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Abstract—This paper presents an approach to recognizing 

people’s actions directed towards a robot, from a video collected 

by a camera positioned on the robot. Our approach has two 

modes: “stand by” mode – when a system waits for an action to 

start and “active” mode – when the system recognizes actions 

from the video stream. “Stand by” mode allows to save 

resources during an absence of actions and also gives a starting 

point of an action, which helps for recognition. Our action 

recognition model is based on a Bag-of-Words model, but we 

utilized sparse features in order to process video frames faster. 

As a result, the system implemented with this approach could 

continuously recognize actions in real-time using fewer 

computations. The performance of our method was 

experimentally evaluated and the results are given at the end of 

the paper. 

 
Index Terms—Human action recognition, real-time video 

processing, bag-of-words, computer vision.  

 

I. INTRODUCTION 

The goal of this paper is to present a method for an action 

recognition using the first-person view (FPV) videos. The 

FPV video is a video made from a point of view of an actor 

interacting with surrounding environment. The actor can be a 

human, an animal or a robot. The FPV videos can be divided 

into observational and egocentric types: as the name states, 

the observer FPV video has an actor that observes an action 

that directed towards it, while the egocentric videos contain 

actions made by an actor. From this point, we refer the 

observer FPV as the FPV and the egocentric FPV as the 

egocentric view, and our work focus on the observer FPV.  

The recent popularity of wearable cameras and the 

progress in robotics have created an interest in the action 

recognition from the FPV. One of the prospective application 

fields of the FPV action recognition is the human-robot 

interaction (HRI). A robot needs to understand human 

behavior, particularly, the actions towards a robot, to make an 

appropriate response. These actions include not only 

command gestures and some usual actions such as waving, 

but also the harmful actions towards a robot. To achieve such 

result, the FPV action recognition can play an important role. 

When we use the FPV-based action recognition in HRI, 
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there are some requirements to be considered. Many 

algorithms focus on recognition of finished actions from 

videos with limited numbers of frames, while for HRI, we 

need a way to recognize actions in real-time from a 

continuous video stream. Also, in many situations, an action 

recognition task is not a priority for a robot, so computational 

power designated to this task might be very limited.  

In order to meet the above-mentioned requirements, we 

designed a new system for FPV-based action recognition. 

The main part of this system is an action recognition model 

and based on a Bag-of-Words (BoW) model [1], also called 

as a Bag of Visual Words (BoVW), which is one of the 

widely-used models in the action recognition field.  

Instead of using the BoW model as it is, we sought to find a 

model with an improved configuration for our purpose to 

work in the real-time even with limited computational 

resources. We achieved this task by empirically testing 

changes in performance by modifying different components 

of a BoW model. Also, we added a subsidiary model that 

recognizes a start and an end of an interaction between 

camera holder and a person. This subsidiary part goals are to 

lessen computations when no interaction is happening and to 

improve an action recognition performance by giving a 

starting point of an interaction. 

The remainder of this paper is organized as follows. 

Section II describes the background of this paper, the related 

works and the system overview, and Sections III and IV 

present two core components of our system (for pre-action 

and the action) with the configuration of other components. 

Evaluation and comparative study are conducted with the 

setup described in Section V and the results are given with 

discussions. Then, Section VI concludes this paper. 

 

II. BACKGROUND 

In this section, we will provide background knowledge to 

be helpful in understanding of the subsequent sections: 

related works and system overview.  

A. Related Work 

A lot of works have been done in the action recognition 

area. Many of them focused on recognition from surveillance 

camera videos, movies and internet video clips, and only a 

few focused on the FPV. One of the first researches on the 

action recognition towards camera presented in the [2] paper. 

Actions of humans were directed towards a camera, which 

was mounted on a robot. Their system adopted the BoW 

model, and used two different types of features. The 

performance of this system was evaluated for 7 actions using 

their dataset that was publicly available and also used for our 

system. However, their system has limitations: long 

computation time due to using dense and high dimensions’ 
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features, and applicability to premade videos clips, not to 

video stream. 

