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Abstract—As the control flow graph can reflect the logic 

structure of programs, static and dynamic reverse methods are 

used to analyze the logic structure and instruction sequence, and 

the existing methods of control flow obfuscation have low 

potency to resist reverse attacks. To solve this problem, we 

propose an obfuscation method based on instruction fragment 

diversification and control flow randomization, diversified 

instruction fragments are generated by various equivalent 

transformation rules, and random functions are used to select 

one execution path from the multi-way branches of programs, 

then programs are iteratively obfuscated. Experiments and 

analysis show that diversified instruction fragments and 

multi-way branches can increase the difficulty of static reverse 

analysis, random selection for multi-way branches will increase 

the difficulty of dynamic instruction tracing, and iterative 

transformation for many times enhances the complexity of 

control flow graph. 

 
Index Terms—Code obfuscation, iterative transformation, 

instruction fragment diversification, control flow 

randomization. 

 

I. INTRODUCTION 

Malicious attackers are always locating, analyzing and 

extracting important codes in programs by static and dynamic 

reverse analysis. Through malicious modification, core 

modules can be migrated to other programs which can be sold 

as new software products. This process seriously violates 

software intellectual property [1]. In order to protect software 

code, many technologies have been proposed, such as code 

obfuscation [2], software watermarking [3], software 

tamper-proofing [4] and software birthmarking [5]. They can 

be used to prevent software from reverse analysis, illegal 

distribution, copying and malicious tampering. 

Code obfuscation is a typical software protection 

technology. On the basis of keeping program function, code 

are semantics-preserving transformed to be more difficult for 

attackers to reverse analyze and understand. The existing 

obfuscation techniques can be classified into four categories, 

including control obfuscation [6], data obfuscation [7], layout 

obfuscation, and preventive obfuscation [8]. Control 
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obfuscation can make program logic complicated by 

modifying or hiding the real control flow information, the 

main methods are opaque predicates inserting, control 

structure flattening, and control flow hiding. Obfuscation 

algorithms based on opaque predicates add true, false and 

uncertain condition branch states into programs, thus it can 

make control flow more complicated. Obfuscation algorithms 

based on control flow flattening increase the number of basic 

blocks and control flow edges, and they can increase the 

complexity of control flow graph. Obfuscation algorithms 

based on control flow hiding transform control flow into data 

or exception information. 

Existing methods of control flow obfuscation have 

increased complexity and stealthiness of control flow to a 

certain extent, and they can also resist static reverse analysis. 

However, both static and dynamic methods are used to 

analyze control flows. Control flow can also be analyzed by 

tracking instruction execution traces. Therefore the potency 

of existing control flow obfuscation should be improved for 

the goal of resisting static and dynamic reverse analysis. To 

solve this problem, iteration obfuscation based on instruction 

fragment diversification and control flow randomization is 

proposed. To split basic blocks, diversified instruction 

fragments are generated by equivalent transformation rules, 

and multi-way branches are constructed. These instruction 

fragments can be executed in some branches. Random 

functions are used to select different branches, and instruction 

fragments in basic blocks can be iteratively obfuscated. 

 

II. RELATED WORKS 

The first obfuscation was proposed by Diffie and Hellman 

[9] when they did not use the obfuscation word to describe the 

technique. Collberg et al. introduced the technique to protect 

Java code program. In recent years, many researchers have 

proposed various obfuscation methods that can mainly fall 

into five types, including data obfuscation, control flow 

obfuscation, layout obfuscation, preventive obfuscation and 

some other advanced obfuscation. 

Data obfuscation is described as breaking abstractions and 

data structures. Collberg et al. suggested restructuring 

program arrays by splitting, merging, folding and flattening 

[8]. They described array obfuscation by simple examples, 

but did not show detailed algorithm. Zhu et al. applied 

homomorphic functions to improve the potency of program 

arrays obfuscation [10]. They made program arrays more 

obscure to be understood, but did not give the formal 

description of data obfuscation. Drape et al. regarded 

obfuscation as data refinement to prove the correctness of 

obfuscation and generalize array splitting obfuscation [11], 
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then they established a framework of the above theory [12]. 

Xin et al. designed an automatic data structure obfuscation 

technique as a GNU GCC compiler extension to implement 

field reordering [13], and more specific approaches, such as 

garbage field inserting and structure splitting, are under 

consideration. 

Control flow obfuscation obstructs the control flow 

information of programs. Collberg et al. constructed opaque 

predicates based on numerical theory and pointer aliasing 

technology, and the branch states in program were modified 

by opaque predicates [14]. Yang et al. proposed the 

multi-point function opaque predicate obfuscation algorithm, 

which could make opaque predicates interdependent and 

avoid reverse slicing attacks [15]. Wang et al. transformed 

direct control jumps into indirect control jumps by pointer 

aliasing, and implemented structure flattening of control flow 

in procedure [16]. Considering the difficulty of 

intra-procedure calling analysis, Ogiso et al. transformed 

control structure of intra-procedure by function pointers [17]. 

