

Abstract—To ensure reliable delivery for composite web

services, we argue that Byzantine fault tolerance (BFT) must be

guaranteed for the service delivery modules (such as BPEL

execution engines and dispatchers) as well as for the realizing

components of the composite web service. Existing BFT service

delivery approaches are mainly focused on atomic web services.

However, there are few approaches discussed BFT for

composite web services delivery. Unfortunately, such

approaches either ensured BFT for the service delivery modules

alone or for the service realizing components alone; but not for

both. To overcome such limitation, this paper proposes

GEMINI; a hybrid BFT protocol for reliable composite web

services orchestrated delivery. GEMINI uses a light-weight

replication-based BFT protocol to ensure the BFT for service

delivery modules, and uses a speculative quorum-based BFT

protocol to ensure components BFT. Unlike existing

quorum-based BFT approaches that ensure components

redundancy via component replication; GEMINI ensures

components redundancy via components parallel provisioning.

Experimental results show that GEMINI increases the

reliability and throughput of composite web service delivery

when compared with existing composite web services delivery

approaches.

Index Terms—Byzantine faults, composite web services,

GEMINI, service delivery.

I. INTRODUCTION

A composite web service realizes a given business

workflow (i.e., describing a given business process) by

invoking different web services (known as component

services, or simply components). Usually, such components

interact with each other via an orchestrator or a dispatcher in

order to achieve the required business objectives. To ensure

the quality of the composite web service, customers jointly

with the composite service provider define the required

service level agreement (SLA). Composite web services

providers do their best to fulfill their SLAs in order to avoid

penalties, and to increase customers’ satisfaction. Indeed, this

is not an easy task as it requires automated SLA management

for composite web services. Automated SLA management

requires an advanced full-fledged service delivery system that

is capable of handling many complex functionalities such as

automated capacity management, automated components

coordination and execution, also it should support tasks

recovery as well as components discovery, and nevertheless it

should be able to support automated cancellation and billing

Manuscript received January 7, 2015; revised May 27, 2015.

Islam Elgedawy is with the Computer Engineering Department, Middle

East Technical University, Northern Cyprus Campus, Guzelyurt, Mersin 10,

Turkey (e-mail: Elgedawy@metu.edu.tr).

management. To handle all such complex functionalities, we

previously proposed CRESCENT [1]; a service delivery

framework for composite web services; depicted in Fig. 1.

However, this is not enough to ensure reliable composite web

services delivery, as the service realizing components as well

as CRESCENT modules themselves are unreliable by nature.

For example, a service component might behave arbitrarily

and deviates from its expected specification; leading to a

component failure. Component failure could be resulting due

to physical failure (i.e. the simplest forms of failure), SLA

violation (i.e. reported from components monitor), and error

in computation (i.e. the worst failure type, due to its high costs

for detection and correction). In other words, a composite

web service could fail due to the Byzantine failures of its

components [2]. Same argument also applies over any service

delivery module such as the modules of the CRESCENT

framework.

In this paper, we argue that in order to achieve reliable

composite web service delivery, we have to ensure the BFT

for the service delivery modules as well as for the components

realizing the composite web service. Unfortunately, most of

existing work for BFT service delivery is focusing on atomic

web services such as the works in [3]-[7], which cannot be

adopted for composite web services as it lacks important tasks

such as coordination, components error recovery and

component fault isolation [8]. To overcome such limitations,

some works appeared to address the issue of composite web

services fault tolerance delivery such as the works in [8]-[10].

For example, the work in [9] focused on coordinators BFT

and ignored the components fault tolerance. On the other

hand, work [8], [10] focused on components fault tolerance

and ignored the coordinators. As we can see, none of the

existing approaches can guarantee the BFT for the delivery

modules and the realizing components.

