

Abstract—This paper presents a novel method for testing the

inclusion status between the points and boundary

representations of polyhedra. The method is executed entirely

on the GPU and is characterized by memory efficiency, fast

execution and high integrability. It is a variant of the widely

known ray-crossing method. However, in our case, the

intersections are counted by comparing the depths, obtained

from the points and the models' surfaces. The odd-even rule is

then applied to determine the inclusion status. The method is

conceptually simple and, as most of the work is done implicitly

by the GPU, easy to implement. It executes very fast and uses

about 75% less GPU memory than the LDI method to which it

was compared.

Index Terms—Inclusion test, GPU processing, computational

geometry, polyhedron, point containment.

I. INTRODUCTION

The inclusion test (also called the hit test or containment

test) is one of the basic operations in computational geometry

[1], [2]. It checks, whether the considered point is located

within the boundaries of a given geometric object. Being an

elemental operation, it is usually used in conjunction with

more complex tasks and can, therefore, be found in various

fields such as physics simulations, artificial intelligence,

computer graphics or object modeling [3], [4]. Given that the

problem is long-established, many different solutions have

already been presented. However, new approaches still

appear in scientific publications which solve the problem

more efficiently.

In this paper, a novel approximation method is presented

for the testing of inclusion in 3D scenes, meaning, between

points T = {ti}, where ti is defined by the coordinate triple ti =

(xi, yi, zi) and the boundary representation (B-rep) of

polyhedrons. While geometry, tested by the proposed

method, can be arbitrarily shaped and its surface

representation is not necessarily limited to triangle meshes, it

is however, required to be manifold and watertight. The

method is executed almost completely on the GPU and is

most closely related to, the approach that uses layered depth

images (LDI). LDI was first introduced by Shade [5] and can

be used to establish the inclusion status of a point, based on

the Jordan Curve Theorem [4], [6]. The layered structure of

LDI, however, is not very memory efficient as the layers can

contain many empty allocated values that are not needed to

perform the inclusion test. Additionally, multiple geometry

Manuscript received June 29, 2015; revised December 15, 2015. This

work was supported by the Slovenian Research Agency under grants
1000-13-0552, P2-0041, and J2-6764.

Denis Horvat and Borut Žalik are with the Faculty of Electrical

Engineering and Computer Science, Maribor, Slovenia (e-mail:

{denis.horvat, borut.zalik}@ um.si).

passes are required for the construction of LDI, which can

represent a problem for objects containing many triangles or

dynamic scenes with changing geometry where LDI is

constantly recalculated. Motivated by these shortcomings,

the following contributions of the proposed method can be

outlined:

 Memory efficiency: Only a list of point depths and their

index map is required, thus making the method very

memory efficient.

 Fast execution: The method is almost completely

executed within the rendering pipeline of the GPU. This

enables real-time detection of inclusions on

geometrically arbitrary or deformable objects.

 High integrability: If used in the right order, most of the

code for inclusion can be executed along drawings of

objects, which makes the method applicable in computer

graphics or in various simulations.

The paper is divided into 4 sections. The following two

subsections describe the related work and the background

needed for the explanation of the developed method. In

Section II, the presented method for the inclusion test is

explained. Results are given and debated in Section III, while

Section IV concludes the paper.

A. Related Work

The most known method for the inclusion test is the

ray-crossing method [7], [8]. It works by casting a ray from

the given test point in the random direction and counting the

number of intersections with the object boundaries. Inclusion

status is determined based on the number of intersections by

using the odd-even rule, derived from the Jordan Curve

Theorem [9]. A given point, consequentially, lies inside an

object if the number of intersections is odd and outside, if it is

even. Although the ray-crossing method, in its base form,

does not require any preprocessing, the calculations can be

accelerated immensely by preprocessing the scene using

spatial subdivision structures such as octrees, BSP-trees or

kd-trees. Preprocessing, in terms of memory and CPU time,

represents the most intensive operation but it is done only

once. Hierarchical organization of the data leads to the

geometry queries being accelerated from O(n) to O(log(n))

[7].

In the method presented by Feito and Torrez [10], the

inclusion is determined by subdividing the geometric object

into a set of tetrahedra and calculating their signed volumes.

