



Abstract—This paper presents an approach to recognizing

people’s actions directed towards a robot, from a video collected

by a camera positioned on the robot. Our approach has two

modes: “stand by” mode – when a system waits for an action to

start and “active” mode – when the system recognizes actions

from the video stream. “Stand by” mode allows to save

resources during an absence of actions and also gives a starting

point of an action, which helps for recognition. Our action

recognition model is based on a Bag-of-Words model, but we

utilized sparse features in order to process video frames faster.

As a result, the system implemented with this approach could

continuously recognize actions in real-time using fewer

computations. The performance of our method was

experimentally evaluated and the results are given at the end of

the paper.

Index Terms—Human action recognition, real-time video

processing, bag-of-words, computer vision.

I. INTRODUCTION

The goal of this paper is to present a method for an action

recognition using the first-person view (FPV) videos. The

FPV video is a video made from a point of view of an actor

interacting with surrounding environment. The actor can be a

human, an animal or a robot. The FPV videos can be divided

into observational and egocentric types: as the name states,

the observer FPV video has an actor that observes an action

that directed towards it, while the egocentric videos contain

actions made by an actor. From this point, we refer the

observer FPV as the FPV and the egocentric FPV as the

egocentric view, and our work focus on the observer FPV.

The recent popularity of wearable cameras and the

progress in robotics have created an interest in the action

recognition from the FPV. One of the prospective application

fields of the FPV action recognition is the human-robot

interaction (HRI). A robot needs to understand human

behavior, particularly, the actions towards a robot, to make an

appropriate response. These actions include not only

command gestures and some usual actions such as waving,

but also the harmful actions towards a robot. To achieve such

result, the FPV action recognition can play an important role.

When we use the FPV-based action recognition in HRI,

Manuscript received August 10, 2015; revised January 10, 2016.

M. Maximov is with the Interaction & Robotics Research Center, Korea

Institute of Science and Technology, Seoul, Republic of Korea and also with
Korea University of Science and Technology, Republic of Korea (e-mail:

maxsqr@gmail.com).

S. R. Oh is with Korea Institute of Science and Technology, Seoul,
Republic of Korea (e-mail: sroh@kist.re.kr).

M. S. Park is with the Interaction & Robotics Research Center, Korea

Institute of Science and Technology, Seoul, Republic of Korea (e-mail:

meister1@gmail.com).

there are some requirements to be considered. Many

algorithms focus on recognition of finished actions from

videos with limited numbers of frames, while for HRI, we

need a way to recognize actions in real-time from a

continuous video stream. Also, in many situations, an action

recognition task is not a priority for a robot, so computational

power designated to this task might be very limited.

In order to meet the above-mentioned requirements, we

designed a new system for FPV-based action recognition.

The main part of this system is an action recognition model

and based on a Bag-of-Words (BoW) model [1], also called

as a Bag of Visual Words (BoVW), which is one of the

widely-used models in the action recognition field.

Instead of using the BoW model as it is, we sought to find a

model with an improved configuration for our purpose to

work in the real-time even with limited computational

resources. We achieved this task by empirically testing

changes in performance by modifying different components

of a BoW model. Also, we added a subsidiary model that

recognizes a start and an end of an interaction between

camera holder and a person. This subsidiary part goals are to

lessen computations when no interaction is happening and to

improve an action recognition performance by giving a

starting point of an interaction.

The remainder of this paper is organized as follows.

Section II describes the background of this paper, the related

works and the system overview, and Sections III and IV

present two core components of our system (for pre-action

and the action) with the configuration of other components.

Evaluation and comparative study are conducted with the

setup described in Section V and the results are given with

discussions. Then, Section VI concludes this paper.

II. BACKGROUND

In this section, we will provide background knowledge to

be helpful in understanding of the subsequent sections:

related works and system overview.

A. Related Work

A lot of works have been done in the action recognition

area. Many of them focused on recognition from surveillance

camera videos, movies and internet video clips, and only a

few focused on the FPV. One of the first researches on the

action recognition towards camera presented in the [2] paper.

Actions of humans were directed towards a camera, which

was mounted on a robot. Their system adopted the BoW

model, and used two different types of features. The

performance of this system was evaluated for 7 actions using

their dataset that was publicly available and also used for our

system. However, their system has limitations: long

computation time due to using dense and high dimensions’

Real-Time Action Recognition System from a First-Person

View Video Stream

Maxim Maximov, Sang-Rok Oh, and Myong Soo Park

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

79DOI: 10.7763/IJCTE.2017.V9.1116

features, and applicability to premade videos clips, not to

video stream.

