



Abstract—Technical innovations and trends have been

changing from time to time as a major driving force for

Software Engineering (SE). Although it can be regarded as a

relatively young discipline usually driven by industrial needs or

practices, fundamental problems of SE still continue to exist. It

is thought that the problem may be not only in adopting a

domain specific technology or method, but also in understanding

the foundations and use of theories in SE. Therefore,

investigating the trans-disciplinary aspects of SE may pave the

way of some solutions while it may shed light on building the

theoretical background of possible empirical studies. However,

the review of SE literature shows the little effort given to this

research gap, and thus, this paper attempts to offer a conceptual

framework and brings a different perspective for understanding

the theoretical and trans-disciplinary foundations of SE as a

discipline.

Index Terms—Software engineering, trans-disciplinary

foundation, theory use.

I. INTRODUCTION

Most of the constraints in Software Engineering (SE) stem

from its intangibility, complexity, human dependency, and the

main problem in SE, therefore, can be seen as making the

connection between the abstract world and the physical world.

Historically, language-centered computer programming has

been dominant in SE. Technical innovations have been

changing from time to time as a major driving force for SE

trends and practices. However, the fundamental problems still

continue to exist, and it is claimed that some of the issues may

be assumed to be theoretical rather than only practical ones.

Thus, the main arguments of this paper are:

1) With an evolutionary point of view, SE can be regarded

as a relatively young discipline usually driven by

industrial needs and practices. However, it already

integrates theoretical and methodological perspectives

drawn from other disciplines.

2) Theory is the most important mean to improve SE

discipline while facilitating communication of ideas

between different research communities.

Therefore, this manuscript attempts to offer a conceptual

framework for understanding theoretical and

trans-disciplinary foundations of SE.

II. SOFTWARE ENGINEERING AS A DISCIPLINE

The Institute of Electrical and Electronics Engineers

Manuscript received December 20, 2014; revised May 2, 2015.

Murat Pasa Uysal is with the Department of Computer Technologies,

Ufuk University, Ankara, Turkey (e-mail: murat.uysal@ufuk.edu.tr).

(IEEE) defines SE as “the application of a systematic,

disciplined, quantifiable approach to the development,

operation, and maintenance of software”. It is an applied

discipline and it encompasses processes, methods, tools,

standards, and principles in order to build reliable,

maintainable and large-scale software systems with high

productivity and quality.

In SE, software may play dual role and can be a product or

a means to deliver another product acting as the basis for the

control and creation of tools and environments. While a

software product is the combination of programs, data and

other types of computer software, it may also be generic or

customized. The former is the stand-alone system developed

by an organization and sold on the open market whereas the

latter is appointed by a particular customer to a software

contractor, and then it is developed specifically for that

customer.

In this context, engineering approaches and common

engineering principles form the integral part of theoretical and

practical fundamentals of SE. In conventional engineering,

the common approach is moving from abstract to concrete,

and the final product is usually the realization of an abstract

design physically. However, in SE, this approach is reversed

[1]. Moving from real world to abstract world, the final

product is the virtualization and coding of a software design

that expresses and represents a real world problem.

As an engineering discipline applying theories, processes,

methods, and tools to build high quality software, SE is

concerned with all aspects of software production, which are

from the phases of requirements and system specification

through to the maintenance of the system after delivery. To

that aim, SE may incorporate multi-facet principles in other

disciplines while allowing the use of SE-domain specific

theories. Engineering, Computer Engineering, Computer

Science, Mathematics, Systems Engineering, Management,

Economics, Cognitive Science, Information Science, Project

Management, Quality Management are amongst the major

related disciplines, and thus, it may be suggested that software

engineers have some knowledge of materials from these

disciplines as well as software process.

III. SOFTWARE PROCESS

Software process, which is the combination of a set of

interrelated activities functionally coherent and reusable for

SE, transforms inputs into outputs by using resources, tools

and techniques. SE processes and activities (planning,

requirement, design, construction, testing, configuration

management, and maintenance) occur both at the

In Search of Software Engineering Foundations: A

Theoretical and Trans-disciplinary Perspective

Murat Pasa Uysal

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

328DOI: 10.7763/IJCTE.2016.V8.1066

organizational and project levels to ensure that the software

product is delivered effectively and efficiently for the benefits

of all stakeholders. Therefore, SE methods and the use of

information, behavioral, structured modeling techniques

provide a systematic approach to both problem solving and

software development. Software processes that specify and

transform requirements into a deliverable software product

are included in Software Development Life Cycle (SDLC),

and it can be linear or iterative. On the other hand, Software

Product Life Cycle includes SDLC plus the additional

processes of maintenance, support and evolution.