By associating each tetrahedron with the values 1, -1 and 0,

based on their volume signs, the inclusion status can be

obtained with summation of those values for the tetrahedra

within which the point is located. If the value is positive, the

point lies inside the polyhedron. The basic version was later

modified for use on models with Bézier surfaces [11] and

speed up by approximately 10% with the use of a custom data

Inclusion Test for Polyhedra Using Depth Value

Comparisons on the GPU

D. Horvat and B. Žalik

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

137DOI: 10.7763/IJCTE.2017.V9.1126

structure [7]. A similar concept is also used in the approach

proposed by [12] with a model decomposition called

multi-LREP.

Another common way for determining the inclusion status

of a point is the voxel space method. The method works by

voxelizing the scene and marking each voxel as "inside" or

"outside" of the model. Voxelization can be performed very

fast on the GPU [13], [14]. The inclusion test then simply

consists of determining the voxel in which the point is located

and checking the voxels value (this can be done in O(1)).

However, partial inclusion states, where geometry partially

lies inside a voxel, should be taken into account in which

additional test are performed. To obtain as little partial

inclusions as possible a high resolution grid is needed.

A unique testing method was presented in [15] where the

Horns Theorem is used for the inclusion test, in which, a

single determining triangle is required. The authors claim,

their method is up to 10 times faster than the ray-crossing

method, while the memory requirements remain the same.

The layer-based decomposition of models proposed in [6],

decomposes a given geometric model to the set of layers

based on a fixed viewpoint. This enables that the inclusion

tests are performed very fast using the binary search method

without singularities as they are removed during the layers

construction.

Programmable rendering pipelines of modern graphic

cards have enabled the creation of layered depth images

(LDI) [5], which can be used for the inclusion test [3], [4]. As

the method proposed in this paper expands the concepts

based-on LDI, they are explained in the next subsection.

B. Concept of LDI

Layered depth images (LDI), proposed by Shade [5]

consist of a set of overlayed LDI layers. Each LDI layer is

represented by an image, while its pixels contain normalized

distances of the models' surface if observed through a discrete

viewing grid. These distances are called depth values and

each recorded depth is an intersection with the objects

surface. The viewing grid is positioned in 3D space, while its

size width x height determines the sizes of the LDI layers. To

better illustrate the concept of LDI, consider a ray that is cast

from the center of each cell in the viewing grid. The rays are

cast in the same direction, while being perpendicular to the

viewing grid. If a given ray intersects with an object, the

depth value of the intersection is saved within a LDI layer. As

multiple layers can exist, the layer number in which the given

depth value will be saved is dependent on the number of the

current intersection. Consequentially, if the n-th intersection

occurres, the depth is saved into the n-th layer, within a pixel

with the same coordinates (x, y) from which the intersected

ray is cast. The number of layers in LDI is therefore equal to

the maximum number of intersections between an object and

any of the cast rays. The extent of this number depends on the

object's complexity, and the orientation, size and position of

the viewing grid. The concept of LDI is outlined within Fig.

1(b), where the depths of a dragon model from Fig. 1(a) are

saved as LDI layers. When LDI is constructed, the inclusion

status for a given point ti consists of only calculating its cell

position in the viewing grid and counting how many depth

values in LDI at the same cell position are larger (or smaller)

than the depth value of the point. As seen in Fig. 1(c), the

odd-even rule can then be efficiently applied to determine the

points inclusion status. Three cases are shown, where in 1)

and 2) the point is located within the geometry and in 3) the

point lies outside the geometry.

Fig. 1. Procedure for determining the inclusion status of points within a (a) 3D scene, from which (b) a set of depth layers is constructed and (c) 3 cases for

testing the inclusion are demonstrated, where in 1) and 2) the point lies inside the model and in 3) it is outside.

Fig. 2. An example of a 3D scene, where (a) the inclusion test for points, marked with their associating indexes, is shown on a cross-section of a model (the

location and length of the cross-section is marked with the dotted line on a model in the upper right corner). The values within the arrays are shown after (b)

depth rendering of points, (c) index map creation and (d) depth comparisons and counting of intersections.

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

138

The biggest advantage of the LDI method is that it can be

easily implemented on the GPU using the programmable

rendering pipeline available in modern graphical libraries

such as OpenGL or DirectX. LDI layers can be created by

simply rendering the object and saving the depths, required

by the depth test, into a fixed set of 2D textures. Most of the

work, such as rasterization, pixel index determination and

calculation of the depth values is done implicitly by the GPU.