Ref. [3] used attention as a feature to recognize human 

social interaction from FPV. The useful aspect is their 

attention detection method, that detects faces and their angles 

to determine a direction of their gazes. Observing people 

attention direction can be later used in the FPV to recognize a 

start of an interaction: if a person looked at a camera direction, 

then there is a high probability of an interaction. 

Human-robot interaction work [4] often use approaches 

based on detecting and tracking human face/limbs using 

depth information. Although, depth information can be quite 

useful, methods based on human limbs and pose detection are 

not reliable due to an often case of partial visibility of human 

body. In FPV, people often come very close to a robot and do 

not fit in their field of view. 

Action recognition in movies scenes and various videos 

from mobile cameras became popular recent years. The 

popularity of YouTube kind of web services raised the 

number of publicly available mobile videos to an enormous 

amount. And many movies scenes and various video clips 

can also be considered as the FPV videos, because they often 

recorded from 3rd person observer position, or sometimes, 

whole or part of the movie shot in a first-person perspective. 

So we can adopt successful action recognition methods used 

in this kind of works [5], such as BoW model, optical flow 

and spatiotemporal point of interests. 

The BoW model is widely used in the action recognition 

field [2], [5]-[7]. [2] improved BoW model and applied it for 

the FPV videos. The [5] showed a possibility of action 

recognition in movies using BoW model from movies and 

using sparse-temporal features [8]. Recently, [6] have done 

extensive research on the BoW model for the action 

recognition.  

B. System Overview 

Unlike previous works, we did not continuously recognize 

actions in front of a camera. To resolve processing 

continuous videos problem, we segment an action into two 

successive parts: pre-action and action. Each part is different 

from others and has its purpose. The pre-action part contains 

what happens before actions occur, that is, when people do 

not interact with a robot - the "stand by" mode. Once the 

system recognizes the possibility of interaction with a human, 

it decides that the action part has started. The action part 

consists of a person action in front a robot and an effect of 

this action on the robot. Effects of the harmful actions are 

usually more distinguishable because they cause turmoil in a 

camera view. We considered these two parts of an action in 

our system. The system has two corresponding modes: "stand 

by" and "active". In our system, we created the "pre-action" 

subsystem that tracks changes in the environment from the 

camera and decide whether we should start to recognize an 

action - switch to "active" mode, or finish to recognize - 

switch to "stand by" mode. 

Our system is composed of two sub-systems for dealing 

with pre-actions and actions, respectively. The proposed 

pipeline of the system between these sub-systems is 

presented in Fig. 1. Note that the action recognition part treats 

local and global features separately from each other until 

classification step, details and meaning of which will be 

described in the next section. 

In this paper, we assume that videos are taken from a 

camera that is mounted on a mobile robot, which implies 

smooth camera motions and frontal field of view of a robot. 

Also, during an action towards the robot, the robot is assumed 

to stay still and fully observe the action in front of it. There is 

no other special assumption. 

 

 
Fig. 1. The system pipeline. 

 

III. PRE-ACTION SUBSYSTEM 

In this Section, we present pre-action subsystem. To work 

continuously and use fewer resources, we integrated the 

system mode that works when a robot doesn't interact with 

people. It is the "stand by" mode when robot only wait for an 

interaction to start and at the time an interaction with a robot 

is about to start, the "pre-action" subsystem switch to the 

"active" mode and vice versa. 

Using the pre-action step, our system aim is to 

automatically detect a starting point for transition to the 

action recognition "active" mode and ending point to switch 

to "stand by" mode. 

To detect start and finish of actions, we decided to use 

features from a frame that can give us information about a 

movement of people in front of a camera. We assume that if a 

person is coming closer to a camera, then he is going to start 

an interaction with it. We present two kinds of features that 

give us such information: Optical Flow and Bounding Box 

features. 

A. Feature Extraction 

1) Optical flow 

Optical Flow (OF) is a widely-used method that represents 

a motion in a video frames sequence. The OF methods track 

directions and magnitudes of offsets of given points between 

two consecutive video frames. In our system, a big magnitude 

of an OF indicates that a person is close to a robot and going 
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to interact with it, and a small magnitude indicates that a 

person is far from a robot. 