SDLC begins with the software requirement process that

includes elicitation, analysis, specification, validation and

management of the needs and constraints placed on a software

product and its development. Software design process

consists of architectural and detailed design, which in turn

describes how software is organized into components and

desired behaviors in sufficient detail. As one of the life cycle

stages, the design process produces a description of the

software’s structure with a set of models and artifacts serving

as the basis for its construction. Software design and

architecture methods, such as Object-Oriented Design and

Structured Design, provide a common framework for

software engineers. Software construction process refers to

the creation of working software through a combination of

coding, testing, debugging, verification and integration

activities. This stage produces source files, test cases,

documentation and configuration items that have to be

managed in a software project. Software testing is the

verification process whether a program or module meets

different types of expectations and provides the behaviors on

a set of test cases. Configuration management includes

systematical control of the changes to software as set forth in

technical documentation, which also aims the maintenance of

integrity and traceability of the software. Finally, software

maintenance phase is the modification of existing software

while preserving its integrity. It is performed in order to

correct faults, implement enhancements, and adapt software

to different hardware, software, or environments.

It is possible to classify software process models into

prescriptive or agile process models. The focus of the

prescriptive models is the detailed identification, definition,

and application of process activities and tasks while agile

models emphasize a more informal and flexible approach to

software processes. It is important to note that there is no ideal

or single best software process or a set of software processes.

Therefore, an adopted process for a software project might be

considerably different from a process adopted for another

software project. The best of SE processes and models have to

be selected, adapted, combined and applied for each project

in an organizational context.

Software engineers have also to understand quality related

concepts, characteristics, values, and their application to SE

processes. As closely interrelated, the activities pertaining to

SE process quality, product quality and software quality

management have a direct impact on the quality of the

software process and final product. Therefore, one of the

primary responsibilities of software engineers and project

managers is to balance the conflicting demands for project

scope, time, cost, risk and product quality.

IV. THEORY AND SOFTWARE ENGINEERING

Theories are commonly viewed as a coherent set of tested

propositions, which are generally regarded as correct, and

able to predict or explain facts or phenomena in SE. A theory

should have empirical foundations and be grounded on

systematic collection of empirical evidences. As having

potential use to practitioners and researchers, a SE theory

provides a conceptual framework for explaining observed

phenomena as well as it helps understanding the basic

concepts and underlying mechanisms of software systems and

their behaviors. Since SE is an applied discipline and each SE

case is unique, a theory may need local adaptations, and it is

expected to be relevant, formalized, and ultimately useful for

the software industry.

A. Elements of a SE Theory

For the structure of a SE theory, it is suggested that the four

main parts, such as (a) Constructs, (b) Propositions, (c)

Explanations, and (d) Scope, may comprise the theory [2].

The constructs are the basic components in which a SE theory

is expressed, and to which this theory provides a prediction or

description. Propositions are formed by the relationships

indicating how the constructs interact. The explanations,

which are also experimental observations of propositions, are

logical reasoning showing why the propositions are as

specified. The circumstances, under which the theory is

assumed to be applicable, define the scope of a SE theory.

Thus, constructs and the relationships between constructs

form the building blocks of SE theories, and they should be

derived from or associated with four archetype classes: (1)

Actor, (2) Technology, (3) Activity, and (4) Software System.

An actor applies technologies to perform activities on an

existing or planned software system in a typical SE situation

[2]. The subclasses: industry, organization, team, individual

and project, may extend from the parent class Actor. A

programming language, tool, technique, method, model, and

process can be the subclasses of class Technology. Planning,

analyzing, designing, developing and maintaining a software

system are the subclasses of class Activity. Finally,

application domain, type of software and project subclasses

may belong to the parent class Software System. These

classes and subclasses, together with condition statements,

define the scope of a SE theory, and for whom, where and

when the theory applies.

B. How to Use a SE Theory

When supporting research studies, a SE theory helps to

develop and combine research efforts, and it facilitates

communication of knowledge and ideas. As to the industry, it

can provide software decision-makers with required input

regarding the selection of a method, tool or technology for a

software project. There may be three modes of theory use in a

SE research: (1st) using theories from other disciplines as

they are, (2nd) adapting theories generated in other

disciplines to SE, and (3rd) generating theories from scratch

in SE discipline.