Ref. [3] used attention as a feature to recognize human

social interaction from FPV. The useful aspect is their

attention detection method, that detects faces and their angles

to determine a direction of their gazes. Observing people

attention direction can be later used in the FPV to recognize a

start of an interaction: if a person looked at a camera direction,

then there is a high probability of an interaction.

Human-robot interaction work [4] often use approaches

based on detecting and tracking human face/limbs using

depth information. Although, depth information can be quite

useful, methods based on human limbs and pose detection are

not reliable due to an often case of partial visibility of human

body. In FPV, people often come very close to a robot and do

not fit in their field of view.

Action recognition in movies scenes and various videos

from mobile cameras became popular recent years. The

popularity of YouTube kind of web services raised the

number of publicly available mobile videos to an enormous

amount. And many movies scenes and various video clips

can also be considered as the FPV videos, because they often

recorded from 3rd person observer position, or sometimes,

whole or part of the movie shot in a first-person perspective.

So we can adopt successful action recognition methods used

in this kind of works [5], such as BoW model, optical flow

and spatiotemporal point of interests.

The BoW model is widely used in the action recognition

field [2], [5]-[7]. [2] improved BoW model and applied it for

the FPV videos. The [5] showed a possibility of action

recognition in movies using BoW model from movies and

using sparse-temporal features [8]. Recently, [6] have done

extensive research on the BoW model for the action

recognition.

B. System Overview

Unlike previous works, we did not continuously recognize

actions in front of a camera. To resolve processing

continuous videos problem, we segment an action into two

successive parts: pre-action and action. Each part is different

from others and has its purpose. The pre-action part contains

what happens before actions occur, that is, when people do

not interact with a robot - the "stand by" mode. Once the

system recognizes the possibility of interaction with a human,

it decides that the action part has started. The action part

consists of a person action in front a robot and an effect of

this action on the robot. Effects of the harmful actions are

usually more distinguishable because they cause turmoil in a

camera view. We considered these two parts of an action in

our system. The system has two corresponding modes: "stand

by" and "active". In our system, we created the "pre-action"

subsystem that tracks changes in the environment from the

camera and decide whether we should start to recognize an

action - switch to "active" mode, or finish to recognize -

switch to "stand by" mode.

Our system is composed of two sub-systems for dealing

with pre-actions and actions, respectively. The proposed

pipeline of the system between these sub-systems is

presented in Fig. 1. Note that the action recognition part treats

local and global features separately from each other until

classification step, details and meaning of which will be

described in the next section.

In this paper, we assume that videos are taken from a

camera that is mounted on a mobile robot, which implies

smooth camera motions and frontal field of view of a robot.

Also, during an action towards the robot, the robot is assumed

to stay still and fully observe the action in front of it. There is

no other special assumption.

Fig. 1. The system pipeline.

III. PRE-ACTION SUBSYSTEM

In this Section, we present pre-action subsystem. To work

continuously and use fewer resources, we integrated the

system mode that works when a robot doesn't interact with

people. It is the "stand by" mode when robot only wait for an

interaction to start and at the time an interaction with a robot

is about to start, the "pre-action" subsystem switch to the

"active" mode and vice versa.

Using the pre-action step, our system aim is to

automatically detect a starting point for transition to the

action recognition "active" mode and ending point to switch

to "stand by" mode.

To detect start and finish of actions, we decided to use

features from a frame that can give us information about a

movement of people in front of a camera. We assume that if a

person is coming closer to a camera, then he is going to start

an interaction with it. We present two kinds of features that

give us such information: Optical Flow and Bounding Box

features.

A. Feature Extraction

1) Optical flow

Optical Flow (OF) is a widely-used method that represents

a motion in a video frames sequence. The OF methods track

directions and magnitudes of offsets of given points between

two consecutive video frames. In our system, a big magnitude

of an OF indicates that a person is close to a robot and going

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

80

to interact with it, and a small magnitude indicates that a

person is far from a robot.

There are two main types of OF: dense and sparse. The

dense OF methods track offsets of a grid of pixels between

two video frames, and the sparse OF methods track offsets

only from a set of detected input points. The set of input

points can be generated by utilizing interest points detectors

such as corner detection algorithms. Most of the dense OF

methods show a better precision, but a greater computation

time, which makes them less suitable for the real-time

purposes, especially with limited computational resources.