There are two main types of OF: dense and sparse. The 

dense OF methods track offsets of a grid of pixels between 

two video frames, and the sparse OF methods track offsets 

only from a set of detected input points. The set of input 

points can be generated by utilizing interest points detectors 

such as corner detection algorithms. Most of the dense OF 

methods show a better precision, but a greater computation 

time, which makes them less suitable for the real-time 

purposes, especially with limited computational resources. 

Thus, we apply a sparse OF method in our system. 

Every several number of frames, the system detects 

                  , a set of interest points for a sparse 

optical flow using the FAST corner detection algorithm [9], 

where d is a number of detected points and       
  is a 

position of detected point i. We used the FAST detector, 

because it shows one of the fastest computation time among 

interest points detection algorithms, along with a 

distinctiveness of detected points [10]. 

After points detection, in the next consecutive frames, the 

system tracks offset of detected points from      using the 

Lucas-Kanade method. From resulted offsets in each frame, 

our system extracts angles of offsets directions    and offsets 

magnitudes      for           . Fig. 2 shows an example of 

the sparse OF.  

Raw OF consists of a lot of offsets vectors extracted from 

each frame, and separately, they give almost no useful 

information about whole person motion in a frame. Therefore, 

we summarize all OF vectors in a frame in one feature vector 

by using a Histogram of Optical Flow (HOF) method. A HOF 

is an OF descriptor that is commonly used in the action 

recognition. Firstly, all OF offsets are clustered to one of the 

bins    for               depending on their   , where      is 

a number of bins. Each bin represents one general direction of 

offsets inside a bin. Next, a HOF is presented as a histogram 

             
 , where each bin value is    

      

  

    and    is a number of OF offsets belonging to a 

bin  . Finally, because Sparse OF has an uneven distribution 

of detected points in each bin, we normalize a sparse HOF by 

dividing each computed bin to a number of offsets in this bin:  

         
  

  
  for              , since the sparse OF has 

an uneven distribution of detected points. 
 

 
Fig. 2. Example of Sparse OF (Blue dots represent detected points, and red 

lines represent offsets of these points). 

 

To have more detailed information, we divide each video 

frame to     blocks. For each block, the system computes 

a HOF for a      number of directions. We use resulted HOF 

vectors as an input to a classification model. 

2) Bounding box 

In this approach, the system detects people in a single 

video frame using the Histograms of Oriented Gradients 

(HOG) [11] method. Then, it constructs bounding boxes 

around detected people and extracts features from them. This 

approach heavily depends on a performance of the human 

detection algorithm. Also, besides features extraction, a 

bounding box can also be used for other tasks, for example, to 

extract foreground around detected humans or for human 

recognition. 

Extracted features are given for each bounding box    as 

follows: a width     , a height     , and a deviation of    

center from the center of a frame     . These are simple 

features that give us information about a size and position of a 

bounding box. Bigger bounding boxes of detected people are 

assumed to indicate that these people are closer to a camera. 

Also, wider boxes can mean that these people are facing a 

camera and making an action with stretched arms. And as we 

mentioned earlier, we assume that a person will stand in front 

of a camera (close to the center of a frame). Therefore, a 

deviation from the center value can tell how far is the person 

from the camera. 

To be able to work with different frames resolutions, the 

system extracts previously mentioned features as a 

proportion to their maximum possible values: 
    

  
, 

    

  
, and 

    

                
, where    and    means a width and a height 

of a frame. 

Resulted features values are concatenated to one feature 

vector     
    

  
  

    

  
  

    

                
   and then,   is given 

to a classification model input. 

Additionally, we tested a face detection method using Haar 

features instead of a person detection. The face detection has 

an advantage in an attention detection: we can't detect a 

frontal face if a person turned away from a camera, which 

means that the person is not interacting with the camera. 

Unfortunately, the face detection methods are unstable in the 

low-resolution videos and in situations when a person located 

in a far distance. 

B. Classification 

In the classification step, we had training and testing 

phases, each with its dataset. A dataset is a set of features 

vectors extracted from the previous step and corresponding 

class value for each feature vector. 