The rendering parameters Ω, which include an orthogonal

projection matrix and the viewport size, specify the viewing

grid. The projection matrix defines the left, right, bottom and

top clipping planes, which limit the area of the scene that will

be rendered. The clipping planes are set to be slightly larger

than the width and height of the bounding box that belongs to

the tested object. The viewport size determines the number of

pixels in the LDI layers and consequentially, the accuracy of

the method. After the creation of LDI layers, the second step

only consists of rendering the points using Ω, while

comparing their depths with the same pixel positions within

the LDI layers and incrementing a counter when these values

are bigger.

Several problems are, however, apparent when using the

LDI method. Namely, to construct LDI on the GPU, the

object has to be rendered at least twice. Two rendering passes

are required because it is not known how many depth layers

will be generated and the memory used by the LDI has to be

allocated beforehand. Therefore, during the first pass, the

number of required LDI layers is calculated, while the second

pass fills the actual layers with depth values. This two-step

approach causes a bottleneck between the GPU and CPU as,

after the first step, it is necessary to copy the information

about the number of layers onto the CPU. The CPU then

allocates the required LDI memory and initiates the second

step. Copying data between the GPU and CPU is not

particularly fast and should be avoided if possible. It is worth

mentioning that there exists another way of creating LDI.

This method is called depth peeling [4] and requires even

more rendering passes as the described two-step approach

(each LDI layer requires its own rendering pass). Regardless

of how it is obtained, LDI is also not particularly memory

efficient as many pixels within LDI layers are unused. The

unused pixels generally increase with the number of layers

(see layers 2 and 3 in Fig. 1 (b)). This can accumulate to large

portions of empty allocated memory, which cause

unnecessary memory deficiency when using higher viewport

sizes. The memory problem only worsens if, to improve the

accuracy [6], additional attributes like surface normals are

attached to each pixel of the layer. The so-called layered

depth normal images (LDNI) quadruple the memory

consumption or at least double it if the layer data are, at the

cost of the numeric accuracy, organized as proposed by [3].

To address these shortcomings, a new method is developed

which is described in the next section.

II. METHODOLOGY

Similar to the previously described LDI method, the

proposed method also uses the odd-even rule to determine the

inclusion status of a point. It is primarily designed to be

executed on GPU using the rendering pipeline during the

rendering of objects. The latter means that the following

assumptions are made: (1) Rasterization is implicitly done by

the GPU, while fragment depths of the rendered objects and

currently processed pixel positions are available during

execution; (2) the method's logic is executed after

rasterization and independently for each pixel; (3) the pixels

are processed concurrently in an arbitrary order by the

numerous cores available to the GPU which are orchestrated

by the graphics driver.

The memory consumption problem is addressed by

reversing the procedure of the LDI method. The depths of the

points are therefore saved first, and the comparison with the

objects' depths is done last. This way, LDI does not need to be

created nor saved and the memory consumption is,

consequentially, smaller while being mostly independent of

the used viewport size. This also means that the tested object

does not need to be rendered twice as the number of LDI

layers does not need to be calculated. The proposed method

generally operates using the arrays D = [d0, d1, ... dn], I = [i0,

i1, ... in], P = [p0, p1, ... , pn] and A = [a0, a1, and am], where n

represents the number of tested points and m the number of

rendered pixels. D ⊂ ℝ contains the depths of the tested

points, I ⊂ ℤ the indexes to points to which the depths belong,

P ⊂ ℤ the indexes to pixels where the points are located and A

⊂ ℤ the number of points contained within each pixel. As A is

an 1D array, each processed pixel is always mapped to its 1D

index px using px = width * x + y. The method consists of the

following three steps:

 Depth rendering of points allocates the required GPU

memory and renders the points during which D, A, P and

I are filled.

 Index mapping step creates an index map by modifying

D, I and A using P, such that points can be accessed

directly from the pixels in which they are located.

 Depth comparisons and counting step renders the

object, while comparing and counting the intersections

based on depth values.

While individual steps are explained in the following

subsections, an example in Fig. 2 demonstrates the idea and

shows the values in the arrays after each step.

