



Abstract—As the control flow graph can reflect the logic

structure of programs, static and dynamic reverse methods are

used to analyze the logic structure and instruction sequence, and

the existing methods of control flow obfuscation have low

potency to resist reverse attacks. To solve this problem, we

propose an obfuscation method based on instruction fragment

diversification and control flow randomization, diversified

instruction fragments are generated by various equivalent

transformation rules, and random functions are used to select

one execution path from the multi-way branches of programs,

then programs are iteratively obfuscated. Experiments and

analysis show that diversified instruction fragments and

multi-way branches can increase the difficulty of static reverse

analysis, random selection for multi-way branches will increase

the difficulty of dynamic instruction tracing, and iterative

transformation for many times enhances the complexity of

control flow graph.

Index Terms—Code obfuscation, iterative transformation,

instruction fragment diversification, control flow

randomization.

I. INTRODUCTION

Malicious attackers are always locating, analyzing and

extracting important codes in programs by static and dynamic

reverse analysis. Through malicious modification, core

modules can be migrated to other programs which can be sold

as new software products. This process seriously violates

software intellectual property [1]. In order to protect software

code, many technologies have been proposed, such as code

obfuscation [2], software watermarking [3], software

tamper-proofing [4] and software birthmarking [5]. They can

be used to prevent software from reverse analysis, illegal

distribution, copying and malicious tampering.

Code obfuscation is a typical software protection

technology. On the basis of keeping program function, code

are semantics-preserving transformed to be more difficult for

attackers to reverse analyze and understand. The existing

obfuscation techniques can be classified into four categories,

including control obfuscation [6], data obfuscation [7], layout

obfuscation, and preventive obfuscation [8]. Control

Manuscript received November 9, 2014; revised May 12, 2015. This

work was supported by the grants of National Natural Science Foundation of

China No. 61379151, 61274189, 61302159 and 61401512. Excellent Youth

Foundation of Henan Province of China No. 144100510001.

Xin Xie is with Zhengzhou Information Science and Technology

Institute, and the State Key Laboratory of Mathematical Engineering and

Advanced Computing, Zhengzhou, Henan 450002, China (e-mail:

xiexin0011@gmail.com).

Fenlin Liu, Bin Lu, and Fei Xiang are with Zhengzhou Information

Science and Technology Institute, China (e-mail: liufenlin@vip.sina.com,

stoneclever@gmail.com, xiangfei2012@tsinghua.org.cn).

obfuscation can make program logic complicated by

modifying or hiding the real control flow information, the

main methods are opaque predicates inserting, control

structure flattening, and control flow hiding. Obfuscation

algorithms based on opaque predicates add true, false and

uncertain condition branch states into programs, thus it can

make control flow more complicated. Obfuscation algorithms

based on control flow flattening increase the number of basic

blocks and control flow edges, and they can increase the

complexity of control flow graph. Obfuscation algorithms

based on control flow hiding transform control flow into data

or exception information.

Existing methods of control flow obfuscation have

increased complexity and stealthiness of control flow to a

certain extent, and they can also resist static reverse analysis.

However, both static and dynamic methods are used to

analyze control flows. Control flow can also be analyzed by

tracking instruction execution traces. Therefore the potency

of existing control flow obfuscation should be improved for

the goal of resisting static and dynamic reverse analysis. To

solve this problem, iteration obfuscation based on instruction

fragment diversification and control flow randomization is

proposed. To split basic blocks, diversified instruction

fragments are generated by equivalent transformation rules,

and multi-way branches are constructed. These instruction

fragments can be executed in some branches. Random

functions are used to select different branches, and instruction

fragments in basic blocks can be iteratively obfuscated.

II. RELATED WORKS

The first obfuscation was proposed by Diffie and Hellman

[9] when they did not use the obfuscation word to describe the

technique. Collberg et al. introduced the technique to protect

Java code program. In recent years, many researchers have

proposed various obfuscation methods that can mainly fall

into five types, including data obfuscation, control flow

obfuscation, layout obfuscation, preventive obfuscation and

some other advanced obfuscation.

Data obfuscation is described as breaking abstractions and

data structures. Collberg et al. suggested restructuring

program arrays by splitting, merging, folding and flattening

[8]. They described array obfuscation by simple examples,

but did not show detailed algorithm. Zhu et al. applied

homomorphic functions to improve the potency of program

arrays obfuscation [10]. They made program arrays more

obscure to be understood, but did not give the formal

description of data obfuscation. Drape et al. regarded

obfuscation as data refinement to prove the correctness of

obfuscation and generalize array splitting obfuscation [11],

An Iteration Obfuscation Based on Instruction Fragment

Diversification and Control Flow Randomization

Xin Xie, Fenlin Liu, Bin Lu, and Fei Xiang

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

303DOI: 10.7763/IJCTE.2016.V8.1063

mailto:liufenlin@vip.sina.com
mailto:stoneclever@gmail.com

then they established a framework of the above theory [12].

Xin et al. designed an automatic data structure obfuscation

technique as a GNU GCC compiler extension to implement

field reordering [13], and more specific approaches, such as

garbage field inserting and structure splitting, are under

consideration.

Control flow obfuscation obstructs the control flow

information of programs. Collberg et al. constructed opaque

predicates based on numerical theory and pointer aliasing

technology, and the branch states in program were modified

by opaque predicates [14]. Yang et al. proposed the

multi-point function opaque predicate obfuscation algorithm,

which could make opaque predicates interdependent and

avoid reverse slicing attacks [15]. Wang et al. transformed

direct control jumps into indirect control jumps by pointer

aliasing, and implemented structure flattening of control flow

in procedure [16]. Considering the difficulty of

intra-procedure calling analysis, Ogiso et al. transformed

control structure of intra-procedure by function pointers [17].