For a classification, we used a binary, supervised Random 

Forest (RF) model to classify video frames between 2 classes: 

"pre-action" and "action". Random Forest is a learning 

method that uses an ensemble of decision trees. Each 

decision tree trains on a random subset of a whole training 

dataset and gives a single classification result for each feature 

vector of a testing dataset. RF decide final classification 

result, for each feature vector, by a majority vote from 

classification results of all decision trees. We decided to use 

RF because it is robust, not susceptible to over fitting and fast 

classifier. Also, some other classification models can be used 

instead of a RF, such as a Support Vector Machine model. 

This subsystem has several adjustable assumptions on 

working with a continuous video stream. First, instead of 
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classifying every frame, it can classify frames with a 

predetermined frequency to lower working time. Second, 

once a frame classification results in the "action" class, we 

can increase the frequency of a classification for a short time, 

to be able to catch the start of an action. Third, to prevent the 

wrong transition between subsystems due to 

misclassifications, the system switches to the action 

recognition mode only after a predetermined number of the 

same and consecutive classification results. 

In summary, the "pre-action" subsystem allows to compute 

less by processing fewer frames during the "stand by" mode, 

and to detect starting and ending point of actions instead of 

continuously trying to recognize actions in front of it even if 

no action occurs. In this subsystem, we considered features 

that could give us information about distance and directions 

of people motions such as optical flow and boundary box 

features. 

 

IV. ACTION RECOGNITION SUBSYSTEM 

In this section, we present action recognition subsystem. 

The action recognition subsystem is based on the BoW model 

and operates only during the "active" mode to determine an 

action. Each subsection corresponds to a particular step in the 

BoW pipeline. The BoW model is a supervised model, so it 

requires training and testing phases, consisting of the 

following steps
1
. The first step is to process a video stream by 

extracting features from the input frames. After that, only in 

the training phase of our model, a codebook of visual words 

is generated by clustering extracted features. The system 

passes the codebook and extracted features to the next step. 

The second step is a computation of histograms of 

occurrences from video segments, by utilizing the codebook 

and extracted features. We replace extracted features with 

corresponding visual words from the codebook, and a 

histogram stores numbers of the occurrence of these visual 

words for a video segment. Then all histograms are given as 

an input to a classification model. And the third step is to 

make a classification of actions based on the histograms of 

occurrences. 

A. Features Extraction 

We extract global and local features. Global features give 

information from the whole frame and local features describe 

motions from small patches of interests in a frame. Both types 

of features are processed separately until the final step of the 

BoW. 

1) Optical flow 

We extract HOF as the global feature. HOFs extraction is 

the same as in Section III -               
 . Each HOF is 

computed from a single block of a frame. But, this HOF 

approach doesn't consider a spatial information of a block, 

which can be helpful for recognition.  

We tested two options to encode a spatial position of a 

block. One option is to concatenate all     HOFs in one 

frame into one feature vector –              .  Another 

option is to attach the identification value of a block at the 

end of each HOF. Since blocks positions in the frames are 

 
1Both phases have the same pipeline, except the "codebook generation" 

part which happens only during a training - after the feature extraction step. 

constant - they cover only certain areas, we can give them 

constant identification numbers from 1 to    . In each 

frame, a block   identification number     can be attached to 

each HOF extracted from a corresponding block  :   

           
       for               . 

2) Local features 

For local features detection, we employed sparse-temporal 

feature detectors. In recent years, several action recognition 

researchers published robust feature detectors for videos, 

such as Harris3D, Cuboid, etc. Unlike the common sparse 

detectors, these detectors additionally track changes along 

the time, which allow us to find the changing regions in 

frames and ignore the background regions. For each input 

frame, our system detects points of interest and extracts one 

feature vector from each detected point. 

Our system used modifications of FAST and Harris feature 

detectors - FAST3D detector [12] and Harris3D detector [8]. 

The FAST3D has the same corner detection algorithm in 

sparse dimensions as FAST, but it also adds the temporal 

dimension. Fig. 3 shows examples of detected points. 

Harris3D is a modification of the Harris corner detection 

algorithm; it's proven to be an efficient detector in several 

works [2], [5]. These methods detect a set of points - 

           , from a frame, where   is a number of 

detected points in a frame. 