Toyofuku et al. proposed to use random values to choose 

method calls in programs that could complicate method call 

graphs [18]. Popov et al. introduced exception handling 

mechanism to modify and replace control flow of programs 

that could hide the branch information in control flow [19]. 

Balachandran and Emmanuel proposed control obfuscation 

based on stack self-modified code, and the method removed 

control flow information from code section and hid them in 

data section [20]. 

Layout obfuscation obscures layouts of programs on the 

intermediate language code or source code. Chan et al. 

suggested overusing an identifier to improve Java layout 

obfuscation based on substituting the identifiers with 

meaningless names [21] Xu et al. applied whitespace 

randomization, comments randomization, and variable and 

function names randomization to JavaScript [22], these 

methods were all for source codetransformation. 

Preventive obfuscation makes specific deobfuscation 

techniques more difficult to succeed. Linn et al. designed an 

obfuscation to thwart linear sweep and recursive traversal 

static disassembly algorithms [23], which introduced junk 

instructions, jump tables, and opaque predicates to disrupt the 

static disassembly process. Ledoux et al. proposed an 

instruction embedding method to improve instruction 

overlapping obfuscation [24]. Batchelder et al. presented 

layout obfuscation algorithm to make Java decompilers fail to 

produce legal source code or crash completely [25]. 

Advanced obfuscation transforms programs at run-time or 

deploys important code on the remote trusted entity. Anckaert 

et al. suggested a compromise between distributing identical 

copies and unique executions by diversifying at run-time [26], 

which made it harder to zoom in on a point of interest and may 

fool an attacker into believing that he had succeeded. Abadi et 

al. presented layout randomization for obfuscation and 

studied it in programming-language terms [27]. Roeder et al. 

designed proactive obfuscation that periodically restarting 

servers with these diverse versions [28], and the periodic 

restarts helped to bound the number of compromised replicas 

that a service ever concurrently ran to make an adversary’s 

job harder. Wang et al. proposed a branch obfuscation 

approach that replaced explicit conditional jump instructions 

with implicit trap code and bogus code, and deployed jump 

conditions on the remote trusted entity [29]. 

 

III. ITERATION OBFUSCATION BASED ON INSTRUCTION 

FRAGMENT DIVERSIFICATION AND CONTROL FLOW 

RANDOMIZATION 

A. Equivalent Transformation Rules 

In order to implement instruction fragment diversification, 

some equivalent transformation rules are proposed such as 

instruction position transformation, register transformation, 

junk instruction insertion, equivalent instruction replacement, 

and instruction expansion transformation [30]. 

1) Instruction position transformation rule 

When we exchange the positions of instructions which have 

no dependence, it will not influence the execution of 

programs, thus diversified instruction fragments can be 

generated. Let there be no dependence in n instructions (a1, 

a2,…, an), where instructions can be exchanged arbitrarily, 

therefore n! different kinds of instruction sequences can be 

got. To analyze dependence between instructions in the 

sequence, position transformation rules are listed as follows: 

1) If instructions define and use the same common register, 

their positions cannot be exchanged. 

2) If instructions impact on the same flag register, their 

positions cannot be exchanged. 

3) If instructions define and use the same memory, their 

positions cannot be exchanged. 

4) If instructions push parameters and then call functions or 

APIs, their positions cannot be exchanged. 

Example code fragment extracted from program is shown 

in Table I. By instruction position transformation rule, there is 

no control and data dependence among these instructions, and 

they can be arrayed as 6 different kinds of sequences. 

 
TABLE I: POSITION TRANSFORMATION OF EXAMPLE CODE FRAGMENT 

(1)     mov eax, 1 

(2)     xor ebx,ebx 

(3)     lodsd 

(1)     xor ebx, ebx 

(2)     mov eax,1 

(3)     lodsd 

(1)     lodsd 

(2)     mov eax, 1 

(3)     xor ebx,ebx 

(1)     lodsd 

(2)     xor ebx, ebx 

(3)     mov eax,1  

(1)     xor ebx, ebx 

(2)     lodsd 

(3)     mov eax,1 

(1)     mov eax,1 

(2)     lodsd 

(3)     xor ebx,ebx 

 

2) Register transformation rule 

On the basis of not affecting program normal execution, 

some registers in code fragments can be replaced by other 

registers, such as mov reg, 0x1234, mov [0x5678], reg, where 

reg can be the register that is randomly selected from eax, ebx, 

ecx, edx and so on. Register transformation rule can also be 

shown as follows: firstly values of needed registers are saved 

at the beginning of code fragments, and then these registers 

are used to replace other different registers, finally values of 

needed registers will be restored after the process of replacing, 

such as and reg1, reg2, sub reg2, reg1 can be transformed 

into push reg3, push reg4, and reg3, reg4, sub reg4, reg3, 

mov reg1, reg3, mov reg2, reg4, pop reg4, pop reg3. 