This paper identifies this gap and proposes GEMINI; a

hybrid asynchronous BFT protocol for reliable composite

web services orchestrated delivery. GEMINI decouples

composite web service logic (i.e. abstract workflows) from its

realization (i.e. components), as it supports dynamic

components provisioning. GEMINI uses a light-weight

replication-based BFT protocol (such as PBFT protocol [11])

to ensure the reliability of service delivery modules, and uses

a speculative quorum-based BFT protocol (such as Zyzzyva

[12]) to ensure realizing components delivery reliability.

However, unlike existing quorum-based BFT protocols that

achieves components redundancy via replication, GEMINI

achieves components redundancy via parallel provisioning

(i.e. invoking different multiple components at the same time

to realize a given workflow task). GEMINI also optimizes the

current PBFT protocol; by adopting a single leader view.

GEMINI: A Hybrid Byzantine Fault Tolerant Protocol for

Reliable Composite Web Services Orchestrated Delivery

Islam Elgedawy

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

355DOI: 10.7763/IJCTE.2016.V8.1071

Fig. 1. The CRESCENT framework adopted from [1].

Experimental results show that GEMINI increases the

reliability and throughput of composite web service delivery

when compared with existing composite web services

delivery approaches.

The rest of the paper is organized as follows. Section II

provides some background information regarding existing

BFT protocols. Section III proposes the GEMINI protocol.

Section IV presents the verifying simulation experiments,

Section V discusses the related work, and finally, Section VI

concludes the paper and proposes directions for future work.

II. BACKGROUND

This section provides some background information

regarding existing Byzantine fault-tolerance protocols. The

key idea behind Byzantine fault tolerance is redundancy. One

way to achieve redundancy is via replication, in which

multiple replicas of the component are created (forming a

cluster of replicas), where clients (i.e. initiators and

dispatchers) submit their requests to all replicas or to a

primary replica that propagate the requests to all other

replicas. Based on the response of all replicas the final

response is determined by the BFT protocol. Generally, there

are two main approaches for providing Byzantine-fault

tolerance: state-machine replication approach (such as the

protocols discussed in [2], [11], [13]) and quorum-based

approach (such as Zyzzyva [12] and Q/U [14] protocols). We

summarize them as follows:

 The State-Machine Replication BFT Approach: In this

approach, all replicas must communicate with each other

to agree on a total order for incoming requests such that

each replica execute the incoming requests in the same

order. Hence, all replicas must be synchronized in order to

guarantee their correctness. However, such

communication overhead is not needed when there is no

contention periods. Old BFT approaches (such as [2],

[13]) adopted synchronous communication between

replicas, which is not practical when latency between

replicas is high, as in internet-based applications. To

overcome such problem, work in [11] proposed a

Practical BFT (PBFT) protocol that supports

asynchronous communication between replicas, and uses

a three-phase commit protocol (i.e. pre-prepare, prepare,

and commit phases) to propagate and commit requests to

replicas, then requires all replicas to submit their response

to the client (the initiator). PBFT requires the client to use

a voting system to select the majority response. Hence, the

client has to wait for (f + 1) common responses to accept

their results as the correct one, where f is the number of

supported Byzantine faults. PBFT also tries to minimize

the communication overhead between replicas by

adopting different view-change policies such as changing

only the primary replica rather than changing all replicas

in a view when forming a new view. The PBFT protocol

proposed by [11] is widely adopted by many researchers

as indicated in the related work section.

 The Quorum-Based BFT Approach: This approach

does not require replicas to agree on a total order and

requires clients to contact replicas directly to

optimistically execute operations, and uses a voting

system to select the majority response as the correct

response that the client has to wait for (3f + 1) common

responses to accept their results as the correct one. The

quorum-based approach requires only one phase for read

operations, and two phases for write operations. Hence, it

requires much less communication overhead when

compared with state-machine replication approach, as it

uses the client to detect and correct faulty replicas.

