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Abstract—This article suggests an approach for the synthesis 

of adaptive spectral operators from the general spectral kernel. 

This method provides an infinite set of configurable basis 

functions which fulfill the fundamental criterion of the 

orthonormality and the completeness of system functions to 

ensure a spectral analysis with a fast calculation algorithm. 

Relying on this approach, its implementation leads to solving 

the problem of random signals compression. 

 
Index Terms—Spectral orthogonal operator, fast 

transformation, spectral kernels.  

 

I. INTRODUCTION 

In signal processing, the first idea that comes to mind is the 

minimization of space description of data to analyze. To deal 

with such problems, conventional methods based on spectral 

transformation in the Fourier, Walsh and Haar’s function are 

often used for their fast algorithm. Though put into practice 

these transformations do not always lead to a considerable 

compression of data to analyze. Thus, their implementation is 

limited in case of real random signals. 

Minimizing the data description space can be achieved 

through applying the Karhunen-Loeve transformation [1]. 

However, its practical use is limited due to the difficulty of 

calculating its own functions, and the absence of a fast 

transform algorithm for computing the spectrum. 

Therefore, handling this problem requires the synthesis of 

a linear spectral system with configurable basis functions that 

will ensure an adaptable rapid transformation of signals 

analysis. To this end, this article suggests a method based on 

the spectral representation of the operator using the general 

spectral kernel. This method consists of the decomposition of 

the matrix operator as the product of sparse matrices whose 

non-zero elements are interconnected according to the 

condition of the orthonormality and the completeness, and 

having a proportion of zeros providing parametric building of 

basis functions with a fast transform algorithm. 

 

II. A METHOD FOR REPRESENTING THE TRANSFORM 

OPERATOR USING THE GENERALIZED SPECTRAL KERNEL 

In digital signal processing, the orthogonal linear 

transform of a signal X can be represented by the matrix 

equation:  
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where:  

-X = [x1, x2, …, xN]T  is the original signal to transform 

having the size N = 2n ; 

-Y = [y1, y2, …, yN]T is the vector of spectral coefficients 

calculated by the orthogonal spectral operator H of 

dimension N x N. 

The factorization of Good [2], has demonstrated a 

possibility for representing the matrix operator H as the 

product of sparse matrices Gi (2) with a proportion of higher 

zeros which allows the construction of fast Fourier, Haar and 

Walsh’s transform algorithm. The matrix Gi (i = 1, ..., n) has 

the following form: 
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Using the binary notation of rows and column numbers (z 

= zn zn-1… z1 and u = un un-1… u1), and considering the 

particular case (N = 8), the matrix Gi can be represented as 

follows: 
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The white and black squares represent the zero and 

nonzero values of the Gi matrix. We can see that the non-zero 

elements of the two adjacent rows are building on 

micro-matrix or blocks of matrix Mi,j (i = 1,…n; j = 1,…N/2). 

The non-zero elements of blocks form the matrix Vi,j having a 

minimum dimension that will be called later spectral kernels. 

To satisfy the two basis requirements of the orthonormality 
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Fig.1. Representation of the structure of the good’s matrix.
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and the completeness of the basis functions, the general 

spectral kernel takes the following form: 
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    2,0,2,0),exp(,  jw ji
 

where the parameters 
ji,  and ,i j  can take random values 

which influence the proportion of zeros of matrix Gi. This 

makes it possible to synthesize an infinite set of the basis 

functions having a fast transform algorithm, including 

Fourier, Walsh and Haar. 

To evaluate the spectral kernels’ parameters 
ji, and 

ji,

of matrix Gi, we can form the spectral operators H with 

complex basis functions and when 0, ji , the real operators 

depending on the terms of the problem to deal with. 

For this reason, the relation (3) is called the general 

spectral kernel. The total number of the kernels of the formed 

spectral operator is equal to n * N/2, which allows to obtain a 

very important proportion of zeros that equals n*N. 

The spectral kernels may be different, partially or 

completely identical. For example, Walsh-Hadamard’s basis 

functions [3]-[7] are formed from identical kernels with 

spectral parameters ( ,0, ji et 
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For basis functions synthesized from identical kernels 

(such as Walsh’s) spectral operator thus obtained can be 

calculated by the Kronecker’s product [9] of spectral kernels. 

Usually, for a high proportion of zeros, the spectral operator 

cannot be calculated in such a way. In this article, to 

synthesize a large class of orthogonal basis functions, we 

suggest to use the Kronecker’s modified product as follows. 

 

III. SYNTHESIS OF THE SPECTRAL OPERATOR USING THE 

KRONECKER MODIFIED PRODUCT  

The class of synthesized basis functions may be extended 

if the matrix used instead of the Kronecker’s product is made 

according to the rule: 
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We use the modified form: 
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We can observe that the second multiplying equation (5) 

has the aspect of a matrix column formed by two spectral 

kernels. The next multiplier can be composed of four 

different kernels, and so on. In this case the shape of the 

Kronecker’s modified product corresponds to the following 

expression: 
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The number of spectral kernels for each following 

multiplier increases by 2 times. We must note that this 

multiplication rule is unchangeable to the left of matrix A 

whatever the size N = 2n. Based on this multiplication rule 

mentioned above and using the relation (6), the spectral 

operator H can be expressed as follows: 
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Using the equation (8) we calculate the spectral operator 

for N = 8. Thus, the corresponding kernels are: 
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From (7):  
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Fig. 2. Calculation of the spectral operator. 

Analyzing the elements hz,u of the operator H (Fig. 2), we 

can notice a regularity of repetition of the elements a, b and c. 