Toyofuku et al. proposed to use random values to choose

method calls in programs that could complicate method call

graphs [18]. Popov et al. introduced exception handling

mechanism to modify and replace control flow of programs

that could hide the branch information in control flow [19].

Balachandran and Emmanuel proposed control obfuscation

based on stack self-modified code, and the method removed

control flow information from code section and hid them in

data section [20].

Layout obfuscation obscures layouts of programs on the

intermediate language code or source code. Chan et al.

suggested overusing an identifier to improve Java layout

obfuscation based on substituting the identifiers with

meaningless names [21] Xu et al. applied whitespace

randomization, comments randomization, and variable and

function names randomization to JavaScript [22], these

methods were all for source codetransformation.

Preventive obfuscation makes specific deobfuscation

techniques more difficult to succeed. Linn et al. designed an

obfuscation to thwart linear sweep and recursive traversal

static disassembly algorithms [23], which introduced junk

instructions, jump tables, and opaque predicates to disrupt the

static disassembly process. Ledoux et al. proposed an

instruction embedding method to improve instruction

overlapping obfuscation [24]. Batchelder et al. presented

layout obfuscation algorithm to make Java decompilers fail to

produce legal source code or crash completely [25].

Advanced obfuscation transforms programs at run-time or

deploys important code on the remote trusted entity. Anckaert

et al. suggested a compromise between distributing identical

copies and unique executions by diversifying at run-time [26],

which made it harder to zoom in on a point of interest and may

fool an attacker into believing that he had succeeded. Abadi et

al. presented layout randomization for obfuscation and

studied it in programming-language terms [27]. Roeder et al.

designed proactive obfuscation that periodically restarting

servers with these diverse versions [28], and the periodic

restarts helped to bound the number of compromised replicas

that a service ever concurrently ran to make an adversary’s

job harder. Wang et al. proposed a branch obfuscation

approach that replaced explicit conditional jump instructions

with implicit trap code and bogus code, and deployed jump

conditions on the remote trusted entity [29].

III. ITERATION OBFUSCATION BASED ON INSTRUCTION

FRAGMENT DIVERSIFICATION AND CONTROL FLOW

RANDOMIZATION

A. Equivalent Transformation Rules

In order to implement instruction fragment diversification,

some equivalent transformation rules are proposed such as

instruction position transformation, register transformation,

junk instruction insertion, equivalent instruction replacement,

and instruction expansion transformation [30].

1) Instruction position transformation rule

When we exchange the positions of instructions which have

no dependence, it will not influence the execution of

programs, thus diversified instruction fragments can be

generated. Let there be no dependence in n instructions (a1,

a2,…, an), where instructions can be exchanged arbitrarily,

therefore n! different kinds of instruction sequences can be

got. To analyze dependence between instructions in the

sequence, position transformation rules are listed as follows:

1) If instructions define and use the same common register,

their positions cannot be exchanged.

2) If instructions impact on the same flag register, their

positions cannot be exchanged.

3) If instructions define and use the same memory, their

positions cannot be exchanged.

4) If instructions push parameters and then call functions or

APIs, their positions cannot be exchanged.

Example code fragment extracted from program is shown

in Table I. By instruction position transformation rule, there is

no control and data dependence among these instructions, and

they can be arrayed as 6 different kinds of sequences.

TABLE I: POSITION TRANSFORMATION OF EXAMPLE CODE FRAGMENT

(1) mov eax, 1

(2) xor ebx,ebx

(3) lodsd

(1) xor ebx, ebx

(2) mov eax,1

(3) lodsd

(1) lodsd

(2) mov eax, 1

(3) xor ebx,ebx

(1) lodsd

(2) xor ebx, ebx

(3) mov eax,1

(1) xor ebx, ebx

(2) lodsd

(3) mov eax,1

(1) mov eax,1

(2) lodsd

(3) xor ebx,ebx

2) Register transformation rule

On the basis of not affecting program normal execution,

some registers in code fragments can be replaced by other

registers, such as mov reg, 0x1234, mov [0x5678], reg, where

reg can be the register that is randomly selected from eax, ebx,

ecx, edx and so on. Register transformation rule can also be

shown as follows: firstly values of needed registers are saved

at the beginning of code fragments, and then these registers

are used to replace other different registers, finally values of

needed registers will be restored after the process of replacing,

such as and reg1, reg2, sub reg2, reg1 can be transformed

into push reg3, push reg4, and reg3, reg4, sub reg4, reg3,

mov reg1, reg3, mov reg2, reg4, pop reg4, pop reg3.

3) Junk instruction insertion rule

There are many forms of junk instructions that will not

affect execution of instruction sequence in program. Some

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

304

junk instructions are as follows:

1) Nop instruction.

2) Add reg, value; sub reg, -value; push reg; pop reg.

3) Jmp offset address@, push eax, push ebx, call API (junk

instructions), @mov eax, ebx, add eax, ebx (useful

instructions).

4) mov eax, value1, add eax, value2, sub eax, value3 (junk

instructions), mov eax ,reg1 (useful instructions).

5) Other junk instruction sequences.

4) Equivalent instruction replacement rule

Because an instruction can be replaced by another

equivalent instruction, one code fragment is constructed by

instruction sequence (I1, I2,…, In), where instruction Ii has the

same function as Ij, thus Ii and Ij are equivalent. By replacing

all instructions Ii with instructions Ij in instruction sequence,

the semantics of instruction sequence will not be changed.

Some replacement rules of equivalent instruction are shown in

Table II.