3) Junk instruction insertion rule 

There are many forms of junk instructions that will not 

affect execution of instruction sequence in program. Some 
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junk instructions are as follows: 

1)    Nop instruction. 

2)    Add reg, value; sub reg, -value; push reg; pop reg. 

3)    Jmp offset address@, push eax, push ebx, call API (junk 

instructions), @mov eax, ebx, add eax, ebx (useful 

instructions). 

4)    mov eax, value1, add eax, value2, sub eax, value3 (junk 

instructions), mov eax ,reg1 (useful instructions). 

5)    Other junk instruction sequences. 

4) Equivalent instruction replacement rule 

Because an instruction can be replaced by another 

equivalent instruction, one code fragment is constructed by 

instruction sequence (I1, I2,…, In), where instruction Ii has the 

same function as Ij, thus Ii and Ij are equivalent. By replacing 

all instructions Ii with instructions Ij in instruction sequence, 

the semantics of instruction sequence will not be changed. 

Some replacement rules of equivalent instruction are shown in 

Table II. 

 
TABLE II: SOME REPLACEMENT RULES OF EQUIVALENT INSTRUCTION 

Original Instruction Equivalent Instruction 

Sub<register/memory>,<value> Add<register>,-<value> 

Not<register/[memory]> Xor<register/[memory]>,-1 

Nop And<register/[memory]>,-1 

Sub<register/memory>,<value> Lea<register>, 

DWORD[<register>-<value>] 

Mov<register a>,<register b> Lea<register a>,DWORD[<register 

b>] 

Mov<register>,<register> Shl<register>,0 

Add<register/memory>,<value> Sub<register>,-<value> 

Inc<register/[memory]> Add<register/[memory]>,1 

Lea<register>,[<register>] Add<register/[memory]>,0 

 

5) Instruction expansion transformation rule 

 
TABLE III: SOME EXPANSION TRANSFORMATION RULES OF EQUIVALENT 

INSTRUCTIONS 

Original Instruction Equivalent Instruction 

Push<value/register> Mov DWORD PTR SS: [ESP-4], 

<Value/register> Sub esp,4 

Mov<register a>,<register b> Push<register a> 

Pop<register b> 

Jmp<address> Push<address> 

Retn 

Pop<register/[memory]> Mov <register>,DWORD [esp] 

Add Esp,4 

Call<address> Push EIP+bytes to next instruction 

Jmp<address> 

Mov<register a>,<register b> Mov<[memory]>,<register a> 

Mov<register b>,<[memory]> 

Not<register/[memory]> Neg<register/[memory]> 

Sub<register/[memory]>,1 

Push<value/register> Mov<register/[memory]>, 

<value/register> 

Push<register/[memory]> 

Retn Pop eax 

Jmp eax 

Pop<register/[memory]> Pop<[memory]> 

Mov<register>,<[memory]> 

Call<address> Mov<[memory]/register>,<address> 

Call<[memory]/register> 

Neg<register/[memory]> Not<register/[memory]> 

Add<register/[memory]>,1 

 

Instruction expansion transformation refers to replace one 

instruction with instruction sequence of the same semantics. 

Code fragment is constructed by instruction sequence (I1, 

I2,…, In), where instruction Ii has the same function as (Ip1,…, 

Ipm), thus instruction sequence (Ip1, Ip2,…, Ipm) is a 

transformation rule of equivalent expansion for instruction Ii, 

instruction sequence semantics will not be changed by 

replacing instruction Ii with (Ip1,…, Ipm). Some transformation 

rules of instruction expansion are shown in Table III. Another 

instruction expansion method is to make arithmetic and 

logical operations be more complicated, such as the formula 

of A+B=A-(-B), A^B=(A&~B)|(~A&B) and so on. 

B. Instruction Sequence Diversification 

Generally, single instruction sequence has a variety of 

semantics-preserving expression forms, such as instruction 

sequence S=(o1, o2,…, on), where o denotes an instruction, 

instruction sequence S can be transformed into many 

sequences S1, S2,…, Sn by equivalent transformation rules. If 

equivalent instruction sequences S1, S2,…, Sn are different 

from S, but they implement the same function as S, they are 

the diversified sequences of S. 

