

Abstract—Open Source Software (OSS) is becoming very

popular and using OSS in maintenance activities has become

one of the OSS important issues. Researches in the area of

reuse-based maintenance using OOS are rare. The attributes

and metrics of OSS maintenance processes are identified

depending on literature study. We have proposed a

maintenance framework model for reusing of OSS applications

in software maintenance, because there are no well-specified

guidelines to follow for reuse-based maintenance using OOS.

We have tried to shorten the gap between the change request

and the reuse-based maintenance using OOS. The paper also

shows how to analyze OOS modularity using functional points.

Index Terms—Open-source software, maintenance process

models, reuse-base maintenance, OSS customization.

I. INTRODUCTION

Open Source Software (OSS) is becoming very popular

since it was introduced in 1998 and used widely in

companies, communities, homes and governments. OSS is

software source code produced by a collaborative process,

where many developers and users can participate in

developing and posting it to trusted repositories on the

internet, and the users have the right to run, copy, distribute,

change local copies and improve the software under the OSS

license policies [1]. OSS is adopted in most aspects of world's

computing technologies. OSS has become the underlying

basis of mobile applications and mobile devices, next

generation databases, cloud computing,

software-as-a-service, and the internet [2], [3]. Open-source

software is copyrighted software and has approved license

from Open Source Initiative (OSI), which gives right to other

developers to copy, modify and distribute it to others, or

integrate it with other software components [4], [5]. The

programming code and the compiled program are available

and used in different software domains; such as well-known

applications: MS Internet Explorer, Firefox, MySQL, Linux,

and Audacity. Open-source software has standards in their

employed field, even some of them lack of documentation.

The predominant license "General Public License" (GPL),

which is used by programmers and end users, serves 70% of

open-source software [6].

From the OSS development and maintenance view point,

OSS is unlike a systematic software engineering approach;

where the development process is done by a particular

developers and maintainers with predefined roles. In OOSs,

any volunteer developer or user can develop, do post-delivery

source code modification, analyze defects or disseminate

Manuscript received May 30, 2015; revised November 15, 2015.

Nedhal A. Al-Saiyd is with the Faculty of Computer Science, Applied

Science University, Amman Jordan (e-mail: nedhal_alsaiyd@asu.edu.jo,

nedhal_alsaiyd@yahoo.com).

them. It is done in collaborative manner [7]. OSS

development life cycle model consists of the following main

phases [1], [8], [9]:

1) Cathedral Phase, the project initiation is done by core

developer, and project manager in the closed

environment without outside participants.

2) Transition Phase, it is considered as a link between

cathedral phase and bazaar phase. When the design

becomes stable and modular, the transition phase is

initiated and a prototype is ready to use.

3) Bazaar Phase, OSS is now ready for distribution, where

bug detecting and reporting, modification and analyzing

tasks occur.

4) Maturity Phase, when OSS is working accurately

popular, and has less bug rate, less changes.

OSS Development paradigm not only has decreased the

development effort and cost, but it increased software quality

too [10]. There is no standardized life cycle approaches

support OSS development and maintenance processes. OSS

development and maintenance are performed depending on

different developers' skills, experiences and end users needs.

The absence of OSS development/maintenance

organizational structure can affect on the quality of

development or maintenance processes. Also, OSS processes

are poorly described and the boundaries between the

activities are not well-specified and clear [11]. Using OSS in

maintenance activities have become one of the OSS

important issues.

The purpose of this paper is to analyze technical attributes

and characteristics of OSS maintenance processes and

propose a general descriptive maintenance processes

framework model. The evaluation of framework according

to reliability performance, usability and efficiency is then

studied.

The rest of the paper describes the flow of information in

following sections. In Section II will present the review of the

current research work of about the reusing open source

software in software maintenance. Section III the reuse-based

software maintenance is presented and discussed. It will give

precise view of the various reuse-based software

maintenance methodologies. In Section IV, the proposed

framework model and process work flow are described.

Finally, the conclusion is presented in Section V.