As a descriptor, we decided to use HOG-HOF method. It 

showed good results in surveys [13], [14]. Around each 

detected point    for             , this descriptor creates a 

space-time region with the size              and extracts 

4-bins histograms of oriented gradients -    
            and optical flow -                from 

this region. 
 

 
Fig. 3. Example of sparse-temporal points using FAST3D (Red dots are 
detected points). FAST3D detects points only in areas where was 

movements. In the left image, person was coming closer to the camera, and 

in the right, person started to move his hand to make some action. 

 

Both resulted histograms are concatenated to one feature 

vector -              . All computed     are used to 

make a codebook during training and then, are given to the 

next step. 

B. Codebook Generation 

One of the most popular and simple methods to generate 

the codebook is a k-means clustering. The k-means method 

clusters set of extracted feature vectors to a   number of 

clusters, where each cluster represents one visual word. Each 

feature vector inside a cluster assigns to a corresponding 

visual word. Generated codebook passed to the next step of 

the BoW pipeline, along with extracted feature vectors. 

There are also several other clustering methods with 

different pros and cons, and some are considered more 

efficient in a certain number of applications, such as 
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Gaussian Mixture Model (GMM), Hierarchical k-means 

clustering, etc. All these methods have various parameters 

that might greatly affect training time and accuracy of the 

classification. However, in this work, we do not focus on 

trying different clustering methods, since clustering part has 

much less effect on the computation time during testing. 

Note that our system generates a separate codebook for 

each type of features. 

C. Histogram Computation 

The histogram of occurrences is  -dimensional vector 

                  , where    is a D-dimensional 

vector. The purpose of histograms is to describe video 

segments for a later classification. A video segment can be 

represented as                    , where    is an input 

feature described by M-dimensional vector and N is a number 

of features in the video segment. 

We compute histograms of occurrences from an input set 

of feature vectors by using different methods of encoding and 

pooling from the codebook. After that, computed histograms 

are given to a classification model.  

Since we were aiming to work in the real-time, we 

processed set of frames as they enter successively. So, each 

histogram is computed from a part of a video, not the whole 

one, which can be done using a sliding window.  The sliding 

window has a constant size     and moves through a video 

with a predetermined constant step. 

To increase performance, we considered different types of 

histograms of occurrences to work with a continuous video.  

The first type is the separate histogram computation. In 

every position of the sliding window, the system computes a 

histogram of occurrences from all frames that are inside of 

the sliding window. Thus, all histograms are based on 

different periods of time of a video. In this approach, 

previous information does not affect a current histogram 

classification decision. This approach heavily depends on the 

window size, because a short sliding window will not have 

the necessary information for correct classification, and a 

long window will conceal important motion changes. 

The second type is the growing histogram computation. In 

this case, the system computes the first growing histogram 

from an initial position of the window as in the separate 

histogram approach. Then in every next position of the 

sliding window, the system summarizes a previous growing 

histogram and a separate histogram from a current position: 

                    ,            , where    is a 

growing histogram and    is a separate histogram. So 

histograms grew consistently. This approach considers 

progressive temporal changes, but requires a starting and an 

ending points. 

The third histogram computation type uses a 

predetermined number of histograms layers and it is called 

the pyramid histogram computation. The system constructs a 

first layer with all separate histograms as in the first 

approach, and every next layer consists of histograms that 

computed by a consecutive summation of two neighbor 

histograms from a previous layer. This type considers both 

temporal changes and current video segment. 

1) Encoding 

Encoding is a step to compute a histogram of occurrences, 

where we connect extracted feature vectors with visual words 

from a codebook. To calculate a histogram of extracted 

features from a video segment, the system encodes  , to a set 

                    , which later pooled to a single 

vector  .  

We considered different encoding methods and chose two 

following methods: Vector Quantization (VQ) and Super 

Vector Coding (SVC) [6], [15]. Both methods are popular 

and represent different approaches on handling visual words. 