TABLE II: SOME REPLACEMENT RULES OF EQUIVALENT INSTRUCTION

Original Instruction Equivalent Instruction

Sub<register/memory>,<value> Add<register>,-<value>

Not<register/[memory]> Xor<register/[memory]>,-1

Nop And<register/[memory]>,-1

Sub<register/memory>,<value> Lea<register>,

DWORD[<register>-<value>]

Mov<register a>,<register b> Lea<register a>,DWORD[<register

b>]

Mov<register>,<register> Shl<register>,0

Add<register/memory>,<value> Sub<register>,-<value>

Inc<register/[memory]> Add<register/[memory]>,1

Lea<register>,[<register>] Add<register/[memory]>,0

5) Instruction expansion transformation rule

TABLE III: SOME EXPANSION TRANSFORMATION RULES OF EQUIVALENT

INSTRUCTIONS

Original Instruction Equivalent Instruction

Push<value/register> Mov DWORD PTR SS: [ESP-4],

<Value/register> Sub esp,4

Mov<register a>,<register b> Push<register a>

Pop<register b>

Jmp<address> Push<address>

Retn

Pop<register/[memory]> Mov <register>,DWORD [esp]

Add Esp,4

Call<address> Push EIP+bytes to next instruction

Jmp<address>

Mov<register a>,<register b> Mov<[memory]>,<register a>

Mov<register b>,<[memory]>

Not<register/[memory]> Neg<register/[memory]>

Sub<register/[memory]>,1

Push<value/register> Mov<register/[memory]>,

<value/register>

Push<register/[memory]>

Retn Pop eax

Jmp eax

Pop<register/[memory]> Pop<[memory]>

Mov<register>,<[memory]>

Call<address> Mov<[memory]/register>,<address>

Call<[memory]/register>

Neg<register/[memory]> Not<register/[memory]>

Add<register/[memory]>,1

Instruction expansion transformation refers to replace one

instruction with instruction sequence of the same semantics.

Code fragment is constructed by instruction sequence (I1,

I2,…, In), where instruction Ii has the same function as (Ip1,…,

Ipm), thus instruction sequence (Ip1, Ip2,…, Ipm) is a

transformation rule of equivalent expansion for instruction Ii,

instruction sequence semantics will not be changed by

replacing instruction Ii with (Ip1,…, Ipm). Some transformation

rules of instruction expansion are shown in Table III. Another

instruction expansion method is to make arithmetic and

logical operations be more complicated, such as the formula

of A+B=A-(-B), A^B=(A&~B)|(~A&B) and so on.

B. Instruction Sequence Diversification

Generally, single instruction sequence has a variety of

semantics-preserving expression forms, such as instruction

sequence S=(o1, o2,…, on), where o denotes an instruction,

instruction sequence S can be transformed into many

sequences S1, S2,…, Sn by equivalent transformation rules. If

equivalent instruction sequences S1, S2,…, Sn are different

from S, but they implement the same function as S, they are

the diversified sequences of S.

Algorithm1 Diversified Instruction Fragments Generation Algorithm

Input: Instruction Fragment S=(o1,o2,…,on), Iteration Number m

Output: Set of Diversified Instruction Fragments VS

1：S=(o1,o2,…,on);

2：k=1, d=0;

3：while k<=n do

4： INS={ok}

5： while d<m do

6： insrandom(INS);//Choose any ins in INS

7： T=Transform(ins);//Expansion Transform of chosen instruction

8： if T!=NULL then

9： INStmp=T;

10: INS= S + INStmp- ins;

11： S=S + INStmp- ins;

12： VSS;

13： end if

14： d++;

15： end while

16：k++;

17：end while

18：return VS

In order to increase the number of diversified sequences,

instruction fragments in programs are iteratively obfuscated

with instruction expansion transformation rules [31], as a

result, the number of instruction sequences will be

exponentially increased. Diversified instruction fragments

generation algorithm is shown in Algorithm 1. Because there

are many equivalent transformation rules, the composite

transformation rules can be used to generate diversified

instruction fragments.

C. Control Flow Randomization

Equivalent instruction fragments are the sequences in

program execution paths, and multi-way branches are

randomly constructed in programs. When a branch state

appears in a program, a random function is used to select

different branches. Due to the random selection of branches,

the execution path is different each time.

Considering the generation speed and randomness,

Microsoft security cookie mechanism is used for reference.

The value of mi can be obtained by calling system APIs during

the execution of program, random value Vr calculated by

formula (1) is used to be the seed of function srand(), where

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

305

m1 (GetSystemTimeAsFileTime) is the current system time; m2

(GetCurrentProcessId) is the current process ID; m3

(GetCurrentThreadId) is the current execution thread ID; m4

(GetTickCount) is the millisecond of the current operating

system from boot to now; m5 (QueryPerformanceCounter) is

the CPU clock frequency.

 Vr=Hash(m1⊕m2⊕m3⊕…⊕m5) (1)

Code snippets of control flow randomization uses random

value of Vr as a seed of random number generator, function

rand() is used to generate pseudo random number, and the

generated value is used to randomly select multi-way

branches in the program, it is shown in Table IV, where H0-H3

have the same function.

TABLE IV: CODE SNIPPETS OF CONTROL FLOW RANDOMIZATION

1：Vr=Hash(m1⊕m2⊕m3⊕…⊕m5)

2：srand(Vr);

3：N=rand()%4;

4：switch(N)

5：{

6： case 0: H0, break;

7： case 1: H1, break;

8： case 2: H2, break;

9： case 3: H3, break;

10：}

D. Obfuscation Step

Step 1: All head instructions are labeled including first

instruction in function, target instruction of transfer

instruction, instruction followed by transfer instruction. Basic

blocks are divided according to head instructions, and then

control flow graph G=(V, E) is built.

Step 2: The basic blocks in control flow graph are chosen if

the number of instructions are greater than 2, then they can be

applied with diversified transformation rules.