II. OPEN SOURCE SOFTWARE LITERATURE REVIEW

Usually software maintenance is defined as any

modification made on a software system at post-delivery

[12]. OSS development model can support effectively

various issues associated with management and maintenance

processes and can increase the success rate of software. To

use OSS as a reusable component in software maintenance

The Impact of Reusing Open-Source Software Model in

Software Maintenance

Nedhal A. Al-Saiyd

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

6DOI: 10.7763/IJCTE.2017.V9.1101

mailto:nedhal_alsaiyd@asu.edu.jo

process, the maintainer will need to know what OSS model is

used in developing. In bazaar model, the development is

unstructured management and documentation assets, which

will decrease project success rate. While top-down cathedral

development model, top-down is more structure and moving

toward comprehensive policies that can improve OSS

success and quality [13], [14].
Due to the openness nature, OSSs are increasingly growing

and frequently changing as the software evolves and more

people participate in developing and changing source code.

Consequently, the success of OSS development depends

heavily on the ability to decompose the software into

different well-defined components and to document the

specifications clearly [15].

Often the goal of most of the organizations is to have

reliable source code; since the source code is freely available

with few restrictions, and not to do modification on source

code. The unplanned modification can lead to problems when

having unmanageable OSS versions, or using different

versions of OSS simultaneously in the same company.

Therefore, OSS projects need to define appropriate

configuration management, for version and managing

changes for software evolution [16].

Koponen and Hotti have studied two well-known OSS

projects, Mozilla Web browser and Apache HTTP server, to

identify OSS maintenance activities. The OSS maintenance

activities were divided into two pre- and thirteen

post-delivery activates. They assume they are similar to

ISO/IEC maintenance process [17].

Software maintainer concentrates in his work on using two

documentation types during software maintenance; the

software source code and the embedded readable comments,

and the documentation of logical data model and requirement

specification The executable program is accompanied with

source codes so that it can be easily modified when it is

required to enhance the software, fix bugs or reuse the source

code.

A study shows they are more important than software

architecture. Among software maintainers, these

documentations are considered as important artifacts that

help to understand a system [9], [18].

Other researchers studied the ISO maintenance process

and OSS maintenance process using 1) Defect Management

System (DMS); which is used to store the defect reports, and

2) Version Management System (VMS); where developers

are able to restore the older version if the later changes are not

correctly implemented. They showed that OSS maintenance

process there did not have retirement and migration stages,

and modification acceptance occurred after implementation

[19], [20].

III. OVERVIEW OF REUSE-BASED SOFTWARE MAINTENANCE

A. Reuse-Based Maintenance Models

Many of the present-day new software versions are

obtained by modifying one or several components of the old

software components using previously developed software

components and possibly adding new components. The

reusable components are obtained from component

repositories of commercial off-the-shelf (COTS)

components, and OSS components.

The old software system can be reused by [21]:

1) Quick-fix model: Due to time constraint, first identify the

problem, modify the code to fix the defects as quickly as

possible then modify the documentation.

2) Iterative-enhancement model: the model is required

when the requirements are not fully-understood. The

documentation is modified and then them modification

is done on the code level. It supports reuse.

3) Full-reuse model: It requires fully understanding of the

system parts. A new system is built from components of

the old system and from components available in the

component repository.

Fig. 1 shows the main stages of component-based software

engineering that uses the reusable components that already

developed by other developments.

Fig. 1. Reuse-based model.

B. Benefits of Reuse-Based Maintenance [21]

1) Reusable components Increase reliability.

2) Reduced process risk

3) Increase productivity

4) Reusing code can improve its compliance with standards

5) Accelerated development time

6) Reusable components possess modularity, low coupling,

high cohesion, and consistent programming style.

IV. GENERAL FRAMEWORK

First, we need to determine the factors that influence OSS

reuse-based maintenance activities and help in decision

making:

A. OSS Reuse Influence Factors

1) Organizational Metrics: Development/maintenance

organizational structure that reflects the actor's roles,

actors, responsibilities for technical decisions and efforts

of maintenance effective activities.

2) OSS processes are poorly described.

3) OSS Functional Size: as a size becomes very large and

the algorithm complexity will grows non-linearly and be

very complex. Software size is measured by three

factors: the data, the function and the control behaviors

(dynamic behaviors) [22].

4) Data manipulation complexity to produce the expected

output data. This issue is influence by the internal data

structures and external logical files, the number of

inputs, and the number of outputs.

5) OSS distributed functionality and number of semantic

processing steps and transformations.

6) The application domain and the OSS type; as in real-time

software.

7) OSS architecture.

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

7

8) Component Engineering

9) Skills and experiences of software maintainer.

10) The expected software lifetime.

11) Diverse programming methodologies and programming

languages.

