
  

 

Abstract—In this paper, I propose a fitting algorithm for a 

probability distribution for observations by using the 

Kolmogorov-Smirnov test. Drezner et al.  propose an algorithm 

that calculates the mean and standard deviation of a normal 

distribution of observations in order to minimize the KS 

statistic of the Kolmogorov-Smirnov test. I generalize the 

algorithm of Drezner et al. and obtain the necessary conditions 

that enable other probability distributions to be applied. I show 

that it may be applied to well-known probability distributions. 

 
Index Terms—Closest fit, kolmogorov-smirnov test, 

probabilistic distribution.  

 

I. INTRODUCTION 

Consider various series of observations. The data 

generating process of each series is not necessarily known. In 

order to better understand the data generating process, it is 

common to assume a probability distribution. 

Let a sorted series of observations be        . Assuming 

that these values are generated by an i.i.d. probability model 

that conforms to a continuous cumulative distribution 

function (CDF) F(x), there are several methods for 

calculating the discrepancy between the model and the 

observed series. The Kolmogorov-Smirnov test is a method 

that calculates the difference between the CDF of the 

assumed model and the CDF of the observations. The 

resulting KS statistic is an indicator of the appropriateness of 

the assumed distribution. 

There are many situations that demand knowledge of the 

probability distribution for a set of observations. One 

example is the situation in which it is important to determine 

the parameters of the probability distribution. Another is 

when selecting a model from a set of candidates, where 

models of the candidates have parameters. For these 

situations, it is necessary to determine the most appropriate 

parameters for the given observations. The KS statistic 

indicates how well the assumed model conforms to the 

observations. 

In order to achieve this, methods to estimate parameters by 

using Kolmogorov-Smirnov test have been developed. When 

discussing the estimation of parameters of a probability 

model, it is necessary to treat the model as a family of CDFs. 

Methods for fitting for a general family of CDFs are 

complicated. Györfi et al. [2] shows the condition for the 

consistency of a family of probability distributions with 

respect to Kolmogorov-test. 

On the other hand, Drezner et al. [1] focuses on the normal 
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distribution and proposes an efficient fitting algorithm (DTZ 

algorithm) using the Kolmogorov-Smirnov test. 

In this study, I analyze and generalize the DTZ algorithm, 

show necessary conditions to apply the generalized 

algorithm, and show some common probability distributions 

to which it can be applied. 

The remainder of this paper is organized as follows: 

Section II discusses notation and the Kolmogorov-Smirnov 

test. Section III discusses the related literature. Section IV 

shows the generalized algorithm and the conditions. Section 

V concludes this paper. 

 

II. PRELIMINARIES 

A. Notation 

Let ℜ be the set of real numbers. Let exp(x) denote the 

exponential function with argument x. For      ℜ  (i=1, 2, 

..., k), and multivariate function                 
             (k≥2), define the inverse function for the 
second argument                         
          as (1): 

                                              (1) 

Let         denote the normal distribution with mean   

and standard deviation  . 

Let Φ(x) denote the CDF of         (2), and let erfc(x) 

denote the complementary error function (3): 

Φ     
 

   
     

  

 
   

 

  
                      (2) 

        
 

  
           
 

 
                       (3) 

A real number function f(x) is polynomial time computable 

if there exists a polynomial p(n, m) where, for the fixed 

accuracy with length of m and any x with a length n, the value 

with the accuracy of f(x) can be calculated in p(n, m) steps. 

Definition 1. For k≥2, let        
 
   . A k-variate 

function                       (    ) is 

CDF-capable for    if the following conditions are satisfied:  

1) For all    ,           ;  

2) For all    ,        is non-decreasing in x;  

3) For all    ,        is right continuous in x;  

4) For all    ,                ; 

5) For all    ,               . 

B. The Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test was proposed by 

Kolmogorov and later improved by Smirnov. Knuth [3] 

explains the importance of this test. For a continuous 

probability distribution, if the observations          obey a 
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cumulative distribution function F, then               
obey the uniform distribution with range from 0 to 1. Thus, 

the KS statistic is the maximum value of the gap between the 

distribution of these and 1/n, 2/n, ..., n/n. This indicates how 

closely the empirical distribution conforms to the assumed 

probability distribution.  

For the sorted observations             (x1≤…≤ xn) and an 

assumed CDF F(x), the KS statistic is defined by (4):  

             
 

 
        

                   
   

 
  

                

                       (4) 

 

III. RELATED LITERATURE 

Györfi et al. [2] introduces a notion of consistency for a 

parameterized family of probability distributions with 

Kolmogorov distance (5), yields conditions for consistency, 

and shows that some well-known probability distributions are 

consistent. The conditions that are applied in this study are 

the same as those in Györfi et al. [2]. 

                                           (5) 

Györfi et al. [2] shows that the normal, log-normal, 

gamma, beta, binomial, Poisson, geometric, and negative 

binomial distributions are consistent. 