Thus, we apply a sparse OF method in our system.

Every several number of frames, the system detects

 , a set of interest points for a sparse

optical flow using the FAST corner detection algorithm [9],

where d is a number of detected points and
 is a

position of detected point i. We used the FAST detector,

because it shows one of the fastest computation time among

interest points detection algorithms, along with a

distinctiveness of detected points [10].

After points detection, in the next consecutive frames, the

system tracks offset of detected points from using the

Lucas-Kanade method. From resulted offsets in each frame,

our system extracts angles of offsets directions and offsets

magnitudes for . Fig. 2 shows an example of

the sparse OF.

Raw OF consists of a lot of offsets vectors extracted from

each frame, and separately, they give almost no useful

information about whole person motion in a frame. Therefore,

we summarize all OF vectors in a frame in one feature vector

by using a Histogram of Optical Flow (HOF) method. A HOF

is an OF descriptor that is commonly used in the action

recognition. Firstly, all OF offsets are clustered to one of the

bins for depending on their , where is

a number of bins. Each bin represents one general direction of

offsets inside a bin. Next, a HOF is presented as a histogram

 , where each bin value is

 and is a number of OF offsets belonging to a

bin . Finally, because Sparse OF has an uneven distribution

of detected points in each bin, we normalize a sparse HOF by

dividing each computed bin to a number of offsets in this bin:

 for , since the sparse OF has

an uneven distribution of detected points.

Fig. 2. Example of Sparse OF (Blue dots represent detected points, and red

lines represent offsets of these points).

To have more detailed information, we divide each video

frame to blocks. For each block, the system computes

a HOF for a number of directions. We use resulted HOF

vectors as an input to a classification model.

2) Bounding box

In this approach, the system detects people in a single

video frame using the Histograms of Oriented Gradients

(HOG) [11] method. Then, it constructs bounding boxes

around detected people and extracts features from them. This

approach heavily depends on a performance of the human

detection algorithm. Also, besides features extraction, a

bounding box can also be used for other tasks, for example, to

extract foreground around detected humans or for human

recognition.

Extracted features are given for each bounding box as

follows: a width , a height , and a deviation of

center from the center of a frame . These are simple

features that give us information about a size and position of a

bounding box. Bigger bounding boxes of detected people are

assumed to indicate that these people are closer to a camera.

Also, wider boxes can mean that these people are facing a

camera and making an action with stretched arms. And as we

mentioned earlier, we assume that a person will stand in front

of a camera (close to the center of a frame). Therefore, a

deviation from the center value can tell how far is the person

from the camera.

To be able to work with different frames resolutions, the

system extracts previously mentioned features as a

proportion to their maximum possible values:

,

, and

, where and means a width and a height

of a frame.

Resulted features values are concatenated to one feature

vector

 and then, is given

to a classification model input.

Additionally, we tested a face detection method using Haar

features instead of a person detection. The face detection has

an advantage in an attention detection: we can't detect a

frontal face if a person turned away from a camera, which

means that the person is not interacting with the camera.

Unfortunately, the face detection methods are unstable in the

low-resolution videos and in situations when a person located

in a far distance.

B. Classification

In the classification step, we had training and testing

phases, each with its dataset. A dataset is a set of features

vectors extracted from the previous step and corresponding

class value for each feature vector.

For a classification, we used a binary, supervised Random

Forest (RF) model to classify video frames between 2 classes:

"pre-action" and "action". Random Forest is a learning

method that uses an ensemble of decision trees. Each

decision tree trains on a random subset of a whole training

dataset and gives a single classification result for each feature

vector of a testing dataset. RF decide final classification

result, for each feature vector, by a majority vote from

classification results of all decision trees. We decided to use

RF because it is robust, not susceptible to over fitting and fast

classifier. Also, some other classification models can be used

instead of a RF, such as a Support Vector Machine model.

This subsystem has several adjustable assumptions on

working with a continuous video stream. First, instead of

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

81

classifying every frame, it can classify frames with a

predetermined frequency to lower working time. Second,

once a frame classification results in the "action" class, we

can increase the frequency of a classification for a short time,

to be able to catch the start of an action. Third, to prevent the

wrong transition between subsystems due to

misclassifications, the system switches to the action

recognition mode only after a predetermined number of the

same and consecutive classification results.