A. Depth Rendering of Points

Algorithm 1: GLSL code used by the fragment shader in OpenGL for the

depth rendering of points.

layout (binding = 0, r32f) uniform imageBuffer D;

layout (binding = 1, r32ui) uniform uimageBuffer U;
layout (binding = 2, r32ui) uniform uimageBuffer P;

layout (binding = 3, r32ui) uniform uimageBuffer I;

uniform vec2 window;

void main(void)

{
 int pntIdx = gl_PrimitiveID;

 int pixIdx = int((window.x*gl_FragCoord.x)

 + gl_FragCoord.y);

 imageStore(I, pntIdx, uvec4(pntIdx,0,0,0));

 imageStore(D, pntIdx, vec4(gl_FragCoord.z,0,0,0));
 imageStore(U, pntIdx, uvec4(pixIdx,0,0,0));

 imageAtomicAdd(P, pixIdx, 1);

 discard;
}

The main purpose of this step is the GPU memory

allocation and rendering of points while filling D, A, P and I.

Firstly, the rendering parameters Ω, which remain constant

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

139

throughout all 3 steps, are initialized in the same way as when

using the LDI method (described in subsection I.B). The

required memory for all arrays is then allocated on the GPU.

Points are rendered using Ω and during rendering D, A, P and

I are filled with their associated values, which are provided

implicitly by the GPU. Algorithm 1 shows the rendering code

needed to execute the described step.

Note that the program at the end of the execution, if no

actual rendering output is needed, can call the discard

command. Consequentially, the fragment does not proceed to

the next pipeline stage (i.e. per sample processing), which

further speeds-up the inclusion test. At the end of the first

step, four arrays reside on the GPU as depicted by the

example in Fig. 2(b).

B. Index Mapping

In this step, a mapping scheme is created so that the points

can be accessed from the individual pixels and then be

compared in next step with the depths of the tested object.

This is achieved by performing a prefix sum on A and sorting

P in an ascending order, while modifying D and I along with

it. The prefix sum and sorting can be done entirely on the

GPU. They are consequentially executed very fast and no

data is ever copied between GPU and CPU. Since several

GPU algorithms exist for both sorting [16] and the prefix sum

[17], they are not discussed here. Efficient implementations

can be found within the AMD SDK (available at

http://developer.amd.com/tools-and-sdks/). The state of D, I

and A after the prefix sum and sorting can be seen in Fig. 2(c).

The points can now be accessed from individual pixels (i.e.

from A). This can be done by firstly calculating the number of

points tpx in the current pixel px. tpx is obtained by subtracting

the values in A at the location equal to the current px and one

index before px, i.e. tpx = A[px] – A[px - 1]. If tpx = 0, no

points are located within px and if tpx > 0, then the pixel

contains tpx points. For example, in Fig. 2(c), the number of

points in pixel px = 6 is 3 as t6 = A[6] – A[5] = 5 – 2 = 3. These

points can then be accessed through D and I on an interval

[A[px – 1] .. A[px]). Expanding the described example, the

depths and indexes to points for px = 6 can are located in

D[2], D[3], D[4] and I[2], I[3], I[4]. Now that the points can

be accessed from px, rendering of the geometry can be made,

where the depths are compared.

C. Depth Comparisons and Counting

The number of intersections is counted in this step. This is

done by rendering the geometric object using Ω. During

rendering, the depths of the points, saved within D, are

compared with the depth value from a part of the geometric

object that is currently rendered within a given px. If the

depth value is larger than the depth of the point, this counts as

an intersection and the counter can be incremented. To

further save the memory, the increments are done on D as

depth values are normalized to values between [0,1) and only

the decimal values of the number are needed. Therefore, the

non-fractional part of D now contains the number of

intersections for a given point, while the fractional part

represents its depth. Algorithm 2 shows the rendering code

needed to execute comparison and saving the results.

After the rendering of object, D is copied onto CPU where

the odd-even rule is applied to determine the inclusion status

for each point.

Algorithm 2: GLSL code used by the fragment shader in OpenGL for the

counting of intersections between the points and the rendered object.

layout (binding = 0, r32f) uniform imageBuffer D;

layout (binding = 1, r32ui) uniform uimageBuffer I;

layout (binding = 2, r32ui) uniform uimageBuffer A;
uniform vec2 window;

void main(void)

{
 int px = int((window.x*gl_FragCoord.x)

 + gl_FragCoord.y);

 int nIt = int(imageLoad(A, px).r);
 int npIt = 0;

 if(px > 0)

 npIt = int(imageLoad(A, px-1).r);
 for(int i = npIt; i < nIt; i++)

 {
 float pntDepth = fract(imageLoad(D, i).r);

 if(pntDepth < gl_FragCoord.z)

 {
 int pntIdx = int(imageLoad(I, i).r);

 imageAtomicAdd(D, pntIdx, 1);

 }

 }

 discard;

}

TABLE I: NUMBER OF VERTICES AND TRIANGLES ABOUT THE MODELS

USED FOR TESTING

Model Num. vertices Num. triangles

Bunny 35947 69451

Horse 48485 96966

Dragon 100250 202520

Heptoroid 286678 573440

Brain 294012 588032

Budha 543652 1087716

TABLE II: THE MEASURED EXECUTION TIME AND MEMORY CONSUMPTION

OF LDI AND THE PROPOSED METHOD ON VARIOUS MODELS FOR 100000

POINTS

Model

LDI method proposed method

num.