The recurrence of these elements allows the extraction from 

the global matrix of the blocks with the dimension 

respectively N / 2 × N / 2, N / 4 × N / 4 and  N / 8 × N / 8. 

The representation of the regularity of the elements hz,u 

allows to obtain a topological scheme that can be generalized 

for any size N = 2n of the operator H. The hz,u elements of the 

operator H can then be calculated using the relation: 
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For example the element h5,6 from the operator H of Figure 

3 can be calculated using equation (11) as follows: For all i = 

1, 2, 3 we have : 
110,1016,5, hhh uz    then  101123  zzzz  
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where Vi,j are the spectral kernels.
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that is conform to the topological scheme of the Fig. 3. 

The expression of the operator H using the modified 

Kronecker’s product significantly increases the classes of 

synthesized basis functions without complicating the 

procedure of obtaining the operator's elements using the 

Kronecker normal product. 

An important property of the representation of this 

topological scheme consists of a possibility to act locally on 

the synthesized operator via the change of some concrete 

elements of the spectral kernel. This property is useful when 

setting the basis functions of the spectral operator [10] 

(particularly in some rows or columns of the matrix operator 

H) depending on the conditions of the problem to deal with, 

without disturbing the orthogonality and completeness of 

system functions. 

 

IV. DETERMINATION OF ANGULAR PARAMETERS OF THE 

SPECTRAL KERNELS 

Whether X is a standard from a recording of some signals 

represented by a vector sized N = 2n: 

X = [x1, x2, …, xN]T                          (12) 

whose spectral representation may be obtained by: 
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Y
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                                   (13) 

and expressed with a single non-zero spectral component 

such as: 

Y = [y1, 0, …,0]T     avec  y1 ≠  0                  (14) 

Using the equation (7), we can represent the spectral 

operator H as a real matrix whose spectral kernels express the 

following: 
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that can be considered as a particular case of the general 

spectral kernels (3). 

Thus, from (13) we obtain the transposed vector of the 

signal X : 

YNHX TT                                   (16) 

For example, if N = 8, the spectral operator can be 

calculated as follows: 

13 1311 11 12 12 14 14

13 1311 11 12 12 14 14

23 2321 21 22 22 24 24

23 2321 21 22 22 24 24

31 21 3

31 21

8 , , ,

, , ,

,

c sc s c s c s
H

s cs c s c s c

c sc s c s c s

s cs c s c s c

c s c

s c

       
        

         

       
       

         

 
  

 

2 32 33 33 34 34

32 32 33 33 34 34

, ,
s c s c s

s c s c s c

      
      

        

    (17) 

where cij = cos(θij)  and sij = sin(θij) . 

Multiplying TH  by the column vector Y whose elements 

are zero except for the first, we obtains the vector XT, 

composed by the product of coefficient y1 by the elements of 

the first column of TH  
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The relation (18) builds a system of equations with the 

variables y1, θ1, θ2, …, θ7 which we can compute the 

parameters θi with the following operations:  
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Based on this calculation procedure we can find a general 

form to determine θi parameters of the spectral operator H for 

any size N = 2n. With the parameter values found θi, the 

synthesis of the operator H, and its representation in the form 

of a product was performed according to the topological 

scheme described above. Thus, we have to bear in mind that 

if we increase the size of the initial data, the parameters of the 

kernels of the operator previously obtained do not change. 

The elements of the new spectral cores will be defined by the 

supplementary coefficients of the signal. 

In the general case, we can calculate the angular 

parameters of the kernels by the relation: 
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The coefficient y1 decomposition can be determined by the 

Parseval's relation: 
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The proposed method for synthesis of adaptive basis 

functions can be used in various fields of signal processing 

such as technical diagnosis [10]. In [10] a setting procedure 

and an adaptation of basis functions elaborated with a fast 

transform algorithm. In Fig. 3 are shown the experimental 

results obtained from the comparison between the spectrums 

of a vibration signal Fig. 3b calculated using the adaptive 

basis functions and those obtained using conventional basis 
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functions, those of Fourier, Walsh and Haar (Fig. 3c, Fig. 3d 

and Fig. 3e). According to the aspect of spectrum obtained 

using the adaptive basis function, it can be noticed that a 

rapid decay of the components which may promote a better 

compression of the signal to be analyzed in comparison with 

conventional methods.  

 
b. Adaptive spectrum                       c. Fourier spectrum 

 
d. Walsh spectrum                             e. Haar spectrum  

Fig.3. Comparison between the spectrum of the signal obtained using the 

adaptive basis function and that obtained by conventional basis (Walsh, Haar, 

Fourier). 

 

V. CONCLUSION 

The expression of the operator with spectral processing 

kernels allows to create a fast algorithm, with which the 

passage from a basis function to another is only using some 

modification of the parameters of kernels, which gives a 

possibility not only to synthesize a wide class of function 

systems but to form bases with desired properties and predict 

the peculiarity of their behavior us well. 

The problem dealt with in this article reflects a temptation 

to find a constructive approach to the synthesis of basis 

functions with a fast algorithm and their practical use in 

signal processing problems. 

Moreover, the suggested approach includes in a single 

mathematical model, conventional basis functions of systems 

such as Fourier, Walsh and Haar, discovered at different 

times, and gives the right to form an infinite variety of new 

functions with rapid transformation algorithm bases. 

The settings of represented spectral operators based on 

spectral kernels gives opportunities to optimize the basis 

functions to solve the space minimization problem of signals’ 

description and extraction of informative features which is 

important to the resolution of various signal processing 

problems such as the diagnosis of dynamic systems and 

signal recognition. 
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a. Fragment of a recording signal to be analyzed
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