VQ is a standard voting method, where for every feature 

             :         and       ,      , where    is 

the id of the nearest visual word to   . SVC is an extension of 

VQ, but belong to the Super Vector based methods that use a 

feature description to extend the size of histograms of 

occurrences. SVC:                                 
    

and       ,      , where     is a vector of the nearest 

visual word,   – a number of the current feature,           ,   

is a positive constant,      is a result of the VQ and equals to 

1. According to [6], SVC yields good performance and 

processing speed. Several more efficient encoding methods, 

such as Fisher Vector, have a better accuracy, but require 

much more time to compute. 

2) Pooling 

After encoding features, we summarize a set   to a 

histogram  . There are two common pooling algorithms: 

max-pooling and sum-pooling. In the max-poling scheme, we 

choose maximum value in each column:             , for 

           , and in the sum-pooling, we summarize all 

values in each column          
 
   . We pass resulted 

histogram of occurrences   to the next step as an input to a 

classification model. 

Some researchers propose to normalize a histogram of 

occurrences after computing it [6], because of different 

numbers of input features in each histogram. But in our 

findings, there weren't any considerable improvements on 

using normalization. Also, we can not use normalization 

methods that compute a general denominator from all 

histograms in a video, because of the real-time processing, 

we process histograms as separate entities that come up 

successively. Instead, we limited the number of detected 

features, so most of the frames have the same amount of 

features. 

D. Classification 

We trained and tested BoW with a supervised Random 

Forest (RF) classifier. Support Vector Machines (SVM) 

model is more commonly used in BoW, but RF is considered 

to be slightly faster in a classification decision. Both 

classifiers with adjusted parameters show similar 

performance in many applications. 

RF takes vectors    for            with corresponding 

class values as an input, where   is the total number of 

histograms, all    are histograms of occurrences computed in 

the previous step. The total number of histograms   is equal 

to a number of different sliding window positions in all given 

videos. RF classification result for a single histogram is a 

single class of an action that happens in the corresponding 

video segment. 

E. Combining Features 

We have two different types of features. Often a 

combination of different features can give better results. 
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There are a couple of places in the system where we can 

combine these features [6]: before or after a classifier. We 

can not combine them earlier because they have a different 

amount of samples in each frame. Before giving input to a 

classifier, we can combine both features by concatenating 

their histogram vectors. The combination after classifier 

requires to make two separate classifications, which should 

output vectors of probabilities belonging to each class: 

                , where   - id of a histogram,   - number of 

classes and      is a probability of histogram   belonging to a 

class  . So we can combine features by summing exponential 

functions of resulted class probabilities with respective 

weights: 

               
 

           
 

 
                          (1) 

where   is the weight for local features. This exponential 

function has a curve that helps to lower small probabilities 

and emphasize bigger probabilities. Thus, our function will 

select a class with a high probability in it from any classifier, 

even if another classifier has a very low confidence in this 

class. 

A result from (1) is a single class that has the maximum 

probability.  Depending on  , the system prioritizes the local 

or global features. A person close to the camera has a bigger 

surface to track OF, and, on the contrary, a person at a far 

distance can be better described by a local feature. 

  

V. EVALUATION 

The system was evaluated in a conventional laptop with 

the following system specifications: SSD, 2.4 GHz Intel Core 

i5, 8 GB RAM. None of the used methods was parallelized 

nor optimized. The system was implemented in C++ using 

OpenCV 2.4.9. 

We had two goals for our evaluation. The first goal was to 

find the best combination of parameters for the action 

recognition subsystem and compare it with related work. The 

second goal was to find the best approach in the pre-action 

subsystem and its usefulness for an action recognition. 

For evaluation, we used accuracy and frame per second 

(FPS) metrics. FPS is used to measure processing speed, for 

the real-time application we need at least 30 FPS. To simulate 

action recognition from real-time video stream we classified 

segments of video in each position of sliding window instead 

of classifying whole video clips. So, each video divided into 

many labeled segments depending on sliding window size. 

A. Dataset 

We tested our system in public JPL - First person 

interaction dataset. This dataset was used in [2] and contains 

two types of videos with seven different actions: segmented 

and continuous videos. Each segmented video contains a 

single occurrence of an action without "pre-action" step, and 

each continuous video contains one or multiple actions and 

"pre-action" step. There are five types of close ranged 

actions: patting, hug, handshake, waving, and punch (harmful 

action); and two far ranged actions: pointing and throwing an 

object (harmful action). 