LDI

layers

GPU

memory

[MB]

time[s] GPU

memory

[MB]

time [s]

Bunny 13 53.2 0.013 6.48 0.011

Horse 10 41.2 0.013 6.94 0.010

Dragon 10 41.2 0.014 8.8 0.014

Heptoroid 11 45.2 0.016 15.55 0.019

Brain 15 61.2 0.017 15.7 0.013

Budha 15 61.2 0.015 24.77 0.012

III. RESULTS

In order to test the proposed method, the point’s inclusions

were tested on 6 different models containing various amounts

of vertices and triangles. Information about the models is

shown in Table I.

The tests were performed using a workstation with Intel
®

Core
TM

 i5 CPU, 32GB of main memory and AMD Radeon

R9 200. The implementation was done using C++ and a

rendering pipeline provided by OpenGL 4.0. Memory

consumption and execution times were compared with the

LDI method described in subsection I.B. For each model, the

inclusion test was performed on 100000 points which were

randomly distributed within the models bounding box. A

viewport of resolution 1000 × 1000 was used for rendering.

As both methods are render-based and their execution times

can vary based on the models' rotation. The execution times

were therefore measured in the following way: the model was

rotated around its x, y, and z axes for all combinations in 5°

increments and the execution time of the inclusion test was

measured before each increment. The average execution time

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

140

of all the measurements was then taken as the result. Memory

consumption of the LDI method was calculated as the sum of

the memory required by the LDI layers and the tested points.

The memory required by the proposed method was equal to

the sum of the memory occupied by the arrays D, P, A, I and

the geometry of the model that was tested. The result for the

execution time and the GPU memory consumption is given in

Table II where the better results between the two

comparisons are written in bold.

While the proposed method executes only slightly faster, it

uses far less GPU memory than the LDI method (on average

about 75% less). The proposed method also scales more

practically in terms of memory because its memory

requirements rise with the number of points and can therefore

be better regulated based on the memory capacity available to

the GPU. For example, if the method is used for particle

simulation, fewer particles would be spawned if the graphics

card lacked the required GPU memory. In the case of the LDI

method, however, LDI layers occupy most of the required

memory and would still have to be generated even if only one

point is tested. As both described methods are approximate,

the number of pixels in the rendering viewport is aimed to be

as high as possible. The memory consumption of the LDI

method however is, in contrast to the proposed method,

highly dependent on the resolution of the viewport. This is

because all LDI layers have the same resolution as the

viewport and LDI can contain, in the case of very complex

models, upwards of 20 layers or more, which requires a lot of

GPU memory if the rendering resolution is high. The impact

of resolution in terms of memory consumption is minimal

when using the proposed method as only the index array A is

affected. The memory is, consequentially, also unaffected by

the complexity of the models. Additionally, the majority of

the memory required by the proposed method is occupied

with the geometry of the models. As the inclusion test is

usually a part of more complex operations (e.g. physics

simulation), the geometry will, in most cases, already be

loaded onto the GPU (e.g. for visualization purposes).

Consequentially, if the proposed inclusion test is executed in

conjunction with drawing a shader code, then the memory,

which is solely required by the inclusion test, is drastically

reduced (in our case, only 5.2 MB of memory would be

required for each test). This is not possible when using the

LDI method as the model cannot be reconstructed out of LDI

layers. Additionally to the relatively low memory

consumption, the method also executes very fast. Note that

no preprocessing is ever done, which means that the method

is suitable for dynamic scenes with deformable objects.

IV. CONCLUSION

This paper proposes a novel method for testing the

inclusion of points in polyhedra. It works on the principle of

ray-crossing which counts the intersections between a ray

cast from the tested point and the given geometric object. The

logic is designed in such a way that it can be executed on the

GPU, which enables very fast processing times. It does also

not require any preprocessing or complex data structures as

the majority of the work, such as rasterization and depth

calculation is done by the GPU. Being influenced by LDI, its

memory requirements are much lower, while its execution

times are slightly faster. Although being approximate, it can

regulate its accuracy by increasing the viewport resolution

with low increase in GPU memory.