Step 3: A single basic block will be divided into three parts:

the first and last instruction in basic block, and the instruction

sequence between them, denoted by B={Istart, Iend, Seq}.

Step 4: The instruction sequence between the first and last

instruction in basic block will be divided into two parts,

denoted by Seq={Bseq1, Bseq2}. The set of diversified

instruction fragments are constructed with transformation

rules, such as instruction position transformation, register

transformation, junk instruction insertion, equivalent

instruction replacement, and instruction expansion

transformation, the instruction fragment set can be denoted by

{{B
1

seq1, B
2
seq1, …B

n
seq1}, {B

1
seq2, B

2
seq2, B

3
seq2 …B

m
seq2}}.

Step 5: Two layers of multi-way branches are built based

on the set of diversified instruction fragments, such as

E={(B
1
seq1, B

1
seq2), (B

1
seq1, B

4
seq2), (B

1
seq1, B

j
seq2), (B

2
seq1,

B
1

seq2), (B
2
seq1, B

2
seq2), (B

2
seq1, B

k
seq2)…(B

n
seq1, B

n
seq2), (B

n
seq1,

B
m

seq2)}.

Step 6: Randomization of multi-way branches in a basic

block is implemented by using random function. The basic

block semantics will be not changed.

Step 7: After reiteratively executing step 3-6 for

instruction fragments, the basic block will be more

complicated.

Step 8: All basic blocks are iteratively obfuscated with

diversified splitting rule.

Through the above steps, two basic blocks in Fig. 1(a) will

be iteratively obfuscated. Control flow graph will be

transformed into Fig. 1(b) with the iterative obfuscation rule

first time. If the iterative obfuscation rule is used once again

on the gray basic blocks in Fig. 1(b), control flow graph will

be transformed into Fig. 1(c). There is no doubt that the

number of basic blocks and control flow edges will increase

greatly after many times of obfuscation, and the control flow

graph will be more complicated, thus it can signally increase

the difficulty of static and dynamic reverse analysis.

（a） （b） （c）

Fig. 1. Iterative obfuscation based on basic block diversity.

Main()

{

 H1;

 H2;

 H3;

 H4;

Return;

}

Fig. 2. Code snippets and control flow graph of original program.

Main()

{

H1;

H2;

srand(Vr);

N=rand() %4;

Switch(N)

Case 0: goto L31;

Case 1: goto L32;

Case 2: goto L33;

Case 3: goto L34;

L31:H31;

srand(Vr);

M31=rand()% 3;

Switch(M31)

Case 0: goto L41;

Case 1: goto L42;

Case 2: goto L44;

L32:H32;

srand(Vr);

M32=rand()%2;

Switch(M32)

Case 0: goto L42;

Case 1: goto L43;

L33:H33;

srand(Vr)

M33=rand()% 2;

Switch(M33)

Case 0: goto L42

Case 1: goto L43;

L34:H34;

srand(Vr)

M34=rand()%3;

Switch(M34)

Case 0: goto L41;

Case 1: goto L43;

Case 2: goto L44;

L41:H41;

Return;

L42:H42;

Return;

L43:H43;

Return;

L44:H44;

Return;

}

Fig. 3. Code snippets and control flow graph of obfuscated program.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

306

E. A Case in Study

If an instruction fragment in a basic block can be divided

into the execution modules such as H1, H2, H3, and H4, the

code snippets and control flow graph are shown in Fig. 2.

Obfuscated program is constructed by instruction fragment

diversification and control flow randomization, as shown in

Fig. 3, where instruction fragments (31, 32, 33, 34) and (41,

42, 43, 44) are generated from the instruction fragments 3 and

4 with diversified transformation rules. The original basic

block only has one execute path, such as 1->2->3->4. Fig. 3

reflects that the number of execution paths in obfuscated

program has increased to 10, including 1->2->31->41,

1->2->33->42 and so on. Obfuscation has greatly increased

the complexity of control flow graph and the difficulty of

static and dynamic reverse analysis.

IV. METRIC ANALYSIS

A. Potency Measurement

Potency includes the performance of obfuscation to resist

static and dynamic reverse analysis. Static reverse analysis is

used to analyze the nodes and edges of control flow graph

nodes in control flow graph are instruction fragments

generated with diversified transformation rules, and edges are

execution paths that can be selected by random functions.

Dynamic reverse analysis is used to analyze instruction traces.

Let the length of basic block S=(o1,o2,…,on) be n. The

basic block is divided into two parts by reserving the first

instruction o1 and the last instruction on, and the basic block

can denote S={(o1),(o2,…,ol),(ol+1,…on-1),(on)}. The

instruction fragments (o2,…,ol) and (ol+1,…on-1) can be

transformed with equivalent transformation rules. Let the

length of (o2,…,ol) be l-1. Each instruction in the sequence

will be extended to k instructions, and
1 2 1 1

1 1 1... 2 1l l

l l lC C C  

       kinds of instruction fragments will

be generated after first time obfuscation. And
1 2 2 1 (1)

1 1 1(2 1) (2 1) ... (2 1)k k l l k

l l lC C C  

        kinds will be

generated after second time. On the basis of these fragments,

the number of instruction fragments will increase after

implementing composite transformation rules. Let instruction

fragments (o2,…,ol) and (ol+1,…on-1) respectively generate k

and d kinds of instruction fragments with diversified

transform rules, and they are used to be the instruction

execution sequences in multi-way branches. If k>d, the

minimum number of branch paths is k, and the maximum

number of branch paths is kd.