However, both BFT approaches have their shortcomings,

the state-machine replication is not scalable due to the

inter-replica communication required for determining the

total order. Such communication overhead also has a negative

impact on the service throughput. On the other hand, the

quorum-based approach cost is higher as it requires a large

number of replicas: (5f + 1) are needed to tolerate f failures,

which is considerably higher than the theoretical minimum of

(3f + 1). This increase in the replica set size not only affects

the cost but also increases the communication complexity. To

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

356

overcome such problems, a new HQ approach [15] is

proposed to compromise between these approaches that in

non-contention periods it uses the quorum-based approach,

while in the contention periods it uses the PBFT protocol.

Both PBFT and quorum-based approaches do not support

client isolation. Hence, the client is tightly coupled to these

protocols. GEMINI overcome such problems by decoupling

the clients from an execution details.

III. GEMINI: A HYBRID BYZANTINE FAULT TOLERANT

SERVICE DELIVERY PROTOCOL

GEMINI defines a composite web service as a set of

different workflows, defined by any workflow language (such

as BPEL). Each workflow task is realized by invoking a set of

parallel components, forming what is known as a components

cluster. Such components are discovered and adapted using

suitable service discovery and adaptation approaches such as

the approaches discussed in [16], [17]. Hence, GEMINI

requires a delivery framework that minimally consists of a

composer, a dispatcher and a component discovery module

that finds the required components on the fly from existing

components repositories. Of course, other delivery modules

could be used as we indicated before in the CRESCENT

framework [1].

To ensure BFT for composite web service delivery, we

argue that we have to ensure the BFT for the GEMINI

delivery modules as well as for components realizing

workflow tasks. If we followed a pure BFT replication

approach, all GEMINI modules as well as workflow realizing

components have to be replicated, and synchronized, which is

not a practical approach, due to the very high communication

overhead between all replicas; leading to bad performance.

Also if we followed the quorum-based approach, a higher

number of replicas is required. Furthermore, we cannot

replicate the realizing components, as they are usually

external services. Hence, we argue that we should combine

between practical and quorum-based BFT approaches to

minimize such communication overhead, and avoid

components replication. We propose to ensure the BFT for

delivery modules (such as composers and dispatchers) using a

practical replication-based approach (i.e. a light-weight

version of PBFT protocol), and ensure the BFT for the

workflow tasks delivery using a quorum-based approach

(such as Zyzzyva [12]). However, to achieve redundancy

required by quorum-based approach, we adopted components

parallel provisioning rather than components replication.

Adopting parallel provisioning is a great strategy to avoid the

high cost of replicas management and synchronization.

Furthermore, components realizing workflows are third-party

components provided by different service providers, hence

replicating such components is not practical and almost not

feasible as it requires extensive deployment knowledge about

the consumed service providers’ resources, which usually is

not declared by service providers, and not easy to create. The

greatest benefit from adopting parallel provisioning is the

ability to increase the number of provisioned components to

handle incoming demand spikes, which ensures good

performance for the composite web service when such

demand fluctuations occur. In what follows we will describe

such approach, first we will discuss our approach for

quorum-based component BFT, and then we discuss the

adopted light-weight version of PBFT approach used for

GEMINI modules.

A. A Quorum-Based BFT Approach for Workflow Task

Delivery

In order to ensure BFT for workflow tasks realization, we

have to ensure components redundancy (i.e. required by BFT

protocols). The GEMINI achieves such redundancy via

component parallel provisioning rather than via component

replication. Hence, requests will be submitted to a

components cluster(s), and the majority response of such

cluster will be accepted as the correct answer. Redundancy

via provisioning does not require replicas synchronization or

management, hence communication overhead is heavily

minimized, as we will need only one phase for read and write

operations. Fig. 2 shows message interactions of request

submission and response collection phases.

We adopt the speculation principle discussed in Zyzzyva to

ensure task delivery BFT, hence we need at least 3f + 1

components in the components cluster. Such number is

guaranteed to exist, as GEMINI adaptive composer submits

requests to the dispatcher only when parallel composition

plan is successfully constructed with component clusters of 3f

+ 1 components. The dispatcher in GEMINI will be the

initiator for the quorum-based protocol, it has to wait for a

matching 3f + 1 responses to accept the response (see Fig. 2).