In summary, the "pre-action" subsystem allows to compute

less by processing fewer frames during the "stand by" mode,

and to detect starting and ending point of actions instead of

continuously trying to recognize actions in front of it even if

no action occurs. In this subsystem, we considered features

that could give us information about distance and directions

of people motions such as optical flow and boundary box

features.

IV. ACTION RECOGNITION SUBSYSTEM

In this section, we present action recognition subsystem.

The action recognition subsystem is based on the BoW model

and operates only during the "active" mode to determine an

action. Each subsection corresponds to a particular step in the

BoW pipeline. The BoW model is a supervised model, so it

requires training and testing phases, consisting of the

following steps
1
. The first step is to process a video stream by

extracting features from the input frames. After that, only in

the training phase of our model, a codebook of visual words

is generated by clustering extracted features. The system

passes the codebook and extracted features to the next step.

The second step is a computation of histograms of

occurrences from video segments, by utilizing the codebook

and extracted features. We replace extracted features with

corresponding visual words from the codebook, and a

histogram stores numbers of the occurrence of these visual

words for a video segment. Then all histograms are given as

an input to a classification model. And the third step is to

make a classification of actions based on the histograms of

occurrences.

A. Features Extraction

We extract global and local features. Global features give

information from the whole frame and local features describe

motions from small patches of interests in a frame. Both types

of features are processed separately until the final step of the

BoW.

1) Optical flow

We extract HOF as the global feature. HOFs extraction is

the same as in Section III -
 . Each HOF is

computed from a single block of a frame. But, this HOF

approach doesn't consider a spatial information of a block,

which can be helpful for recognition.

We tested two options to encode a spatial position of a

block. One option is to concatenate all HOFs in one

frame into one feature vector – . Another

option is to attach the identification value of a block at the

end of each HOF. Since blocks positions in the frames are

1Both phases have the same pipeline, except the "codebook generation"

part which happens only during a training - after the feature extraction step.

constant - they cover only certain areas, we can give them

constant identification numbers from 1 to . In each

frame, a block identification number can be attached to

each HOF extracted from a corresponding block :

 for .

2) Local features

For local features detection, we employed sparse-temporal

feature detectors. In recent years, several action recognition

researchers published robust feature detectors for videos,

such as Harris3D, Cuboid, etc. Unlike the common sparse

detectors, these detectors additionally track changes along

the time, which allow us to find the changing regions in

frames and ignore the background regions. For each input

frame, our system detects points of interest and extracts one

feature vector from each detected point.

Our system used modifications of FAST and Harris feature

detectors - FAST3D detector [12] and Harris3D detector [8].

The FAST3D has the same corner detection algorithm in

sparse dimensions as FAST, but it also adds the temporal

dimension. Fig. 3 shows examples of detected points.

Harris3D is a modification of the Harris corner detection

algorithm; it's proven to be an efficient detector in several

works [2], [5]. These methods detect a set of points -

 , from a frame, where is a number of

detected points in a frame.

As a descriptor, we decided to use HOG-HOF method. It

showed good results in surveys [13], [14]. Around each

detected point for , this descriptor creates a

space-time region with the size and extracts

4-bins histograms of oriented gradients -
 and optical flow - from

this region.

Fig. 3. Example of sparse-temporal points using FAST3D (Red dots are
detected points). FAST3D detects points only in areas where was

movements. In the left image, person was coming closer to the camera, and

in the right, person started to move his hand to make some action.

Both resulted histograms are concatenated to one feature

vector - . All computed are used to

make a codebook during training and then, are given to the

next step.

B. Codebook Generation

One of the most popular and simple methods to generate

the codebook is a k-means clustering. The k-means method

clusters set of extracted feature vectors to a number of

clusters, where each cluster represents one visual word. Each

feature vector inside a cluster assigns to a corresponding

visual word. Generated codebook passed to the next step of

the BoW pipeline, along with extracted feature vectors.

There are also several other clustering methods with

different pros and cons, and some are considered more

efficient in a certain number of applications, such as

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

82

Gaussian Mixture Model (GMM), Hierarchical k-means

clustering, etc. All these methods have various parameters

that might greatly affect training time and accuracy of the

classification. However, in this work, we do not focus on

trying different clustering methods, since clustering part has

much less effect on the computation time during testing.

Note that our system generates a separate codebook for

each type of features.