Let the control flow graph of the original program be

G=(V,E), where the value of V is v, and value of E is e, so the

complexity of graph is 2 e v by cyclomatic complexity

measurement [32]. Let the obfuscated instruction fragments

be m kinds, and they are generated with equivalent

transformation rules, so there are *m m branch paths

between instruction fragments. The Number of nodes will be

(2 2)v m after first time obfuscation, the number of control

flow edges will be *(* 2)e v m m m  , and the cyclomatic

complexity of control flow graph will be

(* 2) (2 2) 2e v m m m v m     . After k
th

 time iterative

obfuscation, the nodes of control flow graph will be

1

0

(2 (2) (2))




k

n k

n

v m m , the edges of control flow graph will be

0

((2 *) (2))


  
k

n

n

e v m m m m
, and the cyclomatic complexity of

control flow graph will be

1

0

((2 * 2) (2) (2))




   
k

n k

n

e v m m m m m .

B. Cost Measurement

Cost measurement mainly considers the execution time and

file size of original and obfuscated programs. Let u

instructions be executed k times in the condition of looping, if

one instruction will cost a unit of storage space and execution

time, the cost of space and time will be u and uk respectively.

Instruction fragments are generated by transformation rules,

and let m kinds of instruction fragments be generated after

first time obfuscation, and obfuscation will be applied to the

instruction fragments for n times. If the length of one

instruction fragment is sn, the time cost of obfuscated program

is

1

(2 2)



k

n n

n

n

k s , and the space cost of obfuscated program is

1

0

2 (2) (2) 




k

n k

n

n

m s m
.

As the obfuscation time increased, the structure of control

flow graph will be greatly complicated, and the file size of

program will increase, and the number of instructions will be

expanded. When we use the iterative obfuscation to transform

programs, the time of iteration need to be controlled for the

trade-off among space cost, time cost and potency.

C. Deobfuscation Measurement

The existing deobfuscation algorithms are based on the

optimization theory [33], including peephole optimization,

constant propagation, constant folding, operand folding, and

stack optimization. These methods can remove junk

instructions and invalid branches in functions that

deobfuscate redundant codes to a certain extent.

Diversified instruction fragments are generated with junk

instructions insertion, register replacement and some other

transformations, therefore deobfuscation algorithms can

optimize some instruction fragments. Equivalent instruction

fragments in multi-way branches are generated by equivalent

rules of instruction replacement and instruction expansion

that present diversity. If these fragments will be normalized,

the semantics of different instruction fragments will be

analyzed, and it is very difficult to deobfuscate the

obfuscation.

D. Stealth Measurement

Stealth measures the difficulty of recognizing whether

obfuscation or not, the similarity of original and obfuscated

programs can be the stealth metric of quantitative analysis.

Similarity of programs can be calculated with sequence, set

and graph formula [34].

To measure the stealth of obfuscation, similarities of

original and obfuscated programs are calculated, similarity

formula based on maximum common subgraph is used. Let G,

G1 and G2 be graphs, if a subgraph in G1 is isomorphism as G,

and a subgraph in G2 is isomorphism as G, so that G is the

common graph between G1 and G2. If there be no common

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

307

subgraph G’ that has more nodes than G, and G will be the

maximum subgraph of G1 and G2 denoted by G=mcs(G1, G2).

The similarity of G1 and G2 is shown in formula (2).

1 2

1 2

1 2

| (,) |
(,)

max(| |, | |)


mcs G G
sim G G

G G
,where | | | | | | G v e (2)

TABLE V: SIZE OF ORIGINAL AND OBFUSCATED PROGRAMS

Program Name Original program size

(kb)

Program size of one time

iteration (kb)

Program size of two times

iteration (kb)

Program size of three times

iteration (kb)

ShellSort.exe 29 31.5 32.5 34

InsertionSort.exe 29 31.5 32.5 38.5

BubbleSort.exe 29 31.5 33 42.5

QuickSort.exe 29 32 33.5 42.5

TABLE VI: EXECUTION TIME OF ORIGINAL AND OBFUSCATED PROGRAMS

Program Name Original program

execution time (ms)

Program execution time of one

time iteration (ms)

Program execution time of two

times iteration (ms)

Program execution time of three

times iteration (ms)

ShellSort.exe 30.7 320.6 495.9 633.6

InsertionSort.exe 5529.9 63763.1 170169.4 339284.4

BubbleSort.exe 14507.6 55820.5 58027.2 60454.5

QuickSort.exe 15.4 39.3 69.3 138.9

TABLE VII: BASIC INFORMATION OF DEOBFUSCATION PROGRAMS

Program Name File Size(kb) Execution Time(ms) Number of Basic Block Number of Edge Number of Instruction

Shell1_deo 31 310.7 21 27 122

Shell2_deo 32 452.6 48 66 354

Shell3_deo 33 603.8 113 158 624

Insert1_deo 31 6074.5 17 22 95

Insert2_deo 32 146632.1 58 81 371

Insert3_deo 36 296981.6 363 376 1453

Bubble1_deo 31 48336.1 17 22 99

Bubble2_deo 32 53779.5 84 120 443

Bubble3_deo 40 578841.2 368 532 2333

Quick1_deo 30.5 32.6 32 47 187

Quick2_deo 31.5 55.8 113 170 610

Quick3_deo 40 113.3 514 751 2764

V. EXPERIMENT AND ANALYSIS

Based on the environment that is Intel(R) Core(TM)2 CPU

1.86GHz, Microsoft Windows XP Professional 5.1.2600

Service Pack 3, Visual Studio 2008, with the obfuscation

steps, obfuscation based on instruction fragment

diversification and control flow randomization is

implemented, programs of Shell Sorting, Insertion Sorting,

Bubble Sorting and Quick Sorting are obfuscated, the source

code of four programs are shown in Appendix A, static reverse

analysis tool of IDA
1

 is used to analyze the obfuscated

programs, and the performance of original and obfuscated

programs are compared.

