".

A. Embedded Database System

The database engine is the boss control module of the

database system, its main function is to achieve global

control and ensure the correctness and efficiency of the work.

It monitors the database during all operations, control the

allocation and management of resources. Data access module

implements all the basic operations on the base table, which

is the core of the operating system to achieve database

module. Its functions:

 Find a record based on property values.

 Find records using the relative position.

 Add a record to a base table.

 Delete a record from the base table.

 Modify a record and write a result back to the base

table.

Database maintenance module is used to backup and

restore the database if it is necessary.

We will implement NoSQL embedded database. NoSQL

[13]-[15] is a new solution embedded database introduced

and began in 2009 and is growing rapidly, still till now

evaluated and contributed new types and versions of

embedded databases. It is designed to address some of the

points: being non-relational, distributed, open-source and

horizontal scalable. NoSQL means not only SQL. NoSQL

characteristics: schema-free and less, easy replication support

and distribution, simple API, Queries need to return answers

quickly, mostly query and few updates, asynchronous inserts

and updates, eventually consistent / BASE (ACID transaction

properties are not needed), Large data volumes, CAP

Theorem (Consistency, Availability, Partition tolerance).

Consistency means all nodes see the same data at the same

time and a set of operations has occurred all at once.

Availability means that node failures do not prevent

survivors from continuing to operate and every operation

must terminate in an intended response. Partition tolerance

means that the system continues to operate despite arbitrary

message loss and the operations will complete even if

individual components are unavailable. NoSQL Databases

Types:

 Column Store: each storage block contains data from

only one column,

 Document store: stores documents made up of tagged

elements,

 Key-value store: is a hash table of keys.

III. BACKGROUND

As the data required to process the user query existing in

various relations, there is a need to process a query plan that

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

330

has an optimal cost. The query processing cost will be

cheaper if the numbers of query’s relations are low and

concentrations of data queried on the relations are higher.

This happens because cost of transmission of data from

different relations will be higher if numbers of relations are

bigger. When the numbers of relations used are less, then

sending of data will not be required as much. There are many

issues in query plan generation which use the iterative

improvement and simulated annealing algorithms to produce

used an optimal hybrid genetic based approach to resolve the

real-time scheduling of embedded systems with optimization.

Also, in [18] authors take the genetic algorithm as a method

to solve this problem of finding an optimal query plan in their

work. Our new original proposed work uses the two

heuristics defined in [18] with a proposition of a new one.

A. The Heuristic

The first heuristic works on number of relations required to

answer the user query. Lesser the number of relations

involved in query processing, lesser will be the

communication between the relations. As a result, query

processing will be efficient. Second heuristic works on the

concentration of data queried on the relations. There will be

many valid query plans having low number of relations but

will be preferred which are having higher number of data

queried on the relations. Based on these two heuristics and

the Query Proximity Cost (QPC) given in [18], we will

propose a new version of this QPC as the following

expression demonstrates:

∑
𝑅𝑖

𝑁
(1 −

𝑅𝑖

𝑁
)

𝑀

𝑖=1

where M is the number of relations accessed by the query

plan, 𝑅𝑖 is the number of times the 𝑖𝑡ℎ relation is used in the

Query plan and N is the number of data queried by the query.

The QPC varies from 0 to (N-1)/N, where Zero specifies that

all the data queried by the queries, resides in the same relation

and therefore will be the closest. On the other hand, (N-1)/N

specifies that each of the data queried by the query, resides in

different relations and therefore are the least closest. The

query plans having less QPC are generated using dynamic

programming, which is discussed next.

B. Dynamic Programming

This algorithm is developed in IBM’s System R project

[19] and it is used in almost all commercial database products

[20]. It works in bottom-up way by building more complex

sub-plans from simpler sub-plans until the complete plan is

constructed. In the first phase, the algorithm builds access

plan for every relation in the query. Typically, there are

several different access plans for a relation. In the second

phase, the algorithm finds all two-way join plans using the

access plans as building blocks. Again, the algorithm would

find alternative join plans for all relations. The algorithm

executes in this way until it has enumerated all n-way join

plans, and those plans are passed by the “finalizePlans”

function to become full plans for the query. The beauty of the

dynamic programming is that inferior plans are pruned. This

is carried out by the “prunePlan” function.

IV. THE PROPOSED APPROACH

The dynamic programming algorithm is adapted to query

plan generation problem. The dynamic programming

algorithm for query plan generation is shown below. This

algorithm takes relation-data matrix and relation participating

in the FROM clause of the SQL query as input and produces

optimal query plan as output.

INPUT: Relation-Data matrix and relations participating

in the FROM clause of the query

OUTPUT: Optimal plan with minimum cost.