 

Algorithm1 Diversified Instruction Fragments Generation Algorithm 

Input: Instruction Fragment S=(o1,o2,…,on), Iteration Number m 

Output: Set of Diversified Instruction Fragments VS 

1：S=(o1,o2,…,on); 

2：k=1, d=0; 

3：while k<=n do 

4：  INS={ok} 

5：  while d<m do 

6：    insrandom(INS);//Choose any ins in INS 

7：    T=Transform(ins);//Expansion Transform of chosen instruction 

8：    if T!=NULL then 

9：      INStmp=T; 

10:       INS= S + INStmp- ins; 

11：      S=S + INStmp- ins; 

12：     VSS; 

13：   end if 

14：  d++; 

15：  end while 

16：k++; 

17：end while 

18：return VS 

 

In order to increase the number of diversified sequences, 

instruction fragments in programs are iteratively obfuscated 

with instruction expansion transformation rules [31], as a 

result, the number of instruction sequences will be 

exponentially increased. Diversified instruction fragments 

generation algorithm is shown in Algorithm 1. Because there 

are many equivalent transformation rules, the composite 

transformation rules can be used to generate diversified 

instruction fragments. 

C. Control Flow Randomization 

Equivalent instruction fragments are the sequences in 

program execution paths, and multi-way branches are 

randomly constructed in programs. When a branch state 

appears in a program, a random function is used to select 

different branches. Due to the random selection of branches, 

the execution path is different each time. 

Considering the generation speed and randomness, 

Microsoft security cookie mechanism is used for reference. 

The value of mi can be obtained by calling system APIs during 

the execution of program, random value Vr calculated by 

formula (1) is used to be the seed of function srand(), where 
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m1 (GetSystemTimeAsFileTime) is the current system time; m2 

(GetCurrentProcessId) is the current process ID; m3 

(GetCurrentThreadId) is the current execution thread ID; m4 

(GetTickCount) is the millisecond of the current operating 

system from boot to now; m5 (QueryPerformanceCounter) is 

the CPU clock frequency. 

 

                   Vr=Hash(m1⊕m2⊕m3⊕…⊕m5)                      (1) 

 

Code snippets of control flow randomization uses random 

value of Vr as a seed of random number generator, function 

rand() is used to generate pseudo random number, and the 

generated value is used to randomly select multi-way 

branches in the program, it is shown in Table IV, where H0-H3 

have the same function. 

 
TABLE IV: CODE SNIPPETS OF CONTROL FLOW RANDOMIZATION 

1：Vr=Hash(m1⊕m2⊕m3⊕…⊕m5) 

2：srand(Vr); 

3：N=rand()%4; 

4：switch(N) 

5：{ 

6：  case 0: H0, break; 

7：  case 1: H1, break; 

8：  case 2: H2, break; 

9：  case 3: H3, break; 

10：} 

 

D. Obfuscation Step 

Step 1: All head instructions are labeled including first 

instruction in function, target instruction of transfer 

instruction, instruction followed by transfer instruction. Basic 

blocks are divided according to head instructions, and then 

control flow graph G=(V, E) is built. 

Step 2: The basic blocks in control flow graph are chosen if 

the number of instructions are greater than 2, then they can be 

applied with diversified transformation rules. 

Step 3: A single basic block will be divided into three parts: 

the first and last instruction in basic block, and the instruction 

sequence between them, denoted by B={Istart, Iend, Seq}. 

Step 4: The instruction sequence between the first and last 

instruction in basic block will be divided into two parts, 

denoted by Seq={Bseq1, Bseq2}. The set of diversified 

instruction fragments are constructed with transformation 

rules, such as instruction position transformation, register 

transformation, junk instruction insertion, equivalent 

instruction replacement, and instruction expansion 

transformation, the instruction fragment set can be denoted by 

{{B
1

seq1, B
2
seq1, …B

n
seq1}, {B

1
seq2, B

2
seq2, B

3
seq2 …B

m
seq2}}. 

Step 5: Two layers of multi-way branches are built based 

on the set of diversified instruction fragments, such as 

E={(B
1
seq1, B

1
seq2), (B

1
seq1, B

4
seq2), (B

1
seq1, B

j
seq2), (B

2
seq1, 

B
1

seq2), (B
2
seq1, B

2
seq2), (B

2
seq1, B

k
seq2)…(B

n
seq1, B

n
seq2), (B

n
seq1, 

B
m

seq2)}. 

Step 6: Randomization of multi-way branches in a basic 

block is implemented by using random function. The basic 

block semantics will be not changed. 

Step 7: After reiteratively executing step 3-6 for 

instruction fragments, the basic block will be more 

complicated. 

Step 8: All basic blocks are iteratively obfuscated with 

diversified splitting rule. 

Through the above steps, two basic blocks in Fig. 1(a) will 

be iteratively obfuscated. Control flow graph will be 

transformed into Fig. 1(b) with the iterative obfuscation rule 

first time. If the iterative obfuscation rule is used once again 

on the gray basic blocks in Fig. 1(b), control flow graph will 

be transformed into Fig. 1(c). There is no doubt that the 

number of basic blocks and control flow edges will increase 

greatly after many times of obfuscation, and the control flow 

graph will be more complicated, thus it can signally increase 

the difficulty of static and dynamic reverse analysis. 