C. Histogram Computation

The histogram of occurrences is -dimensional vector

 , where is a D-dimensional

vector. The purpose of histograms is to describe video

segments for a later classification. A video segment can be

represented as , where is an input

feature described by M-dimensional vector and N is a number

of features in the video segment.

We compute histograms of occurrences from an input set

of feature vectors by using different methods of encoding and

pooling from the codebook. After that, computed histograms

are given to a classification model.

Since we were aiming to work in the real-time, we

processed set of frames as they enter successively. So, each

histogram is computed from a part of a video, not the whole

one, which can be done using a sliding window. The sliding

window has a constant size and moves through a video

with a predetermined constant step.

To increase performance, we considered different types of

histograms of occurrences to work with a continuous video.

The first type is the separate histogram computation. In

every position of the sliding window, the system computes a

histogram of occurrences from all frames that are inside of

the sliding window. Thus, all histograms are based on

different periods of time of a video. In this approach,

previous information does not affect a current histogram

classification decision. This approach heavily depends on the

window size, because a short sliding window will not have

the necessary information for correct classification, and a

long window will conceal important motion changes.

The second type is the growing histogram computation. In

this case, the system computes the first growing histogram

from an initial position of the window as in the separate

histogram approach. Then in every next position of the

sliding window, the system summarizes a previous growing

histogram and a separate histogram from a current position:

 , , where is a

growing histogram and is a separate histogram. So

histograms grew consistently. This approach considers

progressive temporal changes, but requires a starting and an

ending points.

The third histogram computation type uses a

predetermined number of histograms layers and it is called

the pyramid histogram computation. The system constructs a

first layer with all separate histograms as in the first

approach, and every next layer consists of histograms that

computed by a consecutive summation of two neighbor

histograms from a previous layer. This type considers both

temporal changes and current video segment.

1) Encoding

Encoding is a step to compute a histogram of occurrences,

where we connect extracted feature vectors with visual words

from a codebook. To calculate a histogram of extracted

features from a video segment, the system encodes , to a set

 , which later pooled to a single

vector .

We considered different encoding methods and chose two

following methods: Vector Quantization (VQ) and Super

Vector Coding (SVC) [6], [15]. Both methods are popular

and represent different approaches on handling visual words.

VQ is a standard voting method, where for every feature

 : and , , where is

the id of the nearest visual word to . SVC is an extension of

VQ, but belong to the Super Vector based methods that use a

feature description to extend the size of histograms of

occurrences. SVC:

and , , where is a vector of the nearest

visual word, – a number of the current feature, ,

is a positive constant, is a result of the VQ and equals to

1. According to [6], SVC yields good performance and

processing speed. Several more efficient encoding methods,

such as Fisher Vector, have a better accuracy, but require

much more time to compute.

2) Pooling

After encoding features, we summarize a set to a

histogram . There are two common pooling algorithms:

max-pooling and sum-pooling. In the max-poling scheme, we

choose maximum value in each column: , for

 , and in the sum-pooling, we summarize all

values in each column

 . We pass resulted

histogram of occurrences to the next step as an input to a

classification model.

Some researchers propose to normalize a histogram of

occurrences after computing it [6], because of different

numbers of input features in each histogram. But in our

findings, there weren't any considerable improvements on

using normalization. Also, we can not use normalization

methods that compute a general denominator from all

histograms in a video, because of the real-time processing,

we process histograms as separate entities that come up

successively. Instead, we limited the number of detected

features, so most of the frames have the same amount of

features.

D. Classification

We trained and tested BoW with a supervised Random

Forest (RF) classifier. Support Vector Machines (SVM)

model is more commonly used in BoW, but RF is considered

to be slightly faster in a classification decision. Both

classifiers with adjusted parameters show similar

performance in many applications.

RF takes vectors for with corresponding

class values as an input, where is the total number of

histograms, all are histograms of occurrences computed in

the previous step. The total number of histograms is equal

to a number of different sliding window positions in all given

videos. RF classification result for a single histogram is a

single class of an action that happens in the corresponding

video segment.

E. Combining Features

We have two different types of features. Often a

combination of different features can give better results.