A. Cost Validation

Four debug version programs are built, and their control

flow graphs are constructed by static disassembly. They are

obfuscated by the followed method. Firstly, instruction

fragment will be divided into two parts that will generate three

kinds of instruction fragments respectively with the

instruction equivalent transformation rules, and the forms of

these fragments are different, but they are

semantics-preserving. Random function is used to choose

these instruction fragments. When the iteration times are 1, 2

and 3 respectively, a set of obfuscated programs are

constructed, the size of original and obfuscated programs are

shown in Table V. As the iteration times increased, the file

size of programs will be increased. To reduce other factors

that may affect program execution, the average execution

1 IDA Multi-Processor Disassembler and Debugger.

http://www.hex-rays.com

time of 10 times are measured. Sorting programs are used to

sort 50000 numbers generated by random function, the

execution time of original and obfuscated programs are

shown in Table VI. Due to the various sorting algorithms,

execution time of different sorting programs is different. As

the iteration time increased, and the number of random

function and instruction is increased, it will enhance the

program time overhead.

B. Potency Validation

Benchmark programs are obfuscated by obfuscation as

iteration time being 1, 2 and 3. With the IDA plus, the number

of basic blocks, edges and instructions can be gained that are

shown in Fig. 4-Fig. 6. The numbers of basic blocks in four

original programs are shown in Fig. 4, they are 14, 10, 11 and

11, and they will be exponentially increased with instruction

fragments diversification, as iteration time be 3, the numbers

of basic blocks are 113, 363, 368 and 514. The numbers of

control flow edges in four original programs are shown in Fig.

5, they are 17, 12, 13 and 15. With multi-way branches and

random functions, control flow paths are increased greatly,

when iteration time is 3, they are 158, 376, 532 and 751. The

numbers of instructions are shown in Fig. 6, the total numbers

of instructions of programs are 74, 54, 56 and 71. With

equivalent instruction expansion rules, diversified instruction

fragments will be generated, and the numbers of instructions

will be increased. With one time iteration, the numbers of

instructions are 157, 119, 124 and 221. While the iteration

time is three, the numbers of instructions in four programs are

860, 1949, 2869 and 3230. After many times iteration, it will

be more difficult for attackers to reverse analyze obfuscated

programs.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

308

ShellSort.exe InsertionSort.exe BubbleSort.exe QuickSort.exe
0

100

200

300

400

500

600

Benchmark Program

N
u
m

b
e
r

o
f

B
a
s
ic

 B
lo

c
k
s
 i
n
 P

ro
g
ra

m

Original Program

Iteration Obfuscation Program(K=1)

Iteration Obfuscation Program(K=2)

Iteration Obfuscation Program(K=3)

Fig. 4. Basic blocks number of original and obfuscated programs.

ShellSort.exe InsertionSort.exe BubbleSort.exe QuickSort.exe
0

100

200

300

400

500

600

700

800

Benchmark Program

N
u
m

b
e
r

o
f

E
d
g
e
s
 i
n
 P

ro
g
ra

m

Original Program

Iteration Obfuscation Program(K=1)

Iteration Obfuscation Program(K=2)

Iteration Obfuscation Program(K=3)

Fig. 5. Control edges number of original and obfuscated programs.

ShellSort.exe InsertionSort.exe BubbleSort.exe QuickSort.exe
0

500

1000

1500

2000

2500

3000

3500

Benchmark Program

N
u
m

b
e
r

o
f

In
s
tr

u
c
ti
o
n
s
 i
n
 P

ro
g
ra

m

Original Program

Iteration Obfuscation Program(K=1)

Iteration Obfuscation Program(K=2)

Iteration Obfuscation Program(K=3)

Fig. 6. Instructions number of original and obfuscated programs.

Fig. 7. Control flow graph of original and obfuscated (1-3 times iteration) shell

sorting program.

Obfuscated programs of Shell Sorting, Insertion Sorting,

Quick Sorting, and Bubble Sorting are constructed, and their

control flow graphs are generated by IDA, all of them are

shown in Fig. 7-Fig. 10. The original control flow graphs of

four sort programs are simple, as the iteration time increasing,

their control flow graphs will be complicated, and the

difficulty of static and dynamic reverse analysis will be

increased.

Execution traces of four sorting programs can be obtained

by dynamic tracking. With the same input for many times, the

execution traces of program are same. Through iteration

obfuscation, control flow structure of sorting programs will be

complicated, and the execution paths will be diversified. Each

execution path will be different by affecting instruction

fragment diversification and control flow randomization, and

iteration obfuscation can resist dynamic reverse analysis to a

certain extent.

Fig. 8. Control flow graph of original and obfuscated (1-3 times iteration)

insertion sorting program.

C. Deobfuscation Validation

Open source tool optimice
2
 is used to attack obfuscated

programs, and it can validate the deobfuscation performance

of obfuscation. The tool implements control flow reduction,

junk instruction removing, constant propagation and folding.

When diversified instruction fragments are generated with

junk instruction insertion, deobfuscation tool can effectively

remove the invalid instructions in multi-way branches, but

cannot normalize the instruction fragments in different

branches. Thus the number of instructions in basic block will

be reduced, but the control flow graph will not be changed.

Four sort programs are deobfuscated by the tool, the detail

information are shown in Table VII. The numbers of basic

blocks and edges in obfuscated programs will not be changed

by deobfuscation, their control flow graph will not be changed.

Due to the deobfuscation algorithm, the size and instruction

2Code deobfuscation by optimization. http://code.google.com/p/optimice

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

309

number of programs are decreased to some extent, thus which

decreases the program execution times, and it can be

validated that iteration obfuscation have ability to resist the

deobfuscation attacks.