Fig. 2. GEMINI BFT protocol in normal case.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

357

If it received a number between 2f + 1 and 3f + 1, it requires

commit certificates from components as in Zyzzyva, if less

than 2f +1 responses are received, this means the response is

compromised. Therefore, GEMINI accepts this case as failure

and starts a failure recovery protocol to ensure composite web

service functional correctness. Error recovery is started by the

dispatcher, as it resubmit the request along with a list of

compromised components back to the composer in order to

find an alternative composition plan with no compromised

components. Of course as in Zyzzyva, we assume that every

request has a unique number, and each component keeps a

history of processed requests such that it checks incoming

requests against history first that if a duplicate request is

detected, the corresponding stored result is returned to the

dispatcher without the need to process the request again (i.e.,

ensuring the idempotency property).

B. A Light-Weight PBFT Approach for Delivery Modules

Failure of any of GEMINI modules (such as composers and

dispatchers) will jeopardize the whole service delivery

process, hence we have to guarantee the BFT for GEMINI

delivery modules as well. This is could be easily done via any

practical BFT protocol (such as PBFT protocol [11]).

However, such protocols requires client involvement to

accomplish the required response voting task. We argue that

the service delivery process should be totally transparent to

the client, such that the client design should be independent

from the adopted BFT protocol (i.e. client isolation).

Furthermore, these protocols requires replicas

synchronization, hence each module replica has to

communicate with other modules replicas to process the

request, which creates massive communication overhead that

degrades the service performance. For example, if a cluster of

dispatchers needs to communicate with a cluster of

components, this requires every dispatcher replica to invoke

each component in the component cluster, which is very

expensive. For these two reasons, we did not apply PBFT

protocols strictly, however we did some optimizations to

minimize such communication overhead, and to isolate the

client from the adopted BFT protocol.

We achieved such objectives by adopting the concept of a

view and a primary (i.e. a leader) discussed in Paxos [18]. A

view in Paxos is a collection of replicas, such replicas elect

one replica to be the leader or the primary. All communication

should be done via the leader, and the leader should keep

other replicas up to date. Each GEMINI module view will

have a leader that communicates with other views leaders. For

example, the leader of the dispatcher view, informs other

dispatcher replicas about the requests being submitted and

their corresponding composition plans, also informs them

with the requests that have been processed and confirmed by

the component cluster. The actual client isolation is

guaranteed, as the client will only contact the primary replica

of the demand flow controller module, and get the output via

the output controller. Fig. 2 depicts the proposed GEMINI

BFT protocol in normal case. Fig. 2 shows that once the client

issues the request to the primary dispatcher (to explain the

protocol in a simple manner, we just omitted the interaction

between client and composer, composer and dispatcher, and

assumed direct contact between the client and the dispatcher).

The primary dispatcher propagates the request to all

dispatcher replicas (i.e. request propagation phase), then

waits for majority confirmation from other replicas (i.e.,

request confirmation phase) before it submits the request to

the components (i.e. request submission phase). This request

confirmation phase is very important as in case of leader

failure, other dispatcher replicas can identify uncommitted

requests. Once the leader dispatcher submits the request to the

components, it follows the quorum-based BFT protocol

discussed before, and collect components response (i.e.

response collection phase), if the majority of components

provided the same response, it accepts the response and sends

it to the client and other dispatcher replicas to update their

logs (i.e. response confirmation phase).

In case of any dispatcher replica failure, the leader of the

view issues a view change to get such replica replaced. The

proposed protocol ensures the delivery system liveness, as

each replica periodically checks the liveness of its view, and

any identified failed replicas including the primary, will be

replaced via the view change operations. As we have only one

primary at a time, hence only one global order will be

enforced through all requests. In case of leader or primary

failure, a new leader election process is started.