Method:

Step 1: Find all possible access paths of the relations of q;

Step 2: Evaluate QPC of each query plan based on

closeness;

∑
𝑅𝑖

𝑁
(1 −

𝑅𝑖

𝑁
)

𝑀

𝑖=1

Step 3: compare their cost and keep the least expensive and

pruned the others;

Step 4: Add the resulting plans into set D;

Step 5: For i=1 to number of joins in q do;

Step 6: consider joining the relevant access paths found in

previous iterations using all possible join methods;

Step 7: compare the cost of the resulting plans and keep the

least expensive then pruned the others;

Step 8: Add the resulting plans into set D;

Step 9: end for;

Step 10: Return Optimal Plan;

Where q is the query

A. Proof

As an example, we will consider the following query:

Select D1, D2, D3, D4

From R1, R2, R3, R4

where R1.D1=R2.D2 AND R3.D3=R4.D4

R1, R2, R3, R4 are the relations crossed by the query. To

answer the query, it requires four data D1, D2, D3, and D4.

Therefore, the length of query plan is four. The query plans

are constructed by the relations containing the data in the

SELECT clause. We assume the relation-data matrix given

below: (see Table I).

TABLE I: RELATION-DATA MATRIX DESCRIPTION

Relation-Data Martix

R1

R2

R3

R4

D1 D3 D7 D9

D1 D6 D4 D2

D1 D5 D8 D4

D1 D3 D4 D2

This matrix gives an overview of the relations and the data

it contains. Relation 1 (R1) contains Data 1, Data 3, Data 7

and Data 9. Relation 2 (R2) contains Data 1, Data 6, Data 4

and Data 2. Relation 3 (R3) contains Data 1, Data 5, Data 8

and Data 4. Relation 4 (R4) contains Data 1, Data 3, Data 4

and Data 2.

We will present some of possible query plans.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

331

In the authors query plans and generate an optimal , one. [] []16 17,

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

332

TABLE II: RELATIONS DESCRIPTION

Query Plans

1 3 4 2

3 3 4 2

1 1 1 3

1 1 4 4

D1 at R1, D2 at R3 , D3 at R4, D4 at R2

D1 at R3, D2 at R3 , D3 at R4, D4 at R2

D1 at R1, D2 at R1 , D3 at R1, D4 at R3

D1 at R1, D2 at R1 , D3 at R4, D4 at R4

The number of possible query plans is

NR1*NR2*NR3*NR4 where NRi is the number of relations

containing the ith data. In this example; it is (4*4*4*4) valid

query plans. For the query plans given in Table II, the first

one involves four (4) relations, the second one involves three

(3) relations, whereas the third and fourth involve two (2)

relations. The third query plan has three data residing in

relation 1 and a data residing in relation 3, this implies that

this query plan has a higher concentration of data at the

relation 1. So, it would be considered more optimal than the

other query plans.

For the query plan given previous, we will introduce their

QPC below:

TABLE III: QUERY PROXIMITY COST VALUES

Query

Plans

Query Proximity Cost QPC

Value

[1,3,4,2] 1/4(1-1/4)+1/4(1-1/4)+1/4(1-1/4) 9/16

[3,3,4,2] 2/4(1-2/4)+1/4(1-1/4)+1/4(1-1/4) 5/8

[1,1,1,3] 3/4(1-3/4)+1/4(1-1/4) 3/8

[1,1,4,4] 2/4(1-2/4)+ 2/4(1-2/4) 1/2

As we can see in Table III, query plan 3 is the most optimal

followed by query plan 4, then query plan 2, and the query

plan 1 is the most expensive because it involves more number

of relations participating in the query plan. So, less number of

relations in the query plan gives less QPC and more optimal

query plan.

This approach presents several advantages over other

technologies in the sense that is easier to structure the data to

specific real-time needs. The design is closer to the

implementation and development is very simple and it is

easier to modify processing and evolve data structures.

Nonetheless, our proposed approach suffers from some

drawbacks, including difficulty expressing integrity of the

real-time constraints in embedded databases and difficulty in

installation. We will work hardly in the next issues in order to

handle these difficulties.

V. CONCLUSION

This paper focuses on the problem of embedded database

query optimization, which is of great importance in

embedded database system design. In this paper, an

algorithm is proposed based on dynamic programming to

generate query processing plans with the required data. This

is done by formulating the query processing plan generation

problem as a single-objective dynamic programming which

the objective is to find an optimal query plan with minimum

QPC. This query plan generated involves minimum number

of relations to answer the user query. However, we are

planning to develop a better solution during our future works.

Moreover, we want to apply the proposed technique to big

data centers.

REFERENCES

[1] A. Tesanovic, D. Nyström, J. Hansson, and C. Norström, “Embedded

databases for embedded real-time systems: A component-based

approach,” Report-MRTC, Sweden, pp. 1-77, 2002.

[2] A. Nori, “Mobile and embedded databases,” in Proc. the ACM

SIGMOD International Conference on Management of Data, 2007, pp.

1175-1177.

[3] Z. Ellouze, N. Louati, and R. Bouaziz, “A next generation

object-oriented environment for real-time database application

development (ODEA),” in Proc. 12th IEEE International Conference

on Trust, Security and Privacy in Computing and Communications,

2013, pp. 1224-1232.