According to Gregor [3]; Hannay, Sjøberg and Dybå [4],

there are also five types of theory that may be adapted to a SE

context: (1st) the “Analysis” type of theories includes

classifications, taxonomies, ontologies, and it describes

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

329

object of a study and “what is”; (2nd) the “Explanation” type

of theories explains why something happens or why a

phenomenon occurs; (3rd) the “Prediction” type theories are

used to predict what would happen by using probabilistic and

mathematical models; (4th) the “Explanation and Prediction”

type of theories is empirically-based, and they combine the

basic features of explanation and prediction theories; (5th)

Finally, the “Design and Action” type of theories are usually

prescriptive and describe how to do things in a SE process as

presented in Fig. 1.

Fig. 1. Conceptual diagram for theory use in SE.

SE requires both empirical and theoretical research.

Empirical SE studies explore, predict and try to explain the

investigated cause-effect relationships between constructs of

a theory, and find out what types of SE constructs, which are

also derived from the archetype classes, should be used in

what situations and circumstances. A SE experiment is,

therefore, the primary research method directly to make

comparisons and to observe the effects of measures taken to

improve a SE process.

The research approaches for empirical studies should be

based on quantitative, qualitative, or mixed research

paradigms, which may also use experiment, case study,

benchmarking, and standardization methodologies with

statistical analysis techniques. To that aim, the roles that a

theory would play in SE experiments may be: (1st) the design

of an experiment for the hypotheses that may be justified by a

theory; (2nd) a theory can be used for the explanation of

observations on the cause-effect relationships after an

experiment,; (3rd) a theory may be tested directly with an

experiment when an additional justification is necessary;

(4rd) an existing theory can be refined and enhanced, and then

it needs to be tested; (5th) a theory may involve and provide

structural elements as a basis for the use of another theory [4].

Finally, a SE theory provides a conceptual framework for

organizing facts and knowledge, and it helps understanding

the underlying mechanisms of software systems. It, at the

same time, facilitates communication of ideas between

research communities, which in turn, enables establishing the

trans-disciplinary foundations of SE. Therefore, there have

been also attempts to indicate that SE may need more general,

discipline-specific, or unified SE theories as in some other

disciplines [5].

V. TRANS-DISCIPLINARY FOUNDATIONS

SE has been usually perceived as a part of Computer

Science providing basic computing theories and

programming methodologies. However, the trans-disciplinary

foundations of SE indicate that it requires not only the domain

knowledge, but also understanding the theoretical essences

that have close relationships with other disciplines (Fig. 2).

Therefore, theoretical and empirical SE explores models,

architectures and methodologies for large-scale software

development as well as the nature and mechanisms of

software behaviors and the laws behind them. Therefore, SE

theories and methodologies are developed and adopted

primarily for dealing with these challenges.

Fig. 2. Trans-disciplinary foundations of software engineering.

The theoretical foundations of SE incorporate multi-facet

principles, trans-disciplinary theories, and the knowledge

acquired both from theoretical and empirical studies,

industrial practices. For example, SE grew out of Computing

Theory, and therefore, it is one of the most important

foundations [1]. The fundamental models in computing can be

classified into Program Modeling, Data and Object Modeling,

Operational Modeling, Process and Resource Modeling.

Computer Science provides the computational methods,

computer architectures and implementations, computing

objects and their abstract representations, and programing

methodologies. It is possible to state that Mathematics is one

of the top level abstraction means, and thus, it is the most

general human knowledge in Science and Engineering. For

this reason, SE uses it to express basic notions to form

conceptual models, to design and treatment of architectures,

to define abstract objects, relations, and software behaviors at

the highest level of abstraction. The topics, such as

Mathematical Logic, Set Theory, Functions and Relations, are

the essential means to model software architectures and

behaviors. Regarding the System Science Foundations, it is

also seen that system concept is widely used in many

disciplines of science and society, and may be classified into

different categories depending on its key characteristics and

components. Being highly complex abstract systems,

software systems mostly adopt system theory in their life

cycle. Thus, ISO/IEC 15288 standard [6] provides a process

model that accepts the large-scale software development as

part of software systems to help dealing with various

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

330

problems and complexities in SE. While System Engineering

is concerned with all aspects of systems development that may

include process, hardware and software, SE may be part of

this more general and abstract process.

Information is the product of natural or machine

intelligence, and the Science of Information studies the nature

of information and ways of its processing and transformation.

Thus, the main function of languages is to communicate

information and express abstract human thoughts and

behaviors. In the same context, the Linguistics discipline

studies natural languages, which are oral, written or symbolic

system for communication, thought and self-expression.