IV. EXPERIMENTS

In this section, we provide simulation experiments

conducted to verify basic GEMINI concepts and to compare

GEMINI against existing approaches for composite web

services delivery. We basically compare GEMINI against the

following three approaches. The first approach does not

ensure BFT neither for the composite web service

components not for delivery architecture modules, as in the

approaches discussed in [8] and FACTS [10]. The second

approach ensures BFT for the composite web service

components but not for the delivery architecture modules, as

if the composite web service coordinator adopted the BASE

approach [5] for ensuring components BFT. The third

approach ensures BFT for the delivery architecture modules

but not for the composite web service components, as in

approach discussed in [9]. While, GEMINI ensures the BFT

for both the components and delivery architecture modules.

We compare these approaches using delivery success

probability and throughput. Delivery success probability is an

indicator for the reliability of the composite web service

delivery. That higher success probability implies having more

reliable composite web service delivery process. Throughput

is the number of requests processed per minute. That higher

throughput implies better performance for the composite web

service delivery process. To be able to compare the

approaches, the adopted performance model is constituted as

two main queueing systems in tandem: the dispatcher

queueing system and the components queuing system. Any

queueing modelling simulation tool could be used to resolve

the approaches' queue models once their proper configuration

parameters are given. In our experiments, we used the Matlab

SimEvents simulator, which provided us with the average

response time for each queueing system, and we computed the

throughput as the reciprocal of the sum of both average

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

358

response times and network latency.

A. GEMINI Reliability Comparison Experiment

In this section, we will discuss the experiments conducted

to compare GEMINI reliability against reliability of existing

approaches discussed above. As network latency is the main

bottleneck affecting response times on the Internet [19], [20],

we will simulate our experiments with high network latency

values compared to components processing times. Choice of

latency values and processing times is arbitrary as long as

such constraint applies. We assumed that there exists 25 msec

latency between users and the composite web service delivery

system, and 10 msec latency between the delivery system and

the composite web service realizing components, also we

assumed 5 msec processing time for all composite web

service components. We used such values with all approaches

in order to have comparable results. The composite service

design is arbitrary for our experiments, as ensuring BFT for

delivery architecture modules and component parallel

provisioning are independent from the service design. Hence,

we generated a simple composite web service with a

workflow of three sequential tasks. Also we generate demand

for the composite service following a Poisson distribution

with an arrival rate 60 requests per minute, and we run the

simulation for the period of 24 hours. We adopted a

redundancy degree of 4 during creation of clusters, which

ensures BFT against one Byzantine fault. This degree will be

adopted in component provisioning such that each component

cluster will contain 4 components, also it will be used when

applying PBFT for delivery modules such that each module

will have 4 replicas. Of course, adopting higher redundancy

degrees increases the cluster reliability, however it degrades

its performance [11], [12]. Hence, we choose to go for an

average redundancy degree of 4. We computed the success

rate for each approach against the expected failure

probability, this failure probability is applied for both

components and architecture modules. Fig. 3 depicts the

obtained results.

Fig. 3. GEMINI reliability comparison experiment.

Fig. 3 shows that GEMINI increases the delivery success

rate when adopted compared with other approaches, as it

ensures the BFT for the delivery modules as well as the

realizing components. As we can see in results, ensuring BFT

only for components (i.e. approach2) or only for delivery

modules (i.e. approach3) still provide low success rate, not

giving much difference from approach1. Based on the results

shown in Fig. 2, we can say to ensure the composite web

service reliability, we have to ensure BFT for both of the

delivery system modules as well as tasks realizing

components. Focusing only on one aspect did not improve

the total reliability service delivery by much, however when

we took both aspects into consideration (as in GEMINI)

significant improvement for total service reliability is

achieved. Hence, we argue that adopting GEMINI increases

the reliability of composite web services.

