
  

 

Abstract—This paper presents a novel method for testing the 

inclusion status between the points and boundary 

representations of polyhedra. The method is executed entirely 

on the GPU and is characterized by memory efficiency, fast 

execution and high integrability. It is a variant of the widely 

known ray-crossing method. However, in our case, the 

intersections are counted by comparing the depths, obtained 

from the points and the models' surfaces. The odd-even rule is 

then applied to determine the inclusion status. The method is 

conceptually simple and, as most of the work is done implicitly 

by the GPU, easy to implement. It executes very fast and uses 

about 75% less GPU memory than the LDI method to which it 

was compared. 

 
Index Terms—Inclusion test, GPU processing, computational 

geometry, polyhedron, point containment.  

 

I. INTRODUCTION 

The inclusion test (also called the hit test or containment 

test) is one of the basic operations in computational geometry 

[1], [2]. It checks, whether the considered point is located 

within the boundaries of a given geometric object. Being an 

elemental operation, it is usually used in conjunction with 

more complex tasks and can, therefore, be found in various 

fields such as physics simulations, artificial intelligence, 

computer graphics or object modeling [3], [4]. Given that the 

problem is long-established, many different solutions have 

already been presented. However, new approaches still 

appear in scientific publications which solve the problem 

more efficiently. 

In this paper, a novel approximation method is presented 

for the testing of inclusion in 3D scenes, meaning, between 

points T = {ti}, where ti is defined by the coordinate triple ti = 

(xi, yi, zi) and the boundary representation (B-rep) of 

polyhedrons. While geometry, tested by the proposed 

method, can be arbitrarily shaped and its surface 

representation is not necessarily limited to triangle meshes, it 

is however, required to be manifold and watertight. The 

method is executed almost completely on the GPU and is 

most closely related to, the approach that uses layered depth 

images (LDI). LDI was first introduced by Shade [5] and can 

be used to establish the inclusion status of a point, based on 

the Jordan Curve Theorem [4], [6]. The layered structure of 

LDI, however, is not very memory efficient as the layers can 

contain many empty allocated values that are not needed to 

perform the inclusion test. Additionally, multiple geometry 
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passes are required for the construction of LDI, which can 

represent a problem for objects containing many triangles or 

dynamic scenes with changing geometry where LDI is 

constantly recalculated. Motivated by these shortcomings, 

the following contributions of the proposed method can be 

outlined:  

 Memory efficiency: Only a list of point depths and their 

index map is required, thus making the method very 

memory efficient. 

 Fast execution: The method is almost completely 

executed within the rendering pipeline of the GPU. This 

enables real-time detection of inclusions on 

geometrically arbitrary or deformable objects. 

 High integrability: If used in the right order, most of the 

code for inclusion can be executed along drawings of 

objects, which makes the method applicable in computer 

graphics or in various simulations. 

The paper is divided into 4 sections. The following two 

subsections describe the related work and the background 

needed for the explanation of the developed method. In 

Section II, the presented method for the inclusion test is 

explained. Results are given and debated in Section III, while 

Section IV concludes the paper.  

A. Related Work 

The most known method for the inclusion test is the 

ray-crossing method [7], [8]. It works by casting a ray from 

the given test point in the random direction and counting the 

number of intersections with the object boundaries. Inclusion 

status is determined based on the number of intersections by 

using the odd-even rule, derived from the Jordan Curve 

Theorem [9]. A given point, consequentially, lies inside an 

object if the number of intersections is odd and outside, if it is 

even. Although the ray-crossing method, in its base form, 

does not require any preprocessing, the calculations can be 

accelerated immensely by preprocessing the scene using 

spatial subdivision structures such as octrees, BSP-trees or 

kd-trees. Preprocessing, in terms of memory and CPU time, 

represents the most intensive operation but it is done only 

once. Hierarchical organization of the data leads to the 

geometry queries being accelerated from O(n) to O(log(n)) 

[7].  

In the method presented by Feito and Torrez [10], the 

inclusion is determined by subdividing the geometric object 

into a set of tetrahedra and calculating their signed volumes. 

By associating each tetrahedron with the values 1, -1 and 0, 

based on their volume signs, the inclusion status can be 

obtained with summation of those values for the tetrahedra 

within which the point is located. If the value is positive, the 

point lies inside the polyhedron. The basic version was later 

modified for use on models with Bézier surfaces [11] and 

speed up by approximately 10% with the use of a custom data 
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structure [7]. A similar concept is also used in the approach 

proposed by [12] with a model decomposition called 

multi-LREP.  