12) Up-to-Date Documentation. Documentation introduces

visibility and communication within software phases.

Documentation may vary between those process models.

13) Ease of installation and interoperability with the system

being developed or maintained.

14) Distributed development process of OSS ad OSS

community and authority structure (who does what and

why).

15) Quality assessment methods to support the selection

among several OSS application

16) OSS application confidentiality

B. Analyzing OOS Modularity Using Functional Points

To examine the OOS modularity, OSS application is

converted into graph, where each function is represented by a

node on a graph, and the conceptual communications among

the functions are represented by links in the graph. Let us

examine the group of functions in OSS application that share

common features. The functional points are defined into a

two-dimensional matrix 'F'. We assume we have 'n'

intercommunicating functional points. The communication

among functional points of OSS component can be

represented by graph, where each node represents the

semantic functional point and each link represents the

interface connection among nodes. This can be represented

by a symmetric matrix of size = n × n and its element Fij

represents all the links between the functions (nodes) inside

the OSS application; that is the connections between

(Functioni) in node i to (Functionj) in node j. Fii represent all

the links inside the function.

11 1

1

F F n

F

F Fn nn

 (1)

The summation of all the links in the OSS is represented by

matrix' row (or Matrix' column can be used), which shows the

links that connect among different functions (i.e. connecting

functional points). It is defined by:

1

n
Fai ij

j

 (2)

To measure the modularity strength 'M' of the OSS

structure, 'M', which is defined as an objective measure:

 2M aFij i
i

 (3)

where:

ai
2
: represents the summation of the functions of OSS,

which is represented by matrix elements (expected value of

modularity).

Fii: represents the links that connect nodes exist inside a

function, which in turn exists inside OSS application (i.e.

OSS network graph).

Minimizing the number of intercommunication among

functional points will minimize the modular structure

complexity and therefore will decrease the execution time.

If M = 0, it means it is randomly structure.

If M = 1, it means functions are low coupling and has

modularity.

Therefore, the measure can reduces complexity of source

code and removing the unused code, define patterns that are

easier to understand code and maintain, and produced

well-structure design.

The algorithm can be performed on the produced OSS

graph depending on breadth-first strategy.

First: The initial node is represented by 'In' and the distance

is assigned as 0; Dis(In)=0 and its weight; Weight(In) = 1.

Second: The distance of every Node i from Is that is

adjacent to In is calculated as:

Dis(Nodei) = Dis(In) + 1 = 0 + 1 =1, and its weight is

calculated by:

Weight (Nodei) = Weight (In) = 1.

Third:

Repeat

For all rest Nodes; there is a Node j that is adjacent to any

Node i, one of the following is applied:

If j has not yet been assigned a distance, it is assigned

distance Dis(Nodej) = Dis(Nodei) + 1 and weight

Weight(Nodej) = Weight(Nodei).

If j has already been assigned a distance and Dis(Nodej) =

Dis(Nodei) + 1, then the Node’s weight is increased by

Weight(Nodei): Weight(Nodej) = Weight(Nodej) +

Weight(Nodei).

If j has already been assigned a distance and Dis(Nodej) <

Dis(Nodei) + 1, then do nothing.

Until no Nodes remain

The weight in the OSS graph represents the distance of

nodes from the initial node.

C. A General Framework of OSS Development Model

The proposed framework shows the main guidelines to use

OSS component in software maintenance within a user

organization using OSS reuse-based model. Fig. 2 illustrates

these stages.

1) Establish Modification Request: Determine Specific

change Requirements from end users. It is to understand

the Problem to identify the required function and

services

2) Modification Impact Analysis & Risks Assessment:

Identify parts of the software that can be affected by the

proposed changes and track the effect of changes.

3) Study the Target Solution. Define the OSS desired

function and structure, which depends on identifying the

functionality, logic of solving-methods, OSS structure,

data structure, dependencies, interactions, platforms,

pre-conditions and post-conditions.

4) Produce Maintenance Planning: Formal and informal

plans can be produced at this stage. Planning uses time-,

cost- and effort-based analyses.

5) Search Open Source Code Repositories: Searching for

OSS is part of the development or maintenance process.

A variety of reuse-based OOS solutions are available so

the best suited one is adopted, which meet t meet several

criteria of modularity, low-coupling, highly cohesion,

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

8

desired functionalities and interfaces. The availability

may lead to decrease the cost.