Therefore, software can be seen as a type of behavioral and

instructive information about architectural and behavioral

aspects of a software system, which mainly describes a

solution for the design and implementation of a system.

Programming languages describe and specify this computing

and instructive information about architectural and behavioral

aspects of a software system.

One discipline that has a strong tie with SE is the Cognitive

Science, which also consists of multiple research areas,

studies mind and its processes, explores how information is

represented, processed, and transformed within brain and

computing systems, and addresses the constraints on

cognitive processing of information. Software is initially

generated, represented and cognitively processed in long term

and working memory of the brain before it can be transferred

into a computer. Indeed, both problem-solving and SE have

much in common such that they require high order cognitive

skills and engage a variety of cognitive components.

Therefore, acquiring computer programming skills and

development of large-scale software systems are based on

fundamental cognitive processes. The Information Processing

Theory and Cognitive Load Theory can be given as the

sample theories for this knowledge domain, which are also

extensively used in many research studies of various

disciplines.

Another example for the foundational disciplines is the

Management Science, which primarily studies how an

organization may be operated effectively and efficiently on

given internal and/or external constraints and/or in different

environments. It involves organizational theories, decision

theories, operational theories, quality theories and strategic

planning. Management is a process with the main functions

i.e. planning, organizing and controlling, to achieve the goals

that may not be possible by individuals. When tracing the

history of SE, it can be been seen that many of the important

concepts, such as requirement analysis-specification, design,

testing and quality, were borrowed or adopted from the

methods and practices developed in Management Science and

other engineering disciplines. Therefore, in addition to

computer programming and technical aspects of software

development, SE also deals with the issues of organization

and management of software related infrastructures.

VI. CONCLUSION

Experienced software engineers effectively use the

fundamental knowledge of SE and perform problem-solving

activities to look for solutions within limited resources, such

as time, scope, and budget. As aforementioned, current SE

industry still faces the major problems despite technological

trends and innovations. Although it is claimed that the causes

would be not only attributed to technology or practice, the

studies reviewing the theory use in SE report the lack of

explicit and/or relevant theory use in SE. Indeed, it is possible

to state that the awareness for the importance of theory use in

SE research community exists. However, the majority of the

studies appear to provide post-hoc explanations of the results,

or they justify research questions rather than being a

theory-driven research study.

In this study, therefore, it is pointed out that SE already

integrates theoretical and methodological perspectives drawn

from other disciplines, and the theory use is an important

mean to improve SE. Thus, software engineers and

researchers should be not only concerned with technical

issues, but also, conceptual and theoretical background of SE

discipline. As a result, this paper attempted to offer a

conceptual framework and brought a different perspective for

understanding the theoretical and trans-disciplinary

foundations of SE as a discipline.

REFERENCES

[1] Y. Wang, Software Engineering Foundations: A Software Science

Perspective, 1st ed. New York, USA: Auerbach Publications, Taylor &

Francis Group, 2008.

[2] D. I. K Sjøberg, T. Dybå, B. C. D. Anda, and J. E Hannay, “Building

theories in software engineering,” Guide to Advanced Empirical

Software Engineering, 1st ed., 2008, pp. 312-336.

[3] S. Gregor, “The nature of theory in information systems,” MIS

Quarterly, vol. 30, no. 3, pp. 491-506, 2006.

[4] J. E. Hannay, D. I. K. Sjøberg, and T. Dybå, “A systematic review of

theory use in software engineering experiments,” IEEE Transactions

on Software Engineering, vol. 33, no. 2, pp. 87-107, 2007.

[5] SEMAT. Software engineering method and theory. [Online].

Available: http://semat.org

[6] ISO/IEC-15288. The standard for systems and software

engineering-system life cycle processes. [Online]. Available:

http://www.iso.org/iso/ catalogue_detail?csnumber=43564

Murat Pasa Uysal is an Assoc. Prof. Dr. at the

Department of Computer Technologies in Ufuk

University. He holds a B.S degree in electrical &

electronic engineering from Turkish Military Academy,

a M.S degree in computer engineering from Cankaya

University, a Ph.D. degree in technology of education

from Gazi University. He completed his post-doctoral

studies at Rochester Institute of Technology in New York, which was on

both software re-engineering and IT governance. He directed or served as

an advisor and engineer for IT projects in Turkish Army (TA) for many

years, and also conducted studies addressing the problems of TA in the

research areas of IT. He has been teaching IT, computer and software

engineering related courses. His research interest is in the areas of IT,

software engineering, instructional methods and tools for computer

programming.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

331