For testing the pre-action subsystem, we used the 

continuous videos from the dataset. These videos are longer 

and much more diverse: videos contain the pre-action and 

action with different lengths, some passing people, multiple 

people in one frame, camera movements, and different 

actions. There are total 57 videos in this set.  

B. Results 

The action recognition system was tested using k-fold 

cross-validation (k=4) on segmented videos dataset. The 

efficiency and computation time of the system was tested by 

comparing the following parameters: local features methods, 

OF parameters, histogram types, histogram encoding 

methods and features combination methods. 

Firstly, we tested different position encoding methods for 

the sparse HOF method. As shown in Table I simple block id 

method gave the best results and in further tests, we used this 

method. 

 
TABLE I: COMPARISON OF POSITION ENCODING METHODS FOR GLOBAL 

FEATURES 

Type of position encoding Accuracy (%) 

Without position 72.6 

Concatenation 74.2 

Block id 76.8 

 

For comparison to our sparse feature extraction methods, 

we additionally implemented feature extraction methods 

taken from basic BoW in [2]. This baseline system used 

following types of features: Dense HOF as a global feature, 

Cuboid as a local feature detector and XYT as a local feature 

descriptor. Dense HOF extracts one feature vector per frame, 

by concatenating Dense HOF of all       blocks in a frame 

to give us spatial information. 

 

 
Fig. 4. Speed comparison of features extraction methods (FPS). 

 

 
Fig. 5. Comparison of histogram computation methods and feature type by 

accuracy (%). 

 

We compared the following sets of local features detectors 
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+ descriptors: Cuboid + XYT, our FAST3D + HOG/HOF and 

Harris3D + HOG/HOF. Also, we compared the following 

sets of global features extraction methods: Dense HOF and 

our Sparse HOF. We measured processing time and 

classification accuracy of these methods. The processing 

time for all methods is roughly given in the Fig. 4. As we can 

see, proposed sparse OF and FAST3D methods considerable 

outmatched baseline methods. Dense HOF speed can be 

further optimized by using fewer input points, but, in this 

case, accuracy would fall. 

Together with feature extraction methods, we compared 

three different proposed methods to compute a histogram of 

occurrences: separate, growing and pyramid. Results of 

feature extraction methods with histogram computation 

methods are presented in the Fig. 5. The Sparse HOF gave 

better results, mostly because it is computed from special 

points that are more distinguishable than a grid of points in 

Dense HOF. The Harris3D showed the best performance 

among local features; however, its processing time is much 

slower than in FAST3D. 

Next, we compared VQ and SVC encoding methods for a 

histogram of occurrences computation. The VQ method is 

simple and was efficient in our case, SVC showed slightly 

worse results and computation time was much higher than for 

VQ. 

For the features combination methods, we used the 

following combinations of local and global features: Cuboid 

+ XYT with Dense HOF, FAST3D + HOG/HOF with Sparse 

HOF and  Harris3D + HOG/HOF  with  Sparse  HOF.  Fig. 6 

shows results of this comparison, where 'Concatenation' 

stands for features combination method that concatenate 

histogram of occurrences vectors before classification and 

'Merge' is a features combination method that merge results 

of two separate classifiers. All tests used the “growing” type 

histogram as it previously showed the best results.  

From Fig. 6 we can see that both feature combination 

methods did not get considerably better results in comparison 

to the separate use of features. Also, local features could not 

get better results than HOF (Fig. 5) in most videos and had a 

lot of misdetections during a camera shudder. Most of the 

actions required to have contact with a camera, which caused 

a shudder/fall of the camera with various duration and speed. 

These kinds of noises make harder to detect and extract local 

feature points in the foreground. Thus, the overall usefulness 

of these local features in the real environment is under a 

question. 

 

 
Fig. 6. Comparison of encoding and features combining methods (%). 

 

Table II shows confusion matrix of actions recognition. 