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

83

There are a couple of places in the system where we can

combine these features [6]: before or after a classifier. We

can not combine them earlier because they have a different

amount of samples in each frame. Before giving input to a

classifier, we can combine both features by concatenating

their histogram vectors. The combination after classifier

requires to make two separate classifications, which should

output vectors of probabilities belonging to each class:

 , where - id of a histogram, - number of

classes and is a probability of histogram belonging to a

class . So we can combine features by summing exponential

functions of resulted class probabilities with respective

weights:

 (1)

where is the weight for local features. This exponential

function has a curve that helps to lower small probabilities

and emphasize bigger probabilities. Thus, our function will

select a class with a high probability in it from any classifier,

even if another classifier has a very low confidence in this

class.

A result from (1) is a single class that has the maximum

probability. Depending on , the system prioritizes the local

or global features. A person close to the camera has a bigger

surface to track OF, and, on the contrary, a person at a far

distance can be better described by a local feature.

V. EVALUATION

The system was evaluated in a conventional laptop with

the following system specifications: SSD, 2.4 GHz Intel Core

i5, 8 GB RAM. None of the used methods was parallelized

nor optimized. The system was implemented in C++ using

OpenCV 2.4.9.

We had two goals for our evaluation. The first goal was to

find the best combination of parameters for the action

recognition subsystem and compare it with related work. The

second goal was to find the best approach in the pre-action

subsystem and its usefulness for an action recognition.

For evaluation, we used accuracy and frame per second

(FPS) metrics. FPS is used to measure processing speed, for

the real-time application we need at least 30 FPS. To simulate

action recognition from real-time video stream we classified

segments of video in each position of sliding window instead

of classifying whole video clips. So, each video divided into

many labeled segments depending on sliding window size.

A. Dataset

We tested our system in public JPL - First person

interaction dataset. This dataset was used in [2] and contains

two types of videos with seven different actions: segmented

and continuous videos. Each segmented video contains a

single occurrence of an action without "pre-action" step, and

each continuous video contains one or multiple actions and

"pre-action" step. There are five types of close ranged

actions: patting, hug, handshake, waving, and punch (harmful

action); and two far ranged actions: pointing and throwing an

object (harmful action).

For testing the pre-action subsystem, we used the

continuous videos from the dataset. These videos are longer

and much more diverse: videos contain the pre-action and

action with different lengths, some passing people, multiple

people in one frame, camera movements, and different

actions. There are total 57 videos in this set.

B. Results

The action recognition system was tested using k-fold

cross-validation (k=4) on segmented videos dataset. The

efficiency and computation time of the system was tested by

comparing the following parameters: local features methods,

OF parameters, histogram types, histogram encoding

methods and features combination methods.

Firstly, we tested different position encoding methods for

the sparse HOF method. As shown in Table I simple block id

method gave the best results and in further tests, we used this

method.

TABLE I: COMPARISON OF POSITION ENCODING METHODS FOR GLOBAL

FEATURES

Type of position encoding Accuracy (%)

Without position 72.6

Concatenation 74.2

Block id 76.8

For comparison to our sparse feature extraction methods,

we additionally implemented feature extraction methods

taken from basic BoW in [2]. This baseline system used

following types of features: Dense HOF as a global feature,

Cuboid as a local feature detector and XYT as a local feature

descriptor. Dense HOF extracts one feature vector per frame,

by concatenating Dense HOF of all blocks in a frame

to give us spatial information.

Fig. 4. Speed comparison of features extraction methods (FPS).

Fig. 5. Comparison of histogram computation methods and feature type by

accuracy (%).

We compared the following sets of local features detectors

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

84

+ descriptors: Cuboid + XYT, our FAST3D + HOG/HOF and

Harris3D + HOG/HOF. Also, we compared the following

sets of global features extraction methods: Dense HOF and

our Sparse HOF. We measured processing time and

classification accuracy of these methods. The processing

time for all methods is roughly given in the Fig. 4. As we can

see, proposed sparse OF and FAST3D methods considerable

outmatched baseline methods. Dense HOF speed can be

further optimized by using fewer input points, but, in this

case, accuracy would fall.

Together with feature extraction methods, we compared

three different proposed methods to compute a histogram of

occurrences: separate, growing and pyramid. Results of

feature extraction methods with histogram computation

methods are presented in the Fig. 5. The Sparse HOF gave

better results, mostly because it is computed from special

points that are more distinguishable than a grid of points in

Dense HOF. The Harris3D showed the best performance

among local features; however, its processing time is much

slower than in FAST3D.

Next, we compared VQ and SVC encoding methods for a

histogram of occurrences computation. The VQ method is

simple and was efficient in our case, SVC showed slightly

worse results and computation time was much higher than for

VQ.