Another common way for determining the inclusion status 

of a point is the voxel space method. The method works by 

voxelizing the scene and marking each voxel as "inside" or 

"outside" of the model. Voxelization can be performed very 

fast on the GPU [13], [14]. The inclusion test then simply 

consists of determining the voxel in which the point is located 

and checking the voxels value (this can be done in O(1)). 

However, partial inclusion states, where geometry partially 

lies inside a voxel, should be taken into account in which 

additional test are performed. To obtain as little partial 

inclusions as possible a high resolution grid is needed.  

A unique testing method was presented in [15] where the 

Horns Theorem is used for the inclusion test, in which, a 

single determining triangle is required. The authors claim, 

their method is up to 10 times faster than the ray-crossing 

method, while the memory requirements remain the same. 

The layer-based decomposition of models proposed in [6], 

decomposes a given geometric model to the set of layers 

based on a fixed viewpoint. This enables that the inclusion 

tests are performed very fast using the binary search method 

without singularities as they are removed during the layers 

construction. 

Programmable rendering pipelines of modern graphic 

cards have enabled the creation of layered depth images 

(LDI) [5], which can be used for the inclusion test [3], [4]. As 

the method proposed in this paper expands the concepts 

based-on LDI, they are explained in the next subsection. 

B. Concept of LDI 

Layered depth images (LDI), proposed by Shade [5] 

consist of a set of overlayed LDI layers. Each LDI layer is 

represented by an image, while its pixels contain normalized 

distances of the models' surface if observed through a discrete 

viewing grid. These distances are called depth values and 

each recorded depth is an intersection with the objects 

surface. The viewing grid is positioned in 3D space, while its 

size width x height determines the sizes of the LDI layers. To 

better illustrate the concept of LDI, consider a ray that is cast 

from the center of each cell in the viewing grid. The rays are 

cast in the same direction, while being perpendicular to the 

viewing grid. If a given ray intersects with an object, the 

depth value of the intersection is saved within a LDI layer. As 

multiple layers can exist, the layer number in which the given 

depth value will be saved is dependent on the number of the 

current intersection. Consequentially, if the n-th intersection 

occurres, the depth is saved into the n-th layer, within a pixel 

with the same coordinates (x, y) from which the intersected 

ray is cast. The number of layers in LDI is therefore equal to 

the maximum number of intersections between an object and 

any of the cast rays. The extent of this number depends on the 

object's complexity, and the orientation, size and position of 

the viewing grid. The concept of LDI is outlined within Fig. 

1(b), where the depths of a dragon model from Fig. 1(a) are 

saved as LDI layers. When LDI is constructed, the inclusion 

status for a given point ti consists of only calculating its cell 

position in the viewing grid and counting how many depth 

values in LDI at the same cell position are larger (or smaller) 

than the depth value of the point. As seen in Fig. 1(c), the 

odd-even rule can then be efficiently applied to determine the 

points inclusion status. Three cases are shown, where in 1) 

and 2) the point is located within the geometry and in 3) the 

point lies outside the geometry. 

 

 
Fig. 1. Procedure for determining the inclusion status of points within a (a) 3D scene, from which (b) a set of depth layers is constructed and (c) 3 cases for 

testing the inclusion are demonstrated, where in 1) and 2) the point lies inside the model and in 3) it is outside. 

 

 
Fig. 2. An example of a 3D scene, where (a) the inclusion test for points, marked with their associating indexes, is shown on a cross-section of a model (the 

location and length of the cross-section is marked with the dotted line on a model in the upper right corner). The values within the arrays are shown after (b) 

depth rendering of points, (c) index map creation and (d) depth comparisons and counting of intersections. 
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The biggest advantage of the LDI method is that it can be 

easily implemented on the GPU using the programmable 

rendering pipeline available in modern graphical libraries 

such as OpenGL or DirectX. LDI layers can be created by 

simply rendering the object and saving the depths, required 

by the depth test, into a fixed set of 2D textures. Most of the 

work, such as rasterization, pixel index determination and 

calculation of the depth values is done implicitly by the GPU. 

The rendering parameters Ω, which include an orthogonal 

projection matrix and the viewport size, specify the viewing 

grid. The projection matrix defines the left, right, bottom and 

top clipping planes, which limit the area of the scene that will 

be rendered. The clipping planes are set to be slightly larger 

than the width and height of the bounding box that belongs to 

the tested object. The viewport size determines the number of 

pixels in the LDI layers and consequentially, the accuracy of 

the method. After the creation of LDI layers, the second step 

only consists of rendering the points using Ω, while 

comparing their depths with the same pixel positions within 

the LDI layers and incrementing a counter when these values 

are bigger.   