Weber et al. [4] evaluates the degree to which an 

evolutionary program is suitable for fitting continuous CDFs 

by using Kolmogorov-Smirnov test. Their study uses a 

software tool called the minimum Kolmogorov-Smirnov 

estimation fitter. This is based on the bell-curve based 

evolutionary optimization algorithm [5]. The fitting 

algorithm may be applied to many common probability 

distributions, including those discussed in this study. Noting 

that evolutionary programs are generally not universal, 

Weber et al. [5] expresses that some evolutionary programs 

may be applied to many probability distributions. This 

implies that some probability distributions might share a 

property that makes the search for suitable parameters 

efficient. 

Drezner, Turel and Zerom [1] proposes a fast algorithm 

that seeks the μ and σ that minimize the KS statistic of the 

normal distribution          with respect to sorted 

observations             (x1≤…≤ xn). Their algorithm is as 

follows. Let Φ(x) denote the CDF of        . Then, denote 

the CDF of         as   
   

 
 . Thus, for a mean μ and a 

standard deviation σ, the KS statistic is defined as: 

                 
 

 
   

    

 
    

    

 
  

   

 
    (6) 

Suppose that L bounds the KS statistic. Then we obtain (7) 

by solving (6) for μ:  

          
    

     
   

 

 
      

                   
     

   

 
                (7) 

The KS statistic is less than L iff F(σ, L) is not negative. 

Since, both the minimum and the maximum operators are 

applied to linear functions, solving for the maximum value of 

F(σ, L) becomes a linear programming problem. Thus, an 

algorithm that solves a linear programming problem, such as 

that of Megiddo [6], can determine the relative values of the 

KS statistic and L. Then, a binary search using this 

information can seek the minimum L. This algorithm is 

denoted the DTZ algorithm (see Fig. 1). 

 

 
Fig. 1. DTZ algorithm. 

 

IV. PROPOSED ALGORITHM  

The aim of this study is to apply the DTZ algorithm to 

probability distributions other than the normal distribution. 

Thus, the condition that allows for the algorithm to be applied 

to other probability distributions is imposed. 

First, the DTZ algorithm is abstracted. 

Definition 2. A family of probability distributions   is 

DTZ-applicable if there exists a polynomial time computable 

decision function G(L), where G(L)≥0, iff there exists     

such that the KS statistic of F(x) is less than L with respect to 

given sorted observations            . 

If F is DTZ-applicable, then the minimum value of L can 

be determined with a binary search by applying the abstract 

DTZ algorithm (Fig. 2).  

A. CDFs with a Single Parameter 

This section discusses families of probability distributions 

with a single parameter, such as the exponential distribution. 

Definition 3. A CDF-capable bivariate function 

                           has Property A if the 

following conditions hold: 

1) For all x, F(x; y) is non-increasing in y. 

2) For all x, F(x; y) is right continuous in y. 

3)            is polynomial time computable. 

 

 
Fig. 2. Abstract DTZ algorithm. 

 

Theorem 1: Let Dom1 and Dom2 be subsets of ℜ. If a 
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CDF-capable bivariate function                
           has Property A, then             
      is DTZ-applicable. 

With respect to the function of the minimum of the inverse, 

I show the following:  

Lemma 2. If F(x; y) is non-increasing and right 

continuous in y          , then            is decreasing in 

u, for all x.  

Proof: For any x, let Y
x
(u)={y | F(x;y)=u}. 

For            ,  0<  1, Yx( 0) and Yx( 1) each contains 

its respective minimum because they are right continuous. 

Let              and             . Since        
        , this yields y0≠ y1. Therefore y0 > y1.  

Proof of Theorem 1: For a CDF family             
      with Property A, if a polynomial time computable 

decision function G(L) for F can be derived, the KS statistic 

can be computed by applying the abstract DTZ algorithm. 

Consider the sorted observations             (x1≤…≤ xn). If, 

for some y and some L, the KS statistic of F(x; y) is less than 

or equal to L, then (8) and (9) hold for all k (1≤k≤n):  

 

 
                                            (8) 

        
   

 
                                   (9) 

Since the range of F is [0, 1], (8) holds if k/n≤L, and (9) 

trivially holds if 1−(k−1)/n≤L. Thus, (10) and (11) hold:  

        
 

 
                               (10) 

          
   

 
                         (11) 

According to Property A, because F is non-increasing in y, 

the direction of the sign of each inequality reverses when 

solving (10) and (11) for y:  

         
 

 
              

           
   

 
                  

Applying the maximum and the minimum operators yields 

(12) and (13):  

                 
 

 
                        (12) 

                         
   

 
              (13) 

By deleting y and subtracting (12) from (13), the G(L) (14) 

must always be greater than or equal to zero. 

        
          

            
   

 
  

 
 

                  
 

 
                      (14) 

Thus, G(L)≥0 holds iff L bounds KS statistic. Recall that 

           is polynomial time computable. Because G(L) 

can be computed by evaluating the maximum and the 

minimum for each set of n observations, G(L) is also 

polynomial time computable. 