For the features combination methods, we used the

following combinations of local and global features: Cuboid

+ XYT with Dense HOF, FAST3D + HOG/HOF with Sparse

HOF and Harris3D + HOG/HOF with Sparse HOF. Fig. 6

shows results of this comparison, where 'Concatenation'

stands for features combination method that concatenate

histogram of occurrences vectors before classification and

'Merge' is a features combination method that merge results

of two separate classifiers. All tests used the “growing” type

histogram as it previously showed the best results.

From Fig. 6 we can see that both feature combination

methods did not get considerably better results in comparison

to the separate use of features. Also, local features could not

get better results than HOF (Fig. 5) in most videos and had a

lot of misdetections during a camera shudder. Most of the

actions required to have contact with a camera, which caused

a shudder/fall of the camera with various duration and speed.

These kinds of noises make harder to detect and extract local

feature points in the foreground. Thus, the overall usefulness

of these local features in the real environment is under a

question.

Fig. 6. Comparison of encoding and features combining methods (%).

Table II shows confusion matrix of actions recognition.

Some of the actions, such as "punching", had poor

recognition because these actions were executed fast and did

not have much recorded time that results in the lack of

samples in the dataset. Action “pet” and “hug” were quite

similar, mostly because they were made in the close

proximity to a camera and the camera couldn’t get the whole

view of a human in front of it: camera can’t see hands and

head of a human that are standing too close. Similarly,

long-ranged actions (“throw” and “point”) had some

misclassifications.

TABLE II: CONFUSION MATRIX (%) OF ACTIONS AND NUMBER OF SAMPLES IN EACH ACTION

 Handshake Hug Pet Wave Point Punch Throw # of samples

Handshake 71.7 0 13.3 0 0 0 15 60

Hug 4.6 77.9 17.6 0 0 0 0 131

Pet 11.3 53.6 34 1 0 0 0 97

Wave 20 0 10 35 15 0 20 20

Point 0 0 0 0 99.6 0 0.4 236

Punch 30 0 35 0 0 30 5 20

Throw 6.7 0 0 2.2 35.6 0 55.6 45

In summary, we experimented with a different set of

feature extraction methods and other parameters of our

system in order to make it work in the real-time from a video

stream. By choosing the best combination, we considered a

trade-off between accuracy and processing speed. For our

goals, the best parameters combination of the action

recognition subsystem would be the concatenation of local

features, which are computed using FAST3D and HOG-HOF

methods, and global feature Sparse HOF.

C. Pre-action System

The pre-action system was tested using k-fold

cross-validation (k=4) in the continuous videos of JPL

dataset. All videos were divided into two classes: pre-action

and action. We tested two features extraction methods: sparse

HOF and boundary box. Results are shown in Table III. Here

we should make a trade-off between speed and accuracy:

boundary box method gave better accuracy, but OF was

much faster.

TABLE III: COMPARISON OF SPEED AND ACCURACY OF PRE-ACTION

FEATURE EXTRACTION METHODS

Methods Speed (FPS) Accuracy (%)

Sparse HOF 67.3 76.2

Boundary box 22.7 88.0

Finally, we evaluated the usefulness of proposed pre-action

subsystem. We compared two approaches that can be used to

work in continuous videos: continuous action recognition

approach and our approach that uses the pre-action

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

85

subsystem. The continuous action recognition approach is a

regular approach, where a system continuously recognizes

actions from a video stream, and also add "nothing" class

when there is no action occurs.

Both approaches used almost the same parameters of action

recognition subsystem, except type of histogram computation

method. Pre-action subsystem approach used "growing"

histogram computation method because this method requires

to have the starting and ending points. And continuous action

recognition approach does not compute a start and end of the

actions; therefore, it used "separate" histogram computation

method.

We trained both approaches on the segmented dataset and

several video segments that do not contain any action. The

results showed 60.1% accuracy for our approach and 32.3%

for continuous recognition.

It can be concluded that the pre-action subsystem is a good

approach to integrate with a real-time action recognition

system that works with a continuous video stream. And it has

several parameters that can be tuned depending on the

situation: frequency of classification, a maximum number of

same consecutive results, feature extraction method, and

classification model parameters.