Several problems are, however, apparent when using the 

LDI method. Namely, to construct LDI on the GPU, the 

object has to be rendered at least twice. Two rendering passes 

are required because it is not known how many depth layers 

will be generated and the memory used by the LDI has to be 

allocated beforehand. Therefore, during the first pass, the 

number of required LDI layers is calculated, while the second 

pass fills the actual layers with depth values. This two-step 

approach causes a bottleneck between the GPU and CPU as, 

after the first step, it is necessary to copy the information 

about the number of layers onto the CPU. The CPU then 

allocates the required LDI memory and initiates the second 

step. Copying data between the GPU and CPU is not 

particularly fast and should be avoided if possible. It is worth 

mentioning that there exists another way of creating LDI. 

This method is called depth peeling [4] and requires even 

more rendering passes as the described two-step approach 

(each LDI layer requires its own rendering pass). Regardless 

of how it is obtained, LDI is also not particularly memory 

efficient as many pixels within LDI layers are unused. The 

unused pixels generally increase with the number of layers 

(see layers 2 and 3 in Fig. 1 (b)). This can accumulate to large 

portions of empty allocated memory, which cause 

unnecessary memory deficiency when using higher viewport 

sizes. The memory problem only worsens if, to improve the 

accuracy [6], additional attributes like surface normals are 

attached to each pixel of the layer. The so-called layered 

depth normal images (LDNI) quadruple the memory 

consumption or at least double it if the layer data are, at the 

cost of the numeric accuracy, organized as proposed by [3]. 

To address these shortcomings, a new method is developed 

which is described in the next section. 

 

II. METHODOLOGY 

Similar to the previously described LDI method, the 

proposed method also uses the odd-even rule to determine the 

inclusion status of a point. It is primarily designed to be 

executed on GPU using the rendering pipeline during the 

rendering of objects. The latter means that the following 

assumptions are made: (1) Rasterization is implicitly done by 

the GPU, while fragment depths of the rendered objects and 

currently processed pixel positions are available during 

execution; (2) the method's logic is executed after 

rasterization and independently for each pixel; (3) the pixels 

are processed concurrently in an arbitrary order by the 

numerous cores available to the GPU which are orchestrated 

by the graphics driver. 

The memory consumption problem is addressed by 

reversing the procedure of the LDI method. The depths of the 

points are therefore saved first, and the comparison with the 

objects' depths is done last. This way, LDI does not need to be 

created nor saved and the memory consumption is, 

consequentially, smaller while being mostly independent of 

the used viewport size. This also means that the tested object 

does not need to be rendered twice as the number of LDI 

layers does not need to be calculated. The proposed method 

generally operates using the arrays D = [d0, d1, ... dn], I = [i0, 

i1, ... in], P = [p0, p1, ... , pn] and A = [a0, a1, and am], where n 

represents the number of tested points and m the number of 

rendered pixels. D ⊂ ℝ  contains the depths of the tested 

points, I ⊂ ℤ the indexes to points to which the depths belong, 

P ⊂ ℤ the indexes to pixels where the points are located and A 

⊂ ℤ the number of points contained within each pixel. As A is 

an 1D array, each processed pixel is always mapped to its 1D 

index px using px = width * x + y. The method consists of the 

following three steps: 

 Depth rendering of points allocates the required GPU 

memory and renders the points during which D, A, P and 

I are filled. 

 Index mapping step creates an index map by modifying 

D, I and A using P, such that points can be accessed 

directly from the pixels in which they are located. 

 Depth comparisons and counting step renders the 

object, while comparing and counting the intersections 

based on depth values. 

While individual steps are explained in the following 

subsections, an example in Fig. 2 demonstrates the idea and 

shows the values in the arrays after each step. 

A. Depth Rendering of Points 

 
Algorithm 1: GLSL code used by the fragment shader in OpenGL for the 

depth rendering of points. 

layout (binding = 0, r32f) uniform imageBuffer D; 

layout (binding = 1, r32ui) uniform uimageBuffer U; 
layout (binding = 2, r32ui) uniform uimageBuffer P; 

layout (binding = 3, r32ui) uniform uimageBuffer I; 

uniform vec2 window; 
 

void main( void ) 

{ 
         int pntIdx = gl_PrimitiveID; 

         int pixIdx = int((window.x*gl_FragCoord.x)  

                                                   + gl_FragCoord.y);   
   

        imageStore(I, pntIdx, uvec4(pntIdx,0,0,0)); 

        imageStore(D, pntIdx, vec4(gl_FragCoord.z,0,0,0)); 
        imageStore(U, pntIdx, uvec4(pixIdx,0,0,0)); 

        imageAtomicAdd(P, pixIdx, 1); 

        discard; 
} 

 

The main purpose of this step is the GPU memory 

allocation and rendering of points while filling D, A, P and I. 