B. GEMINI Performance Comparison Experiments

In this section, we will compare between GEMINI and

other approaches in terms of their performance (i.e.

throughput). First, we run our simulation with parameters

indicated before, however, we assumed no spikes occurs

during demand generation, that we have a smooth demand

with average arrival rate of 60 requests per minute. In such

normal mode, we expect approach1 (i.e. no BFT for modules

and components) to have the highest throughput all over other

approaches, as there is no time wasted in communication

overheads required for replicas synchronization required in

BFT. However, GEMINI has a nice feature, that it can

distribute incoming demand over multiple component clusters

via generating different composition plans to handle incoming

requests. Hence, effect of communication overhead wasted to

ensure BFT for GEMINI modules could be minimized by the

gains obtained from distributing the demand over multiple

clusters. In what follows, we will show the GEMINI

performance in different scenarios:

1) Normal Scenario-Smooth Demand: To show such

scenario, we performed the simulation experiment

described before with a new parameter

Max-Components-per-Cluster, which is max number of

components clusters to be allocated for a given workflow

task. We repeated the experiments by setting

Max-Components-per-Cluster to be 1, 2, 4, 8, and 10. We

compute the throughput of all approaches for every case.

Fig. 4 depicts the obtained results.

2) Contention Scenario 1: Demand Spikes with Enough

Components: To show such scenario, we applied our

experiment as before with Max-Components-per-Cluster

set for 10 component clusters (i.e. we have components

abundance), then generated demand spikes with arrival

rates of 100, 200, 300, 400, and 500 request per minute,

for a period of one hour, then we computed the

throughput for all approaches in every case. Fig. 5

depicts the obtained results.

3) Contention Scenario 2: Demand Spikes with

Components shortage: In case there are no enough

components discovered to handle incoming demand,

GEMINI will not be able to maintain its good

performance due to components shortage. To show such

effect, we repeated the previous experiments only with

Max-Components-per-Cluster set for two. Fig. 6 depicts

the obtained results.

Fig. 4 shows that when having only one component cluster,

Approach1 has the best performance as expected due to lack

of communication overhead. Also we can see GEMINI still

performed better than approach2 and approach3. This is

because, GEMINI uses component provisioning rather than

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

359

component replication (as in approach2), which requires no

replica synchronization. Also GEMINI uses a light-weight

BFT for its modules rather than PBFT approach (as in

approach3), which requires less number of messages.

Fig. 4. GEMINI performance comparison experiment-normal case.

However, when we increase the number of components in

the pool, and in turn the number of components clusters is

increased, the story has changed. As increasing the number of

components clusters has no effect on approah1 (i.e. as it

adopts no redundancy at all) nor on approach3 (i.e. as

redundancy is only applied for delivery modules), we can see

their throughput has not changed. However, such increase has

very bad effect on approach2, as the communication overhead

between components dramatically increased, which can be

seen on approach2 performance degradation. On the other

hand, GEMINI maintained its good performance, and even

better it provided better performance than approach1 when

four or more component clusters are used. This is because

components have shorter queues due to use of multiple

component clusters, hence waiting time is improved, which

improves the total response time of the composite service,

which increases the overall throughput.

Fig. 5. GEMINI performance comparison experiment-scenario 1.

Fig. 5 shows that GEMINI managed to maintain a good

performance, even with very high spikes as 500 request per

minute. On the other hand, we can see performance of

approach1 and approach3 degraded so badly due to the long

queues, even service has failed when spikes are much higher

than normal expected rate, we can see approach3 has failed

when spike is 300 request per minute, and approach1 failed

when spike is 500 requests per minute. Approach2 did not

take advantage of such components abundance, as

communication overhead between components is very high to

the degree it fails the service with the slightest spike increase.

Fig. 5 shows that GEMINI managed to survive such high

spikes due to its adaptive composition. Hence, as long as we

have enough components capable of handling forecasted

demand, we believe GEMINI could increase the composite

web service performance.

Fig. 6. GEMINI performance comparison experiment-scenario 2.