Fig. 2. A general framework of OSS development model.

6) Understanding Source Code Characteristics Using

Analysis Techniques: The maintainer needs to build a

complete and accurate mental model. The model

depends on programming style, comments, coding

standard, and code control flow. Maintainers spend

approximately from 50% to 90% of software

maintenance estimated time on program understanding

[23]. Understanding a large OOS application is not an

easy task. Maintainers depend in their work on source

code analysis techniques, such as, control and data flow

and call graphs. It is necessary to identify the problem

domain, estimate resources, help to choose algorithms,

and to find cause-effect relations.

7) Implementing OSS Customization: customization is

needed to adapt OSS to work in a new environment.

Refactoring techniques are used in this stage. The

deployment of Application Programming Interfaces

(APIs), which are provided by the vendor, restricts the

customizations. But there are no good guidelines to

follow by companies when customizing of OSS.

8) Bottom up Integration: Integration OSS with the other

components to produce the new version of software

System.

9) Evaluation to update the current OSS. Testing is done

to keep the code working efficiently and effectively.

Unit testing are necessary. The important set of OSS

quality review attributes is: usability, functionality,

reliability, performance, accessibility, security, and

maintainability. They are analyzed and reviewed

individually. Some of the review attributes must be done

in the first release while others are done in the later

versions. Testing reduces the impacts to users

10) Issuing New Release (Release Management): The new

release ensures that all changes are tested, deployed and

the users use the services efficiently and effectively. The

major or minor release consists of the changes on the old

software components or/and the new functionalities

according to the amount of changes or/and additions on

the software requirements.

11) End Users Feedback: Feedback is the start of new

maintenance and evolution cycle to improve the software

usability and quality.

V. CONCLUSION

Open Source Software (OSS) is becoming very popular

and using OSS in maintenance activities has become one of

the OSS important issues.

1) The open source software components can be reused in

maintaining the old or legacy software system. The main

three reuse-based maintenance models are discussed and

the benefits are defined.

2) The technical, personnel, environmental, and project

managerial factors that influence reusing OSS-based

maintenance processes; are categorized, analyzed and

determined in this research. These key factors influence

the success of the OSS-based software maintenance and

evolution.

3) Since the objective of maintenance is not to increase the

complexity of the structural design of the new software

product, the Modularity of the reused-OOS is analyzed

using their functional points and the links among them.

The modularity strength is measured. The algorithm is

performed on the produced OSS graph depending on

breadth-first strategy. The OSS modularity measure can

reduces complexity of source code and removing the

unused code, define patterns that are easier to understand

code and maintain, and produced well-structure design.

4) A general descriptive maintenance processes framework

model is proposed and the sequence of work flow of OSS

reuse-based guidelines is described clearly.

5) The OSS customization and the reusing OSS in software

maintenance is evaluated according to reliability,

usability, accessibility and efficiency is studied.

ACKNOWLEDGMENT

The authors are grateful to the Applied Science

University in Amman, Jordan for the financial support

granted to cover the publication fee of this research article.

REFERENCES

[1] S. Mandal, S. Kandar, and P. Ray, “Open incremental model — A open

source software development life cycle model (OSDLC),”

International Journal of Computer Applications, vol. 21, no. 1, pp.
33-39, May 2011.

[2] A. Zoitl, T. Strasser, and A. Valentini, “Open source initiatives as basis

for the establishment of new technologies in industrial automation:
4DIAC a case study,” in Proc. IEEE International Symposium of

Industrial Electronics (ISIE), 2010, pp. 3817-3819.

[3] Saini and K. Kaur, “A review of open source software development life
cycle models,” International Journal of Software Engineering and Its

Applications, vol. 8, no. 3, pp. 417-434, 2014.

[4] Open Source Initiative: The open source definition. (2003). [Online].
Available: http://www.opensource.org/docs/definition.php

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

9

[6] M. Ueda, “Licenses of open source software and their economic

values,” in Proc. Applications and the Internet Workshops, 2005, pp.

381-383.
[7] V. Potdar and E. Chang, “Open source and closed source software

development methodologies,” in Proc. International Conference of

Software Engineering (ICSE), 2004, pp. 105-109.
[8] C. M. Schweik and A. Semenov, “The institutional design of open

source programming: Implications for addressing complex public

policy and management problems,” vol. 8, no. 1-6, Jan 2003.
[9] A. Capiluppi and M. Michlmayr, “From cathedral to the bazaar: An

empirical study of the lifecycle of volunteer community projects,” The

European Journal for the Informatics Professional, vol. 8, no. 6, pp.
8-17, 2007.