Therefore, F is DTZ-applicable.  

B. CDF with Two Parameters 

Definition 4. A CDF-capable trivariate function 

                                  has 

Property B if the followings are satisfied:  

1) For all x and z, F(x; y,z) is monotone non-increasing in y.  

2) For all x and z, F(x; y, z) is right continuous for y. 

3) For all x and u,               is a linear function for z. 

That is, it can be described as c0(x; u)+ c1(x; u)z, where c0 

and c1 are polynomial time computable.  

Theorem 3. If a CDF-capable trivariate function 

                                  has 

Property B, then the family of probability distributions 

                           is DTZ-applicable. 

Lemma 4. For fk :           (1≤k≤n), if all fk are 

convex, then                 is also convex.  

Proof: For some x0, x1, and t, assuming that       
1−  1<   0+1−  ( 1) yields a contradiction. 

For i such that                          
  1), imposing the assumption implies 

                                   . Thus, 

             and              yield       
    1    0+     1. This contradicts the assumption.  

Lemma 5. If all    are concave, then                 is 

also concave.  

Proof: Similar to the proof of Lemma 4.  

Proof of Theorem 3: The proof is similar to the proof of 

Theorem 1 except that the number of parameters increases by 

one. That is, suppose that KS statistic is less than L, there 

exists a decision function, such as (15), such that 

             is the minimum of the inverse function of F(x; 

y, z) for y:  

                                
   

 
     

                 
 

 
                           (15) 

Applying Property B yields (16):  

         
 

 
       

      
 

 
          

 

 
                      (16) 

Because              is a linear function in z, it is both 

convex and concave. Thus, by applying Lemmas 4 and 5, 

G(z, L) is convex in z. By applying the algorithm of Megiddo 

[6] that solves linear programming problems with constant 

degrees, the z that maximizes G(z, L) can be computed. 

Moreover, it can be determined if G(z, L)≥0 holds in 

polynomial time. 

Therefore,   is DTZ-applicable.  

C. CDF with More than Two Parameters 

For CDFs with more than two parameters, if 

                    can be denoted as a linear function 

                     
 
    for each parameter xi (i=3,..., 

k), then the algorithm may be applied. However, this 

algorithm has not yet been applied to the multinomial 

distribution, the hyper geometric distribution, and others.  

D. Application to Typical Probability Distributions 

Tables I and II summarize DTZ-applicability for common 
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probability distributions listed by Wikipedia [7]. 

 
TABLE I: ONE-PARAMETER PROBABILITY DISTRIBUTION 

Distribution                       

Geometric                
         

   
 

Exponential              
      

 
 

 

The followings are examples:  

1) Geometric 

Equation (17) shows the geometric distribution. Denoting 

p as 1−exp(y) and k as x, the algorithm presented in this study 

may be applied.  

                       .              (17) 

2) Pareto 

Equation (18) shows the Pareto distribution. Denoting a as 

1/z and b as exp(y), the algorithm presented in this study may 

be applied.  

        
 

 
 
 

                                (18) 

3) Weibull 

Equation (19) shows the Weibull distribution. Denoting 

1/z as k and exp(y) as λ, the algorithm presented in this study 

may be applied.  

              
 

 
 
 

        

     

               (19) 

4) Uniform 

The uniform distribution has three conditions for x. 

However, since observations must be contained within the 

range, the second condition of the CDF is always chosen. 

Thus, the uniform distribution is DTZ-applicable. 

The following probability distributions are not seemed to 

be DTZ-applicable: Poisson, Erlang, gamma, binomial, 

Student’s t, beta, and x
2
.  

 
TABLE II: TWO-PARAMETER PROBABILISTIC DISTRIBUTION 

Distribution                            

Cauchy 
 

 
       

   

 
  

 

 
           

 

 
  

Gumbel           
   

 
           

 

 
 

Normal   
   

 
            

Laplace  

 

 
    

   

 
        

  
 

 
     

   

 
       

     
           

 

 

              
 

 

  

Log 

Normal 
  

      

 
               

Lévy       
 

      
    

 

           
 

Logistic 
 

       
   
 

 
       

 

 
    

Palate    
      

 
 

 
 

               

Uniform  

       
   

   
        

       

  
 

 
 

   

 
 

Weibull          
 

      
 

 
 
       

       

              
 

   
 

 

V. CONCLUSION 

This study analyzes the fitting algorithm proposed by 

Drezner et al., abstracts it, derives the necessary conditions to 

apply it to probability distributions other than the normal, and 

determines if some common probability distributions satisfy 

the condition. 

While the derived conditions are strict, they are applicable 

to many probability distributions. However, the conditions 

cannot be applied to the Poison, Gamma, and other 

distributions listed above. In the future, I would like to design 

a fast fitting algorithm for these probability distributions. 
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