[4] J. DeBrabant, A. Pavlo, and S. Tu, “Anti-caching: A new approach to

database management system architecture,” in Proc. the VLDB

Endowment, vol. 6, no. 14, 2013.

[5] W. Kang, S. H. Son, and J. A. Stankovic, “Design, implementation, and

evaluation of a Qos-aware real-time embedded database,” in Proc.

IEEE Transactions on Computers, January 2012, pp. 45-59.

[6] K. D. Kang, J. Oh, and S. H. Son, “Chronos: Feedback control of a real

database system performance,” in Proc. 28th IEEE International

Real-Time Systems Symposium, 2007, pp. 267–276.

[7] McObject LLC, eXtremeDB Fusion for Military and Aerospace

Applications, 2009.

[8] L. Junyan, X. Shiguo, and L. Yijie, “Application Research of

Embedded Database SQLite,” in Proc. International Forum on

Information Technology and Applications, 2009, pp. 539–543.

[9] W. Song and T. Tao, “Performance optimization for flash memory

database in mobile embedded system,” in Proc. Second International

Workshop on Education Technology and Computer Science, 2010, pp.

35–39.

[10] G. Jeong, K. S.-C. Baek, H.-S. Lee, H.-D. Lee, and M. Jeung Joe,

“LGeDBMS: A small DBMS for embedded system with flash

memory,” in Proc. of 32th International Conference on Very Large

Data Bases (VLDB), pp. 1255-1258.

[11] Z. X. Li and Y. X. Zhang, “Design and implementation of embedded

rfid middleware,” in Proc. International Conference on Medical

Physics and Biomedical Engineering (ICMPBE), 2012, vol. 33, pp.

587-596.

[12] X. Mingyao and X. F. Li, “Embedded database query optimization

algorithm based on particle swarm optimization,” in Proc. Seventh

International Conference on Measuring Technology and Mechatronics

Automation, 2015, pp. 429–432.

[13] R. P. Padhy, M. R. Patra, and S. C. Satapathy, “RDBMS to NoSQL:

reviewing some next-generation non-relational database's,”

International Journal of Advanced Engineering Sciences and

Technologies, vol. 11, no. 1, pp. 015–030, 2011.

[14] C. Strauch, Course of Studies Computer Science and Media (CSM)

University Hochschule der Medien, Stuttgart (Stuttgart Media

University), 2009.

[15] A. Salminen, “NoSQL seminar 2010 @ TUT,” 2010.

[16] I. Gharbi, H. Gharsellaoui, and S. Bouamama, “A hybrid genetic based

approach for real-time reconfigurable scheduling of os tasks in

uniprocessor embedded systems,” in Proc. 17th International

Conference on Enterprise Information Systems, (ICEIS), 2015, pp.

385-390.

[17] T. V. V. Kumar, V. Singh, and A. K. Verma, “Generating distributed

query processing plans using genetic algorithm,” in Proc. International

Conference on Data Storage and Data Engineering, 2010, pp.

173-177.

[18] D. Kossmann, “The state of art in distributed query optimization,” in

Proc. ACM Computing Surveys, September 2000, vol. 32, no. 4, pp.

423-469.

[19] A. Aljanaby, E. Abuelrub, and M. Odeh, “A survey of distributed query

optimization,” in Proc. The International Arab Journal of Information

Technology, January 2005, vol. 2, no. 1, pp. 48-57.

Selmi Boubaker was born in Bizerte-Tunisia on

September 29, 1988. Mr Selmi Boubaker received his

master degree in computer science from Higher

Institute of Computer Sciences and Management,

University of Kairouan-Tunisia in 2013. Now, he is a

Ph.D Student in computer science at National

Engineering School of Manouba, Manouba

University-Tunisia.

He is a temporary assistant at the Higher Institute of

Management of Sousse, Sousse University-Tunisia.

After that, he was working as a substitute teacher for two years at Sousse

University and Kairouan University. From April, 2014 to December, 2014

he worked as an IT Support in an international Company of Trading, and also

in 2012 as an ERP administrator in Pharmaceutical Company.

Hamza Gharsellaoui received the B.S. degree in

computer science from Tunis El-Manar University,

Tunis, Tunisia, in 2004, and the M.S. degree in

industrial computer science from National Institute of

Applied Sciences and Technology (INSAT), Carthage

University, Tunis, Tunisia, in 2007. He did research in

computer science at National Institute of Applied

Sciences and Technology, Carthage University, Tunis,

Tunisia to receive the Ph.D. degree, in 2013. He was a

Researcher in computer science at Al-Jouf College of Technology, Technical

and Vocational Training Corporation, Sakaka, Kingdom of Saudi Arabia

(KSA). He is a Part-time Researcher and Assistant Professor at ENIC

School, Carthage University in Tunisia.

H. Gharsellaoui is active in several projects and in other interesting

international collaborations. He was with National Engineering School of

Carthage, Carthage University, Tunisia.

International Journal of Computer Theory and Engineering, Vol. 9, No. 5, October 2017

333