[10] E. Capra, C. Francalanci, and F. Merlo, “An empirical study on the

relationship between software design quality, development effort and
governance in open source projects,” IEEE Transactions on Software

Engineering, vol. 34, no. 06, pp. 765-782, November/December, 2008.

[11] K. Crowston and J. Howison. (Feb. 2005). The social structure of open
source software development. First Monday. [Online]. Available:

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/vie

w/1207/1127
[12] P. Grubb and A. A. Takang, Software Maintenance: Concepts and

Practice, 2nd ed., U.K.: World Scientific Publishing Co. 2003, ch. 1.

[13] P. Kamthan, “On the prospects and concerns of integrating open source
software environment in software engineering education,” Journal of

Information Technology Education, vol. 6, pp. 45-64, 2007.

[14] D. Wong, K. L. Shephard, and P. Phillips, “The cathedral and the
bazaar of e-repository development: encouraging community

engagement with moving pictures and sound,” Research in Learning

Technology, vol. 16, no. 1, pp. 31-40, Mar. 2008.
[15] J. Feller and B. Fitzgerald, “A framework analysis of the open source

software development paradigm,” in Proc. Twenty First International

Conference on Information Systems (ICIS), USA, 2000, pp. 58-69.
[16] S. P. Alpar, “Customization of open source software in companies,” in

Proc. IFIP International Federation of Information Processing,

Advances in Information and Communication Technology, 2009, vol.
299, pp. 129-142.

[17] T. Koponen and V. Hotti, “Open source software maintenance process
framework,” in Proc. the Fifth Workshop on Open Source Software

Engineering (WOSSE), 2005, pp. 1-5.

[18] S. C. De Souza, N. Anquetil, and K. M. de Oliveira, “Which

documentation for software maintenance?” Journal of the Brazilian

Computer Society, vol. 13, no. 2, pp. 31-44, 2007.
[19] H. Lintula, T. Koponen, and V. Hotti, “Exploring the maintenance

process through the defect management in the open source

projects-four case studies,” in Proc. International Conference on
Software Engineering Advances, Oct. 2006, p. 53.

[20] S. Batra, “Study of maintainability process in open source software,”

International Journal of Scientific & Engineering Research, vol. 3, no.
5, pp. 1-4, May 2012.

[21] P. Tripathy and K. Naik, Software Evolution and Maintenance: A

Practitioner’s Approach, Canada: John Wiley & Sons Inc., 2015, ch. 3,
p. 85.

[22] G. Levesque, A. Abran et al., “Measuring software functional size:

Towards an effective measurement of complexity,” in Proc.
International Conference on Software Maintenance, 2002, pp.

370-376.

[23] X. Sun, X. Liu, J. Hu, and J. Zhu, “Empirical studies on the NLP
techniques for source code data preprocessing,” in Proc. the 3rd

International Workshop on Evidential Assessment of Software

Technologies, 2014, pp. 32-39.

Nedhal A. Al-Saiyd got her B.Sc. degree in computer
science from University of Mosul, Iraq in 1981, M.Sc.

and PhD degrees from University of Technology,

Baghdad-Iraq in 1989 and 2000 respectively. She is an
associate Prof. at the Computer Science Dept., Faculty

of Information Technology, in the Applied Science

University, Amman, Jordan. She has got more than 24
years of teaching experience. Her research interests

include software engineering, ontology engineering, intelligent systems, user

authentication, security and speech processing.
She is a member in the Society of Digital Information and Wireless

Communications (SDIWC), senior member in Universal Researchers in

Engineering (URENG), senior member in Universal Association of
Computer and Electronics Engineers (UACEE), member of Editorial and

Reviewer Board of International Journal of Modern Education and

Computer Science (IJMECS), and senior member in Emirates Association of
Computer, Electrical & Electronics Engineers (EACEEE).

International Journal of Computer Theory and Engineering, Vol. 9, No. 1, February 2017

10

[5] J. E. Corbly, “The free software alternative: Freeware, open source

software, and libraries,” Information Technology and Libraries, vol.

33, no. 3, pp. 65-75, Sep. 2014.