Fig. 9. Control flow graph of original and obfuscated (1-3 times iteration)

quick sorting program.

Fig. 10. Control flow graph of original and obfuscated (1-3 times iteration)

bubble sorting program.

D. Stealth Validation

Stealth can be determined by the similarity of original and

obfuscated programs. Similarity of original and 3
rd

 time

iteratively obfuscated programs are calculated, the values are

8.32%, 12.45%, 7.92%, 8.35% and 7.02%. It reflects that

iteration obfuscation greatly increases the number of control

flow nodes and edges. With iteration obfuscation, the

structure of control flow graph is changed, and the stealth is

low on the whole, it is easy for attackers to determine whether

program is obfuscated or not.

VI. CONCLUSION AND FUTURE WORKS

Obfuscation based on instruction fragment diversification

and control flow randomization is proposed, the rules of

instruction expansion, equivalent instruction replacement,

register transformation, junk instruction insertion and

instruction position exchanging are used to construct

diversified fragments, and multi-way branches are

constructed. Instruction fragments are used to be the

execution sequences, random functions are used to choose the

multi-way branches. By iteration obfuscation, the structure of

control flow graph will be complicated, nodes and edges of

control flow graph will be greatly increased, and the difficulty

of static reverse is increased. Multi-way branches are

constructed, instruction trace will be different as the same

input, and the difficulty of dynamic reverse is enhanced. In the

future work, idea of diversification and randomization will

apply to other obfuscation such data obfuscation and layout

obfuscation to improve the potency and stealth of the

obfuscation.

APPENDIX A

ShellSort.exe
void ShellSort(int v[],int n){

 int gap,i,j,temp;

 for(gap=n/2;gap>0;gap /= 2){

 for(i=gap;i<n;i++){

 for(j=i-gap;(j >= 0) && (v[j] > v[j+gap]);j -= gap){

 temp=v[j];

 v[j]=v[j+gap];

 v[j+gap]=temp;

 }

 }

 }

}

InsertionSort.exe

void InsertionSort(int input[],int len){

int i,j,temp;

int ran;

for (i = 1; i < len; i++)

{

 temp = input[i];

 for (j = i - 1;j>-1&&input[j] > temp ; j--){

 input[j + 1] = input[j];

 input[j] = temp;

 }

}

}

BubbleSort.exe

void BubleSort(int a[],int n){

 int i,j,k;

 int ran;

 for(j=0;j<n;j++){

 for(i=0;i<n-j;i++){

 if(a[i]>a[i+1]){

 k=a[i];

 a[i]=a[i+1];

 a[i+1]=k;

 }

 }

 }

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

310

}

QuickSort.exe

int Partition(int data[],int low,int high){

 int mid;

 int ran;

 data[0]=data[low];

 mid=data[low];

 while(low < high){

 while((low < high) && (data[high] >= mid)){

 --high;

 }

 data[low]=data[high];

 while((low < high) && (data[low] < mid)) {

 ++low;

 }

 data[high]=data[low];

 }

 data[low]=data[0];

 return low;

}

void QuickSort(int data[],int low,int high){

 int mid;

 if(low<high){

 mid=Partition(data,low,high);

 QuickSort(data,low,mid-1);

 QuickSort(data,mid+1,high);

 }
}

REFERENCES

[1] H. J. Wang, D. Y. Fang, N. Wang et al., “Method to evaluate software

protection based on attacking modeling,” in Proc. the 10th

International Conference on Embedded and Ubiquitous Computing,

2013, pp. 837-844.

[2] A. Kulkarni and R. Metta, “A new code obfuscation scheme for

software protection,” in Proc. the IEEE 8th International Symposium

on Service Oriented System Engineering, 2014, pp. 409-414.

[3] S. B. Che and Y. M. Wang, “A software watermarking based on PE file

with tamper-proof function. Indonesian,” Journal of Electrical

Engineering, vol. 12, issue 2, pp. 1012-1021, 2014.

[4] Y. W. Yu and Y. X. Zhao, “Tamper proofing technique based on

three-thread protection and software guard,” Journal of Computer

Applications, vol. 33, issue 1, pp. 1-3, 34, 2013.

[5] Y. Zeng, F. L. Liu, X. Y. Luo et al., “Abstract interpretation-based

semantic framework for software birthmark,” Computers & Security,

vol. 31, issue 4, pp. 377-390, 2012.

[6] H. Y. Tsai, Y. L. Huang, and D. A. Wagner, “Graph approach to

quantitative analysis of control-flow obfuscating transformations,”

IEEE Transactions on Information Forensics and Security, vol. 4,

issue 2, pp. 257-267, 2009.

[7] X. Xie, F. L. Liu, and B. Lu, “A data obfuscation based on state

transition graph of mealy automata,” in Proc. the 10th International

Conference on Intelligent Computing, 2014, pp. 520-531.

[8] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating

transformations,” Technical Reports 148, Department of Computer

Science, University of Auckland, 1997.

[9] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE

Transaction on Information Theory, vol. 22, issue 6, pp. 644-654,

1976.

[10] W. Zhu, C. D. Thomborson, and F. Y. Wang, “Obfuscate arrays by

homomorphic functions,” in Proc. the IEEE Inernational Conference

on Granular Computing, 2006, pp. 770-773.

[11] S. Drape, “Generalising the array split obfuscation,” Information

Sciences, vol. 177, issue 1, pp. 202-219, 2007.

[12] S. Drape, C. Thomborson, and A. Majumdar, “Specifying imperative

data obfuscations,” in Proc. the 10th International Conference on

Information Security, 2007, pp. 299-314.