Fig. 6 shows that as GEMINI could not find enough

components to meet incoming demand, hence its performance

degraded due to the long queue formed in the front of the

existing component clusters. Also we notice performance of

approach2 is improved compared to results in Fig, 5, as

communication overhead is minimized due to the small

number of used components. Even though GEMINI

performance has degraded, GEMINI managed to provide

better performance than other approaches. Based on the

results shown in Fig. 4, 5, and 6, we can say in composite web

service delivery, ensuring BFT for workflow tasks via

component replication is not recommended due to its bad

performance (i.e. as in approach2), however dynamic

component parallel provisioning should be used instead (as in

GEMINI). Also requiring total synchronization between

dispatcher replicas (as in approach3) is not recommended due

to its bad performance (i.e. as in approach3), however a

lightweight PBFT approach with single leader should be

adopted instead (as in GEMINI). Liveness and safety of

GEMINI are guaranteed as it already uses existing proven

BFT protocols.

V. RELATED WORK

This section discusses in more details some of the main

existing efforts in the areas of BFT web services, and

compares between these approaches and GEMINI. Majority

of existing research efforts (such as BFT-WS [3],

PERPETUAL [4], BASE [5], and THEMA [6]) are focused

on ensuring BFT delivery for atomic web services. All these

approaches adopted the PBFT protocol [11]. However, there

are a few approaches (such as work in [8], [9], FACTS [10])

addressed the composite web service delivery. Work in [9]

addressed the issue of BFT coordination for composite web

services. The approach is based on the WSBA standard that

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

360

simply requires a delivery framework of an initiator,

coordinator, and service components. The approach only

replicates the coordinator using the PBFT protocol, while the

initiator and components remains un-replicated, hence the

composite service delivery process could simply fail if one of

its components has failed. While work in [10], proposed the

FACTS framework for specifying, verifying, and executing

fault tolerant composite web services. In FACTS, the service

designer can specify different strategies for error handling,

one of them is component replication, and also designer could

specify the number of retries. These strategies are verified and

implemented at run time. Designer could specify alternatives

for failed components as a reactive approach. In case of

replication strategy is chosen, FACTS uses simple form of

parallel provisioning, as it does not wait for majority voting, it

simply accepts first reply. Furthermore, if any module of

FACTS becomes faulty, the whole composite service delivery

process is compromised, as FACTS itself is not fault tolerant,

hence FACTS does not ensure BFT composite service

delivery. Work in [8] does not support BFT for neither for the

delivery framework modules nor for components. It does not

replicate clients or components. It requires the client to

submit its requests to a dispatcher, which will execute the

composite web service components one by one. However, it

uses components serial provisioning for handling components

failure such that if a given component has failed, another one

is tried sequentially, it is more like applying alternatives

strategy. None of all above approaches support BFT for both

of delivery modules and the realizing components. While,

GEMINI overcomes this limitation by combining between

quorum-based and replication BFT protocols as shown

before.

VI. CONCLUSION AND FUTURE WORK

A In this paper, we argued that reliable composite web

service delivery requires ensuring the BFT for the delivery

modules as well as for the realizing components. Therefore,

we proposed GEMINI; a hybrid asynchronous Byzantine

fault tolerant protocol for reliable composite web services

orchestrated delivery. GEMINI ensured the BFT for the

delivery process by combining between quorum-based and

practical BFT approaches. It uses optimized single leader

practical BFT approaches to ensure BFT for delivery

modules, while it uses quorum-based approaches for ensuring

BFT for the realizing components, where redundancy is

achieved via provisioning rather than replication.

Experimental results showed that GEMINI increases the

reliability and throughput of composite web service delivery

when compared with existing approaches. Future work will

mainly focus on GEMINI cloud deployment.

REFERENCES

[1] I. Elgedawy, “CRESCENT: A reliable framework for durable

composite web services management,” The Computer Journal, vol. 58,

no. 2, pp. 280-299, February 2015.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals

problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp.

382-401, 1982.

[3] W. Zhao, “BFT-WSB: A byzantine fault tolerance framework for web

services,” presented at the Middleware for Web Services Workshop,

2007.