 
（a） （b） （c）

 
Fig. 1. Iterative obfuscation based on basic block diversity. 

 

 

 

Main() 

{ 

  H1; 

  H2; 

  H3; 

  H4; 

Return; 

}  

Fig. 2. Code snippets and control flow graph of original program. 

Main() 

{ 

H1; 

H2; 

srand(Vr); 

N=rand() %4; 

Switch(N) 

Case 0: goto L31; 

Case 1: goto L32; 

Case 2: goto L33; 

Case 3: goto L34; 

L31:H31; 

srand(Vr); 

M31=rand()% 3; 

Switch(M31) 

Case 0: goto L41; 

Case 1: goto L42; 

Case 2: goto L44; 

L32:H32; 

srand(Vr); 

M32=rand()%2; 

Switch(M32) 

Case 0: goto L42; 

Case 1: goto L43; 

L33:H33; 

srand(Vr) 

M33=rand()% 2; 

Switch(M33) 

Case 0: goto L42 

Case 1: goto L43; 

L34:H34; 

srand(Vr) 

M34=rand()%3; 

Switch(M34) 

Case 0: goto L41; 

Case 1: goto L43; 

Case 2: goto L44; 

L41:H41; 

Return; 

L42:H42; 

Return; 

L43:H43; 

Return; 

L44:H44; 

Return; 

} 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 3. Code snippets and control flow graph of obfuscated program. 
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E. A Case in Study 

If an instruction fragment in a basic block can be divided 

into the execution modules such as H1, H2, H3, and H4, the 

code snippets and control flow graph are shown in Fig. 2. 

Obfuscated program is constructed by instruction fragment 

diversification and control flow randomization, as shown in 

Fig. 3, where instruction fragments (31, 32, 33, 34) and (41, 

42, 43, 44) are generated from the instruction fragments 3 and 

4 with diversified transformation rules. The original basic 

block only has one execute path, such as 1->2->3->4. Fig. 3 

reflects that the number of execution paths in obfuscated 

program has increased to 10, including 1->2->31->41, 

1->2->33->42 and so on. Obfuscation has greatly increased 

the complexity of control flow graph and the difficulty of 

static and dynamic reverse analysis. 

 

IV. METRIC ANALYSIS 

A. Potency Measurement 

Potency includes the performance of obfuscation to resist 

static and dynamic reverse analysis. Static reverse analysis is 

used to analyze the nodes and edges of control flow graph 

nodes in control flow graph are instruction fragments 

generated with diversified transformation rules, and edges are 

execution paths that can be selected by random functions. 

Dynamic reverse analysis is used to analyze instruction traces. 

Let the length of basic block S=(o1,o2,…,on) be n. The 

basic block is divided into two parts by reserving the first 

instruction o1 and the last instruction on, and the basic block 

can denote S={(o1),(o2,…,ol),(ol+1,…on-1),(on)}. The 

instruction fragments (o2,…,ol) and (ol+1,…on-1) can be 

transformed with equivalent transformation rules. Let the 

length of (o2,…,ol) be l-1. Each instruction in the sequence 

will be extended to k instructions, and 
1 2 1 1

1 1 1... 2 1l l

l l lC C C  

        kinds of instruction fragments will 

be generated after first time obfuscation. And 
1 2 2 1 ( 1)

1 1 1(2 1) (2 1) ... (2 1)k k l l k

l l lC C C  

        kinds will be 

generated after second time. On the basis of these fragments, 

the number of instruction fragments will increase after 

implementing composite transformation rules. Let instruction 

fragments (o2,…,ol) and (ol+1,…on-1) respectively generate k 

and d kinds of instruction fragments with diversified 

transform rules, and they are used to be the instruction 

execution sequences in multi-way branches. If k>d, the 

minimum number of branch paths is k, and the maximum 

number of branch paths is kd. 

Let the control flow graph of the original program be 

G=(V,E), where the value of V is v, and value of E is e, so the 

complexity of graph is 2 e v  by cyclomatic complexity 

measurement [32]. Let the obfuscated instruction fragments 

be m kinds, and they are generated with equivalent 

transformation rules, so there are *m m  branch paths 

between instruction fragments. The Number of nodes will be 

(2 2)v m  after first time obfuscation, the number of control 

flow edges will be *( * 2 )e v m m m  , and the cyclomatic 

complexity of control flow graph will be 

( * 2 ) (2 2) 2e v m m m v m     . After k
th

 time iterative 

obfuscation, the nodes of control flow graph will be 

1

0

(2 (2 ) (2 ) )




k

n k

n

v m m , the edges of control flow graph will be 

0

((2 * ) (2 ) )


  
k

n

n

e v m m m m
, and the cyclomatic complexity of 

control flow graph will be 

1

0

((2 * 2) (2 ) (2 ) )




   
k

n k

n

e v m m m m m . 