Firstly, the rendering parameters Ω, which remain constant 

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

139



  

throughout all 3 steps, are initialized in the same way as when 

using the LDI method (described in subsection I.B). The 

required memory for all arrays is then allocated on the GPU. 

Points are rendered using Ω and during rendering D, A, P and 

I are filled with their associated values, which are provided 

implicitly by the GPU. Algorithm 1 shows the rendering code 

needed to execute the described step. 

Note that the program at the end of the execution, if no 

actual rendering output is needed, can call the discard 

command. Consequentially, the fragment does not proceed to 

the next pipeline stage (i.e. per sample processing), which 

further speeds-up the inclusion test. At the end of the first 

step, four arrays reside on the GPU as depicted by the 

example in Fig. 2(b). 

B. Index Mapping 

In this step, a mapping scheme is created so that the points 

can be accessed from the individual pixels and then be 

compared in next step with the depths of the tested object. 

This is achieved by performing a prefix sum on A and sorting 

P in an ascending order, while modifying D and I along with 

it. The prefix sum and sorting can be done entirely on the 

GPU. They are consequentially executed very fast and no 

data is ever copied between GPU and CPU. Since several 

GPU algorithms exist for both sorting [16] and the prefix sum 

[17], they are not discussed here. Efficient implementations 

can be found within the AMD SDK (available at 

http://developer.amd.com/tools-and-sdks/). The state of D, I 

and A after the prefix sum and sorting can be seen in Fig. 2(c). 

The points can now be accessed from individual pixels (i.e. 

from A). This can be done by firstly calculating the number of 

points tpx in the current pixel px. tpx is obtained by subtracting 

the values in A at the location equal to the current px and one 

index before px, i.e. tpx = A[px] – A[px - 1]. If tpx = 0, no 

points are located within px and if tpx > 0, then the pixel 

contains tpx points. For example, in Fig. 2(c), the number of 

points in pixel px = 6 is 3 as t6 = A[6] – A[5] = 5 – 2 = 3. These 

points can then be accessed through D and I on an interval 

[A[px – 1] .. A[px]). Expanding the described example, the 

depths and indexes to points for px = 6 can are located in 

D[2], D[3], D[4] and I[2], I[3], I[4]. Now that the points can 

be accessed from px, rendering of the geometry can be made, 

where the depths are compared. 

C. Depth Comparisons and Counting 

The number of intersections is counted in this step. This is 

done by rendering the geometric object using Ω. During 

rendering, the depths of the points, saved within D, are 

compared with the depth value from a part of the geometric 

object that is currently rendered within a given px. If the 

depth value is larger than the depth of the point, this counts as 

an intersection and the counter can be incremented. To 

further save the memory, the increments are done on D as 

depth values are normalized to values between [0,1) and only 

the decimal values of the number are needed. Therefore, the 

non-fractional part of D now contains the number of 

intersections for a given point, while the fractional part 

represents its depth. Algorithm 2 shows the rendering code 

needed to execute comparison and saving the results. 

After the rendering of object, D is copied onto CPU where 

the odd-even rule is applied to determine the inclusion status 

for each point. 

Algorithm 2: GLSL code used by the fragment shader in OpenGL for the 

counting of intersections between the points and the rendered object. 

layout (binding = 0, r32f) uniform imageBuffer D; 

layout (binding = 1, r32ui) uniform uimageBuffer I; 

layout (binding = 2, r32ui) uniform uimageBuffer A; 
uniform vec2 window; 

void main( void ) 

{ 
           int px = int((window.x*gl_FragCoord.x)  

                                               + gl_FragCoord.y); 

           int nIt = int(imageLoad(A, px).r); 
           int npIt = 0; 

           if(px > 0) 

                 npIt = int(imageLoad(A, px-1).r); 
           for(int i = npIt; i < nIt; i++) 

          { 
                  float pntDepth = fract(imageLoad(D, i).r); 

                  if(pntDepth < gl_FragCoord.z) 

                  { 
                          int pntIdx = int(imageLoad(I, i).r); 

                          imageAtomicAdd(D, pntIdx, 1); 

                   } 

          } 

          discard; 

} 

 
TABLE I: NUMBER OF VERTICES AND TRIANGLES ABOUT THE MODELS 

USED FOR TESTING 

Model Num. vertices Num. triangles 

Bunny 35947 69451 

Horse 48485 96966 

Dragon 100250 202520 

Heptoroid 286678 573440 

Brain 294012 588032 

Budha 543652 1087716 

 

TABLE II: THE MEASURED EXECUTION TIME AND MEMORY CONSUMPTION 

OF LDI AND THE PROPOSED METHOD ON VARIOUS MODELS FOR 100000 

POINTS 

Model 

LDI method proposed method 

num. 