REFERENCES

[1] B. Žalik and I. Kolingerova, "A cell-based point-in-polygon algorithm

suitable for large sets of points," Computers & Geosciences, vol. 27,

no. 10, pp. 1136-1145, 2001.
[2] J. Li, W. Wang, and E. Wu, "Point-in-polygon tests by convex

decomposition," Computers & Graphics, vol. 31, no. 4, pp. 636-648,

2007.
[3] C. Wang, Y. Leung, and Y. Chen, "Solid modeling of polyhedral

objects by layered depth-normal images on the GPU," Computer-Aided

Design, vol. 42, no. 6, pp. 535-544, 2010.
[4] B. Heidelberger, M. Teschner, and M. Gross, Volumetric Collision

Detection for Derformable Objects, Zurich, 2003.

[5] J. Shade, S. Gortler, L. He, and R. Szeliski, "Layered depth images," in
Proc. 5th Annual Conference on Computer Graphics and Interactive

Techniques, 1999.

[6] W. Wang, J. Li, H. Sun, and E. Wu, "Layer-based representation of
polyhedrons for point containment tests," Visualization and Cumputer

Graphics, vol. 14, no. 1, pp. 73-83, 2008.

[7] C. Ogayar, R. Segura, and F. Feito, "Point in solid strategies,"
Computers & Graphics, vol. 29, no. 4, pp. 616-624, 2005.

[8] D. Horvat, "Ray-casting point-in-polyhedron test," in Proc. CESCG,

Smolenice, 2012.
[9] T. Hales, "Jordans proof of the Jordan curve theorem," Studies in

Logic, Grammar and Rhetoric, vol. 10, no. 23, pp. 45-60, 2007.

[10] F. Feito and J. Torres, "Inclusion test for general polyhedra," Computer
& Graphics, vol. 21, no. 1, pp. 23-30, 1997.

[11] A. Garcia, J. Miras, and F. Feito, "Point in solid test for free-form

solids defined with triangular Bézier patches," The Visual Computer,
vol. 20, pp. 298-313, 2004.

[12] F. Martinez, A. Rueda, and F. Feito, "The multi-LREP decomposition

of solids and its application to a point-in-polyhedron inclusion test,"
The Visual Computer, vol. 26, no. 11, pp. 1361-1368, 2010.

[13] E. Eisemann and X. Decoret, "Single-pass GPU solid voxelization for

real-time applications," Proceedings of Graphics Interface, Toronto,
2008.

[14] Y. Fei, B. Wang, and J. Chen, "Point-tessallated voxelization,"

Proceedings of Graphics Interface, Toronto, 2012.
[15] J. Liu, J. Maisog, and G. Luta, "A new point containment test algorithm

based on preprocessing and determining triangles," Computer-Aided

Design, vol. 42, no. 10, pp. 1143-1150, 2010.
[16] H. Peters, O. Hildebrandt, and N. Luttenberger, "Fast in-place sorting

with CUDA based on bitonic sort," in Proc. the 8th International
Conference on Parallel Processing and Applied Mathematics: Part I,

2007.

[17] M. Harris, "Parallel Prefix Sum (Scan) with CUDA," in Proc. GPU
Gems 3, Addison-Wesley Professional, 2007.

Denis Horvat received his B.Sc. and M.Sc. in computer
science from the Faculty of Electrical Engineering and

Computer Science at the University of Maribor in 2011

and 2013, respectively and is currently a Ph.D.
candidate.

 He is a young researcher at the Laboratory for

Geometric Modeling and Multimedia Algorithms at the
University of Maribor. His areas of research include

computational geometry and pattern recognition in remote sensing data.

Borut Žalik received the B.Sc. degree in electrical

engineering in 1985, the M.Sc. and Ph.D. degrees in
computer science in 1989 and 1993, respectively, all

from the University of Maribor, Maribor, Slovenia.

 He is a Professor of computer science at the
University of Maribor. He is the head of the Laboratory

for Geometric Modeling andMultimedia Algorithms at

the Faculty of Electrical Engineering and
ComputerScience, University of Maribor. His research interests include

computational geometry, geometric data compression, scientific

visualization and geographic information systems.

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

141