[13] Z. Xin, H. Chen, H. Han et al., “Misleading malware similarities

analysis by automatic data structure obfuscation,” in Proc. the 13th

International Conference on Information Security, 2010, pp. 181-195.

[14] C Collberg, C Thomborson, and D. Low, “Manufacturing cheap,

resilient, and stealthy opaque constructs,” in Proc. the 25th the Annual

ACM Symposium on Principles of Programming Languages, 1998, pp.

184-196.

[15] Y. B. Yang, W. Q. Fan, W. Huang et al., “The research of multi-point

function opaque predicates obfuscation algorithm,” Applied

Mathematics & Information Sciences, vol. 8, issue 6, pp. 3063-3070,

2014.

[16] C Wang, J Hill, J Knight et al., “Software tamper resistance:

obstructing static analysis of programs,” Technical Report 12,

Department of Computer Science, University of Virginia, 2000.

[17] T. Ogiso, Y. Sakabe, M. Soshi et al., “Software obfuscation on a

theoretical basis and its implementation,” IEICE Transactions on

Fundamentals of Electronics, Communications and Computer

Sciences, vol. E86-A, issue 1, pp. 176-186, 2003.

[18] T. Tatsuya, T. Toshihiro and S. Kouichi, “Program obfuscation scheme

using random numbers to complicate control flow,” in Proc. the

Embedded and Ubiquitous Computing, 2005, pp. 916-925.

[19] I. V. Popov, S. K. Debray, and G. R. Andrews, “Binary obfuscation

using signals,” in Proc. the 16th USENIX Security Symposium, 2007,

pp. 275-290.

[20] V. Balachandran and S. Emmanuel, “Potent and stealthy control flow

obfuscation by stack based self-modifying code,” IEEE Transactions

on Information Forensics and Security, vol. 8, issue 4, pp. 669-681,

2013.

[21] J. Chan and W. Yang, “Advanced obfuscation techniques for Java

bytecode,” Journal of System and Software, vol. 71, issue 1/2, pp. 1-10,

2004.

[22] W. Xu, F. Zhang, and S. Zhu, “The power of obfuscation techniques in

malicious JavaScript code: A measurement study,” in Proc. the 7th

IEEE International Conference on Malicious and Unwanted Software,

2012, pp. 9-16.

[23] C. Linn and S. Debray, “Obfuscation of executable code to improve

resistance to static disassembly,” in Proc. the 10th International

Conference on Computer and communications security, 2003, pp.

290-299.

[24] C. LeDoux, M. Sharkey, B. Primeaux et al., “Instruction embedding

for improved obfuscation,” in Proc. the 50th Annual Southeast

Regional Conference, ACM, 2012, pp. 130-135.

[25] M. Batchelder and L. Hendren, “Obfuscation Java: The most pain for

the least gain,” in Proc. the International Conference on Compiler

Construction, 2007, pp. 96-110.

[26] B. Anckaert, M. Jakubowski, R. Venkatesan et al., “Run-time

randomization to mitigate tampering,” Advances in Information and

Computer Security, pp. 153-168, 2007.

[27] M. Abadi and G. D. Plotkin, “On protection by layout randomization,”

ACM Transaction on Information and System Security, vol. 8, issue 2,

2012.

[28] T. Roeder and F. B. Schneider, “Proactive obfuscation,” ACM

Transaction on Computer and System, vol. 4, issue 2, 2010.

[29] Z. Wang, C. Jia, M. Liu et al., “Branch obfuscation using code

mobility and signal,” in Proc. the IEEE 36th International Conference

on Computer Software and Applications Workshops, 2012, pp.

553-558.

[30] Y. Ilsun and Y. Kangbin, “Malware obfuscation techniques: A brief

survey,” in Proc. the International Conference on Broadband,

Wireless Computing, Communication and Applications, pp. 297-300,

2010.

[31] H. Y. Wang, D. Y. Fang, G. H. Li et al., “TDVMP: improved virtual

machine-based software protection with time diversity,” in Proc. the

3rd ACM SIGPLAN Program Protection and Reverse Engineering

Workshop, 2014.

[32] M. Thomas, “A complexity measure,” IEEE Transaction on Software

Engineering, vol. SE-2, issue 4, pp. 308-320, 1976.

[33] Y. Guillot and A. Gazet, “Automatic binary deobfuscation,” Journal in

Computer Virology, vol. 6, pp. 261-276, 2010.

[34] C. Silvio and X. Yang, Software Similarity and Classification,

London: Springer, 2012, pp. 63-70.

Xin Xie received the B.S. degree and the M.S. degree

from Zhengzhou Information Science and Technology

Institute, Zhengzhou, China, in 2008 and 2011,

respectively. Currently, he is a Ph.D. candidate of

Zhengzhou Information Science and Technology

Institute. His research interest includes software security,

software protection and code obfuscation.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

311

Fenlin Liu is currently a professor of Zhengzhou

Information Science and Technology Institute. His

research interests include information security and

software protection theory. He is the author or co-author

of more than 100 refereed international journal and

conference papers. He obtained the support of the

National Natural Science Foundation of China and the

Found of Innovation Scientists and Technicians

Outstanding Talents of Henan Province.

Bin Lu received the B.S. degree and the M.S. degree

from Zhengzhou Information Science and Technology

Institute, Zhengzhou, China, in 2004 and 2007,

respectively.

 Currently, he is a Ph.D. candidate of Zhengzhou

Information Science and Technology Institute. His

research interest includes software security, software

protection and cyberspace security.

Fei Xiang received the B.S. degree from the Department

of Computer Science and Technology of Tsinghua

University, Beijing, China, in 2012. Currently, he is a

M.S. candidate of Zhengzhou Information Science and

Technology Institute. His research interest includes

network security, network entity location.

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

312