B. Cost Measurement 

Cost measurement mainly considers the execution time and 

file size of original and obfuscated programs. Let u 

instructions be executed k times in the condition of looping, if 

one instruction will cost a unit of storage space and execution 

time, the cost of space and time will be u and uk respectively. 

Instruction fragments are generated by transformation rules, 

and let m kinds of instruction fragments be generated after 

first time obfuscation, and obfuscation will be applied to the 

instruction fragments for n times. If the length of one 

instruction fragment is sn, the time cost of obfuscated program 

is 

1

(2 2 )



k

n n

n

n

k s , and the space cost of obfuscated program is 

1

0

2 (2 ) (2 ) 




k

n k

n

n

m s m
. 

As the obfuscation time increased, the structure of control 

flow graph will be greatly complicated, and the file size of 

program will increase, and the number of instructions will be 

expanded. When we use the iterative obfuscation to transform 

programs, the time of iteration need to be controlled for the 

trade-off among space cost, time cost and potency. 

C. Deobfuscation Measurement 

The existing deobfuscation algorithms are based on the 

optimization theory [33], including peephole optimization, 

constant propagation, constant folding, operand folding, and 

stack optimization. These methods can remove junk 

instructions and invalid branches in functions that 

deobfuscate redundant codes to a certain extent. 

Diversified instruction fragments are generated with junk 

instructions insertion, register replacement and some other 

transformations, therefore deobfuscation algorithms can 

optimize some instruction fragments. Equivalent instruction 

fragments in multi-way branches are generated by equivalent 

rules of instruction replacement and instruction expansion 

that present diversity. If these fragments will be normalized, 

the semantics of different instruction fragments will be 

analyzed, and it is very difficult to deobfuscate the 

obfuscation. 

D. Stealth Measurement 

Stealth measures the difficulty of recognizing whether 

obfuscation or not, the similarity of original and obfuscated 

programs can be the stealth metric of quantitative analysis. 

Similarity of programs can be calculated with sequence, set 

and graph formula [34]. 

To measure the stealth of obfuscation, similarities of 

original and obfuscated programs are calculated, similarity 

formula based on maximum common subgraph is used. Let G, 

G1 and G2 be graphs, if a subgraph in G1 is isomorphism as G, 

and a subgraph in G2 is isomorphism as G, so that G is the 

common graph between G1 and G2. If there be no common 
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subgraph G’ that has more nodes than G, and G will be the 

maximum subgraph of G1 and G2 denoted by G=mcs(G1, G2). 

The similarity of G1 and G2 is shown in formula (2). 

1 2

1 2

1 2

| ( , ) |
( , )

max(| |, | |)


mcs G G
sim G G

G G
,where | | | | | | G v e     (2) 

 

TABLE V: SIZE OF ORIGINAL AND OBFUSCATED PROGRAMS 

Program Name Original program size 

(kb) 

Program size of one time 

iteration (kb) 

Program size of two times 

iteration (kb) 

Program size of three times 

iteration (kb) 

ShellSort.exe 29 31.5 32.5 34 

InsertionSort.exe 29 31.5 32.5 38.5 

BubbleSort.exe 29 31.5 33 42.5 

QuickSort.exe 29 32 33.5 42.5 

 

TABLE VI: EXECUTION TIME OF ORIGINAL AND OBFUSCATED PROGRAMS 

Program Name Original program 

execution time (ms) 

Program execution time  of one 

time iteration (ms) 

Program execution time of two 

times iteration (ms) 

Program execution time of three 

times iteration (ms) 

ShellSort.exe 30.7 320.6 495.9 633.6 

InsertionSort.exe 5529.9 63763.1 170169.4 339284.4 

BubbleSort.exe 14507.6 55820.5 58027.2 60454.5 

QuickSort.exe 15.4 39.3 69.3 138.9 

 

TABLE VII: BASIC INFORMATION OF DEOBFUSCATION PROGRAMS 

Program  Name File Size(kb) Execution Time(ms) Number of Basic Block Number of Edge Number of Instruction 

Shell1_deo 31 310.7 21 27 122 

Shell2_deo 32 452.6 48 66 354 

Shell3_deo 33 603.8 113 158 624 

Insert1_deo 31 6074.5 17 22 95 

Insert2_deo 32 146632.1 58 81 371 

Insert3_deo 36 296981.6 363 376 1453 

Bubble1_deo 31 48336.1 17 22 99 

Bubble2_deo 32 53779.5 84 120 443 

Bubble3_deo 40 578841.2 368 532 2333 

Quick1_deo 30.5 32.6 32 47 187 

Quick2_deo 31.5 55.8 113 170 610 

Quick3_deo 40 113.3 514 751 2764 

 