[4] S. L. Pallemulle, H. D. Thorvaldsson, and K. J. Goldman, “Byzantine

fault-tolerant web services for n-tier and service oriented

architectures,” presented at the 28th IEEE International Conference on

Distributed Computing Systems (ICDCS), 2008.

[5] M. Castro, R. Rodrigues, and B. Liskov, “BASE: Using abstraction to

improve fault tolerance,” ACM Trans. Comput. Syst., vol. 21, no. 3, pp.

236-269, 2003.

[6] M. G. Merideth, A. Iyengar, T. Mikalsen, I. Rouvellou, and P.

Narasimhan, “Thema: Byzantine-fault-tolerant middleware for web

services applications,” presented at the 24th IEEE Symposium on

Reliable Distributed Systems (SRDS), 2005.

[7] N. Looker, M. Munro, and J. Xu, “Increasing web service

dependability through consensus voting,” presented at the 29th Annual

International Conference on Computer Software and Applications

Conference, 2005.

[8] V. O. Onditi, G. Dobson, J. Hutchinson, J. Walkerdine, and P. Sawyer,

“Specifying and constructing a fault-tolerant composite service,”

presented at the IEEE Sixth European Conference on Web Services,

2008.

[9] W. Zhao and H. Zhang, “Byzantine fault tolerant coordination for web

services business activities,” presented at 2008 IEEE International

Conference on Services Computing, 2008.

[10] A. Liu, Q. Li, L. Huang, and M. Xiao, “Facts: A framework for

fault-tolerant composition of transactional web services,” IEEE

Transactions on Services Computing, vol. 3, no. 1, pp. 46-59, 2010.

[11] M. Castro and B. Liskov, “Practical byzantine fault tolerance,”

presented at the Third Symposium on Operating Systems Design and

Implementation, 1999.

[12] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:

Speculative byzantine fault tolerance,” ACM Trans. Comput. Syst.,

vol. 27, no. 4, January 2010.

[13] F. B. Schneider, “Implementing fault-tolerant services using the state

machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.

299-319, December 1990.

[14] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J.

Wylie, “Fault-scalable byzantine fault tolerant services,” SIGOPS

Oper. Syst. Rev., vol. 39, no. 5, pp. 59-74, October 2005.

[15] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ

replication: A hybrid quorum protocol for byzantine fault tolerance,”

presented at the 7th Symposium on Operating Systems Design and

Implementation, 2006.

[16] I. Elgedawy, Z. Tari, and J. A. Thom, “Correctness-aware high-level

functional matching approaches for semantic web services,” ACM

Transactions on Web, Special Issue on SOC, vol. 2, no. 2, May 2008.

[17] I. Elgedawy, “On-demand conversation customization for services in

large smart environments,” IBM Journal of Research and

Development, Special issue on Smart Cities, vol. 55, no. 1/2, 2011.

[18] L. Lamport, “Fast Paxos,” Distributed Computing, vol. 19, no. 2, pp.

79-103, 2006.

[19] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: Building

efficient replicated state machines for wans,” in Proc. the 8th USENIX

Conference on Operating Systems Design and Implementation,

OSDI’08, 2008, pp. 369-384.

[20] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Customizable fault tolerance

for wide-area replication,” presented at the 26th IEEE Symposium on

Reliable Distributed Systems, 2007.

Islam Elgedawy is an associate professor at the

Computer Engineering Department, Middle East

Technical University, Northern Cyprus Campus. He

received his B.Sc. and M.Sc. degrees in computer

science from Alexandria University, Egypt in 1996,

and 2000, respectively, and his Ph.D. degree in

computer science from RMIT University, Australia in

2007. His work focuses on the areas of

service-oriented computing, organic computing,

software engineering and distributed computing. He is an author and

co-author of many publications in international journals and conferences,

also he has a growing record of consultancy and professional services.

International Journal of Computer Theory and Engineering, Vol. 8, No. 5, October 2016

361