LDI 

layers 

GPU 

memory 

[MB] 

time[s] GPU 

memory 

[MB] 

time [s] 

Bunny 13 53.2 0.013 6.48 0.011 

Horse 10 41.2 0.013 6.94 0.010 

Dragon 10 41.2 0.014 8.8 0.014 

Heptoroid 11 45.2 0.016 15.55 0.019 

Brain 15 61.2 0.017 15.7 0.013 

Budha 15 61.2 0.015 24.77 0.012 

 

III. RESULTS 

In order to test the proposed method, the point’s inclusions 

were tested on 6 different models containing various amounts 

of vertices and triangles. Information about the models is 

shown in Table I. 

The tests were performed using a workstation with Intel
®

 

Core
TM

 i5 CPU, 32GB of main memory and AMD Radeon 

R9 200. The implementation was done using C++ and a 

rendering pipeline provided by OpenGL 4.0. Memory 

consumption and execution times were compared with the  

LDI method described in subsection I.B. For each model, the 

inclusion test was performed on 100000 points which were 

randomly distributed within the models bounding box. A 

viewport of resolution 1000 × 1000 was used for rendering. 

As both methods are render-based and their execution times 

can vary based on the models' rotation. The execution times 

were therefore measured in the following way: the model was 

rotated around its x, y, and z axes for all combinations in 5° 

increments and the execution time of the inclusion test was 

measured before each increment. The average execution time 
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of all the measurements was then taken as the result. Memory 

consumption of the LDI method was calculated as the sum of 

the memory required by the LDI layers and the tested points.  

The memory required by the proposed method was equal to 

the sum of the memory occupied by the arrays D, P, A, I and 

the geometry of the model that was tested. The result for the 

execution time and the GPU memory consumption is given in 

Table II where the better results between the two 

comparisons are written in bold. 

While the proposed method executes only slightly faster, it 

uses far less GPU memory than the LDI method (on average 

about 75% less). The proposed method also scales more 

practically in terms of memory because its memory 

requirements rise with the number of points and can therefore 

be better regulated based on the memory capacity available to 

the GPU. For example, if the method is used for particle 

simulation, fewer particles would be spawned if the graphics 

card lacked the required GPU memory. In the case of the LDI 

method, however, LDI layers occupy most of the required 

memory and would still have to be generated even if only one 

point is tested. As both described methods are approximate, 

the number of pixels in the rendering viewport is aimed to be 

as high as possible. The memory consumption of the LDI 

method however is, in contrast to the proposed method, 

highly dependent on the resolution of the viewport. This is 

because all LDI layers have the same resolution as the 

viewport and LDI can contain, in the case of very complex 

models, upwards of 20 layers or more, which requires a lot of 

GPU memory if the rendering resolution is high. The impact 

of resolution in terms of memory consumption is minimal 

when using the proposed method as only the index array A is 

affected. The memory is, consequentially, also unaffected by 

the complexity of the models. Additionally, the majority of 

the memory required by the proposed method is occupied 

with the geometry of the models. As the inclusion test is 

usually a part of more complex operations (e.g. physics 

simulation), the geometry will, in most cases, already be 

loaded onto the GPU (e.g. for visualization purposes). 

Consequentially, if the proposed inclusion test is executed in 

conjunction with drawing a shader code, then the memory, 

which is solely required by the inclusion test, is drastically 

reduced (in our case, only 5.2 MB of memory would be 

required for each test). This is not possible when using the 

LDI method as the model cannot be reconstructed out of LDI 

layers. Additionally to the relatively low memory 

consumption, the method also executes very fast. Note that 

no preprocessing is ever done, which means that the method 

is suitable for dynamic scenes with deformable objects. 

 

IV. CONCLUSION 

This paper proposes a novel method for testing the 

inclusion of points in polyhedra. It works on the principle of 

ray-crossing which counts the intersections between a ray 

cast from the tested point and the given geometric object. The 

logic is designed in such a way that it can be executed on the 

GPU, which enables very fast processing times. It does also 

not require any preprocessing or complex data structures as 

the majority of the work, such as rasterization and depth 

calculation is done by the GPU. Being influenced by LDI, its 

memory requirements are much lower, while its execution 

times are slightly faster. Although being approximate, it can 

regulate its accuracy by increasing the viewport resolution 

with low increase in GPU memory.  
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