V. EXPERIMENT AND ANALYSIS 

Based on the environment that is Intel(R) Core(TM)2 CPU 

1.86GHz, Microsoft Windows XP Professional 5.1.2600 

Service Pack 3, Visual Studio 2008, with the obfuscation 

steps, obfuscation based on instruction fragment 

diversification and control flow randomization is 

implemented, programs of Shell Sorting, Insertion Sorting, 

Bubble Sorting and Quick Sorting are obfuscated, the source 

code of four programs are shown in Appendix A, static reverse 

analysis tool of IDA
1

 is used to analyze the obfuscated 

programs, and the performance of original and obfuscated 

programs are compared. 

A. Cost Validation 

Four debug version programs are built, and their control 

flow graphs are constructed by static disassembly. They are 

obfuscated by the followed method. Firstly, instruction 

fragment will be divided into two parts that will generate three 

kinds of instruction fragments respectively with the 

instruction equivalent transformation rules, and the forms of 

these fragments are different, but they are 

semantics-preserving. Random function is used to choose 

these instruction fragments. When the iteration times are 1, 2 

and 3 respectively, a set of obfuscated programs are 

constructed, the size of original and obfuscated programs are 

shown in Table V. As the iteration times increased, the file 

size of programs will be increased. To reduce other factors 

that may affect program execution, the average execution 

 
1 IDA Multi-Processor Disassembler and Debugger. 

http://www.hex-rays.com 

time of 10 times are measured. Sorting programs are used to 

sort 50000 numbers generated by random function, the 

execution time of original and obfuscated programs are 

shown in Table VI. Due to the various sorting algorithms, 

execution time of different sorting programs is different. As 

the iteration time increased, and the number of random 

function and instruction is increased, it will enhance the 

program time overhead. 

B. Potency Validation 

Benchmark programs are obfuscated by obfuscation as 

iteration time being 1, 2 and 3. With the IDA plus, the number 

of basic blocks, edges and instructions can be gained that are 

shown in Fig. 4-Fig. 6. The numbers of basic blocks in four 

original programs are shown in Fig. 4, they are 14, 10, 11 and 

11, and they will be exponentially increased with instruction 

fragments diversification, as iteration time be 3, the numbers 

of basic blocks are 113, 363, 368 and 514. The numbers of 

control flow edges in four original programs are shown in Fig. 

5, they are 17, 12, 13 and 15. With multi-way branches and 

random functions, control flow paths are increased greatly, 

when iteration time is 3, they are 158, 376, 532 and 751. The 

numbers of instructions are shown in Fig. 6, the total numbers 

of instructions of programs are 74, 54, 56 and 71. With 

equivalent instruction expansion rules, diversified instruction 

fragments will be generated, and the numbers of instructions 

will be increased. With one time iteration, the numbers of 

instructions are 157, 119, 124 and 221. While the iteration 

time is three, the numbers of instructions in four programs are 

860, 1949, 2869 and 3230. After many times iteration, it will 

be more difficult for attackers to reverse analyze obfuscated 

programs. 

International Journal of Computer Theory and Engineering, Vol. 8, No. 4, August 2016

308



  

ShellSort.exe InsertionSort.exe BubbleSort.exe QuickSort.exe
0

100

200

300

400

500

600

Benchmark Program

N
u
m

b
e
r 

o
f 

B
a
s
ic

 B
lo

c
k
s
 i
n
 P

ro
g
ra

m

 

 

Original Program

Iteration Obfuscation Program(K=1)

Iteration Obfuscation Program(K=2)

Iteration Obfuscation Program(K=3)

 
Fig. 4. Basic blocks number of original and obfuscated programs. 
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Fig. 5. Control edges number of original and obfuscated programs. 
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Fig. 6. Instructions number of original and obfuscated programs. 

 

 
Fig. 7. Control flow graph of original and obfuscated (1-3 times iteration) shell 

sorting program. 

Obfuscated programs of Shell Sorting, Insertion Sorting, 

Quick Sorting, and Bubble Sorting are constructed, and their 

control flow graphs are generated by IDA, all of them are 

shown in Fig. 7-Fig. 10. The original control flow graphs of 

four sort programs are simple, as the iteration time increasing, 

their control flow graphs will be complicated, and the 

difficulty of static and dynamic reverse analysis will be 

increased. 

Execution traces of four sorting programs can be obtained 

by dynamic tracking. With the same input for many times, the 

execution traces of program are same. Through iteration 

obfuscation, control flow structure of sorting programs will be 

complicated, and the execution paths will be diversified. Each 

execution path will be different by affecting instruction 

fragment diversification and control flow randomization, and 

iteration obfuscation can resist dynamic reverse analysis to a 

certain extent. 