Some of the actions, such as "punching", had poor 

recognition because these actions were executed fast and did 

not have much recorded time that results in the lack of 

samples in the dataset. Action “pet” and “hug” were quite 

similar, mostly because they were made in the close 

proximity to a camera and the camera couldn’t get the whole 

view of a human in front of it: camera can’t see hands and 

head of a human that are standing too close. Similarly, 

long-ranged actions (“throw” and “point”) had some 

misclassifications. 

 
TABLE II: CONFUSION MATRIX (%) OF ACTIONS AND NUMBER OF SAMPLES IN EACH ACTION 

 Handshake Hug Pet Wave Point Punch Throw # of samples 

Handshake 71.7 0 13.3 0 0 0 15 60 

Hug 4.6 77.9 17.6 0 0 0 0 131 

Pet 11.3 53.6 34 1 0 0 0 97 

Wave 20 0 10 35 15 0 20 20 

Point 0 0 0 0 99.6 0 0.4 236 

Punch 30 0 35 0 0 30 5 20 

Throw 6.7 0 0 2.2 35.6 0 55.6 45 

 

In summary, we experimented with a different set of 

feature extraction methods and other parameters of our 

system in order to make it work in the real-time from a video 

stream. By choosing the best combination, we considered a 

trade-off between accuracy and processing speed. For our 

goals, the best parameters combination of the action 

recognition subsystem would be the concatenation of local 

features, which are computed using FAST3D and HOG-HOF 

methods, and global feature Sparse HOF. 

C. Pre-action System 

The pre-action system was tested using k-fold 

cross-validation (k=4) in the continuous videos of JPL 

dataset. All videos were divided into two classes: pre-action 

and action. We tested two features extraction methods: sparse 

HOF and boundary box. Results are shown in Table III. Here 

we should make a trade-off between speed and accuracy: 

boundary box method gave better accuracy, but OF was 

much faster. 

 
TABLE III: COMPARISON OF SPEED AND ACCURACY OF PRE-ACTION 

FEATURE EXTRACTION METHODS 

Methods Speed (FPS) Accuracy (%) 

Sparse HOF 67.3 76.2 

Boundary box 22.7 88.0 

 

Finally, we evaluated the usefulness of proposed pre-action 

subsystem. We compared two approaches that can be used to 

work in continuous videos: continuous action recognition 

approach and our approach that uses the pre-action 
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subsystem. The continuous action recognition approach is a 

regular approach, where a system continuously recognizes 

actions from a video stream, and also add "nothing" class 

when there is no action occurs.  

Both approaches used almost the same parameters of action 

recognition subsystem, except type of histogram computation 

method. Pre-action subsystem approach used "growing" 

histogram computation method because this method requires 

to have the starting and ending points. And continuous action 

recognition approach does not compute a start and end of the 

actions; therefore, it used "separate" histogram computation 

method. 

We trained both approaches on the segmented dataset and 

several video segments that do not contain any action. The 

results showed 60.1% accuracy for our approach and 32.3% 

for continuous recognition.  

It can be concluded that the pre-action subsystem is a good 

approach to integrate with a real-time action recognition 

system that works with a continuous video stream. And it has 

several parameters that can be tuned depending on the 

situation: frequency of classification, a maximum number of 

same consecutive results, feature extraction method, and 

classification model parameters. 

 

VI. CONCLUSION 

In this work, we designed and implemented the system for 

real-time action recognition from FPV continuous video 

stream. The classic BoW model was adopted for an action 

recognition and modified by using different sparse features 

instead of dense features, methods to process continuous 

stream and other parameters. We experimentally evaluated 

the performance and confirmed the improvement in accuracy 

and processing speed. Additionally, we proposed the 

pre-action subsystem that helps to work with continuous 

video stream by detecting the starting and ending points of 

actions. Thus, the system recognizes actions only when it is 

necessary. The evaluation showed improvement in the 

classification rate of continuous action recognition with the 

pre-action subsystem. 

In the future works, it might be a good idea to consider 

uses of depth information, because many robot systems 

employ 3D cameras. The depth information can help to 

improve the feature detection and can give additional 

features, such as human joints positions and 3-D optical 

flows. Another direction for the future research might be 

analysis of videos from more dynamic cameras, where we 

should take into account frequent camera motions. 
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