VI. CONCLUSION

In this work, we designed and implemented the system for

real-time action recognition from FPV continuous video

stream. The classic BoW model was adopted for an action

recognition and modified by using different sparse features

instead of dense features, methods to process continuous

stream and other parameters. We experimentally evaluated

the performance and confirmed the improvement in accuracy

and processing speed. Additionally, we proposed the

pre-action subsystem that helps to work with continuous

video stream by detecting the starting and ending points of

actions. Thus, the system recognizes actions only when it is

necessary. The evaluation showed improvement in the

classification rate of continuous action recognition with the

pre-action subsystem.

In the future works, it might be a good idea to consider

uses of depth information, because many robot systems

employ 3D cameras. The depth information can help to

improve the feature detection and can give additional

features, such as human joints positions and 3-D optical

flows. Another direction for the future research might be

analysis of videos from more dynamic cameras, where we

should take into account frequent camera motions.

REFERENCES

[1] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Proc. ECCV Workshop on

Statistical Learning in Computer Vision, pp. 1–22, 2004.

[2] M. S. Ryoo and L. Matthies, “First-person activity recognition: What
are they doing to me?” in Proc. IEEE Conference on Computer Vision

and Pattern Recognition, Jun. 2013.

[3] A. Fathi, J. K. Hodgins, and J. M. Rehg, “Social interactions: A
first-person perspective,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition, 2012, pp. 1226-1233.

[4] B. R. Fransen, W. E. Lawson, and M. D. Bugajska, “Integrating vision
for human-robot interaction,” in Proc. IEEE Conference on Computer

Vision and Pattern Recognition Workshops, 2010, pp. 9-16.
[5] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning

realistic human actions from movies,” in Proc. IEEE Conference on

Computer Vision and Pattern Recognition, Jun. 2008.
[6] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and

fusion methods for action recognition: Comprehensive study and good

practice,” 2014.
[7] J. R. R. Uijlings, I. C. Duta, N. Rostamzadeh, and N. Sebe, “Realtime

video classification using dense HOF/HOG,” in Proc. International

Conference on Multimedia Retrieval, Association for Computing

Machinery, 2014.

[8] I. Laptev and T. Lindeberg, “Space-time interest points,” in Proc.

International Conference on Computer Vision, 2003, pp. 432–439.
[9] E. Rostenand and T. Drummon, “Machine learning for high-speed

corner detection,” in Proc. the 9th European Conference on Computer

Vision, Springer Science Business Media, 2006, pp. 430–443.
[10] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors:

A survey,” Foundations and Trends® in Computer Graphics and

Vision, vol. 3, no. 3, pp. 177-280, Jan. 2008.
[11] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in Proc. CVPR, 2005, pp. 886–893.

[12] S. Koelstra and I. Patras, “The fast-3d spatio-temporal interest region
detector,” in Proc. 10th Workshop on Image Analysis for Multimedia

Interactive Services, Institute of Electrical & Electronics Engineers

(IEEE), May 2009.
[13] P. Bilinski and F. Bremond, “Evaluation of local descriptors for action

recognition in videos,” Computer Vision Systems, Springer Science

Business Media, pp. 61–70, 2011.
[14] H. Wang, M. M. Ullah, A. Klser, I. Laptev, and C. Schmid, “Evaluation

of local spatio-temporal features for action recognition,” in Proc. the

British Machine Conference, Sep. 2009.
[15] X. Zhou, K. Yu, T. Zhang, and T. S. Huang, “Image classification

using super-vector coding of local image descriptors,” in Proc. the 9th

European conference on Computer Vision, Springer Science Business
Media, pp. 141–154, 2010.

[16] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis,” ACM

Computing Surveys (CSUR), vol. 43, no. 3, pp. 1-43, Apr. 2011.
[17] K. M. Kitani, T. Okabe, Y. Sato, and A. Sugimoto, “Fast unsupervised

ego-action learning for first-person sports videos,” in Proc. IEEE

Conference on Computer Vision and Pattern Recognition, 2011, pp.
3241-3248.

[18] R. Poppe, “A survey on vision-based human action recognition,”

Image and Vision Computing, vol. 28, no. 6, pp. 976–990, Jun. 2010.

M. Maximov received the B.S. degree in information

technology from North-Eastern Federal University,
Russia and M.E. degree in human-computer interaction

& robotics from Korea University of Science and

Technology, Korea, in 2012 and 2015, respectively. His
research interests include computer vision, text

processing and machine learning.

International Journal of Computer Theory and Engineering, Vol. 9, No. 2, April 2017

86