 

 
Fig. 8. Control flow graph of original and obfuscated (1-3 times iteration) 

insertion sorting program. 

 

C. Deobfuscation Validation 

Open source tool optimice
2
 is used to attack obfuscated 

programs, and it can validate the deobfuscation performance 

of obfuscation. The tool implements control flow reduction, 

junk instruction removing, constant propagation and folding. 

When diversified instruction fragments are generated with 

junk instruction insertion, deobfuscation tool can effectively 

remove the invalid instructions in multi-way branches, but 

cannot normalize the instruction fragments in different 

branches. Thus the number of instructions in basic block will 

be reduced, but the control flow graph will not be changed. 

Four sort programs are deobfuscated by the tool, the detail 

information are shown in Table VII. The numbers of basic 

blocks and edges in obfuscated programs will not be changed 

by deobfuscation, their control flow graph will not be changed. 

Due to the deobfuscation algorithm, the size and instruction 

 
2Code deobfuscation by optimization. http://code.google.com/p/optimice 
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number of programs are decreased to some extent, thus which 

decreases the program execution times, and it can be 

validated that iteration obfuscation have ability to resist the 

deobfuscation attacks. 
 

 
Fig. 9. Control flow graph of original and obfuscated (1-3 times iteration) 

quick sorting program. 

 

 
Fig. 10. Control flow graph of original and obfuscated (1-3 times iteration) 

bubble sorting program. 

 

D. Stealth Validation 

Stealth can be determined by the similarity of original and 

obfuscated programs. Similarity of original and 3
rd

 time 

iteratively obfuscated programs are calculated, the values are 

8.32%, 12.45%, 7.92%, 8.35% and 7.02%. It reflects that 

iteration obfuscation greatly increases the number of control 

flow nodes and edges. With iteration obfuscation, the 

structure of control flow graph is changed, and the stealth is 

low on the whole, it is easy for attackers to determine whether 

program is obfuscated or not. 

 

VI. CONCLUSION AND FUTURE WORKS 

Obfuscation based on instruction fragment diversification 

and control flow randomization is proposed, the rules of 

instruction expansion, equivalent instruction replacement, 

register transformation, junk instruction insertion and 

instruction position exchanging are used to construct 

diversified fragments, and multi-way branches are 

constructed. Instruction fragments are used to be the 

execution sequences, random functions are used to choose the 

multi-way branches. By iteration obfuscation, the structure of 

control flow graph will be complicated, nodes and edges of 

control flow graph will be greatly increased, and the difficulty 

of static reverse is increased. Multi-way branches are 

constructed, instruction trace will be different as the same 

input, and the difficulty of dynamic reverse is enhanced. In the 

future work, idea of diversification and randomization will 

apply to other obfuscation such data obfuscation and layout 

obfuscation to improve the potency and stealth of the 

obfuscation. 

APPENDIX A 

ShellSort.exe 
void ShellSort(int v[],int n){ 

 int gap,i,j,temp; 

 for(gap=n/2;gap>0;gap /= 2){ 

  for(i=gap;i<n;i++){ 

  for(j=i-gap;(j >= 0) && (v[j] > v[j+gap]);j -= gap ){ 

    temp=v[j]; 

    v[j]=v[j+gap]; 

    v[j+gap]=temp; 

   } 

  } 

 } 

} 
 

InsertionSort.exe 

void InsertionSort(int input[],int len){ 

int i,j,temp; 

int ran; 

for (i = 1; i < len; i++) 

{ 

  temp = input[i]; 

  for (j = i - 1;j>-1&&input[j] > temp ; j--){ 

   input[j + 1] = input[j]; 

   input[j] = temp; 

  } 

} 

} 
 

BubbleSort.exe 

void BubleSort(int a[],int n){ 

 int i,j,k; 

 int ran; 

 for(j=0;j<n;j++){ 

  for(i=0;i<n-j;i++){ 

   if(a[i]>a[i+1]){ 

    k=a[i]; 

    a[i]=a[i+1]; 

    a[i+1]=k; 

   } 

  } 

 } 
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} 

 

QuickSort.exe 

int Partition(int data[],int low,int high){ 

 int mid; 

 int ran; 

 data[0]=data[low]; 

 mid=data[low]; 

 while(low < high){ 

  while((low < high) && (data[high] >= mid)){ 

   --high; 

  } 

  data[low]=data[high]; 

 

  while((low < high) && (data[low] < mid)) { 

   ++low; 

  } 

  data[high]=data[low]; 

 } 

 data[low]=data[0];  

 return low; 

} 

 

void QuickSort(int data[],int low,int high){ 

 int mid; 

 if(low<high){ 

  mid=Partition(data,low,high); 

  QuickSort(data,low,mid-1); 

  QuickSort(data,mid+1,high); 

 } 
} 
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