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Abstract—The Ising model, consisting of magnetic spins, is 

the most important system in understanding phase transitions 

and critical phenomena. For the first time, the exact integer 

values for the density of states of the triangular-lattice Ising 

model with eighteen spins on a side and free boundary 

conditions are evaluated. Also, the exact specific heats are 

obtained for the triangular-lattice Ising ferromagnet and 

antiferromagnet at the same time. 

 
Index Terms—Exact computation, triangular-lattice Ising 

model, density of states.  

 

I. INTRODUCTION 

Phase transitions and critical phenomena are the most 

universal phenomena in nature. The Ising model, consisting 

of magnetic spins, is the simplest system showing phase 

transitions and critical phenomena at finite temperatures. The 

Ising model has played a central role in our understanding of 

phase transitions and critical phenomena [1]. Also, the Ising 

model explains the gas-liquid phase transitions accurately. 

Based on the Ising model, various theoretical methods such as 

mean-field theory, power-series expansion and analysis, 

renormalization group, and canonical transfer matrix have 

been developed to understand phase transitions and critical 

phenomena.  

In particular, computer simulations have been the most 

popular method in studying phase transitions and critical 

phenomena due to the recent fast growth of computer 

hardware and software technologies. To investigate the phase 

transition and critical behavior of a given system as a 

continuous function of temperature, to obtain the partition 

function zeros showing most effectively phase transitions and 

critical phenomena, and to perform microcanonical analysis 

for phase transitions and critical phenomena, we need to 

calculate the density of states as a function of energy. The 

most computational methods to calculate the density of states 

yield the approximate density of state [2]-[13]. 

On the other hand, the microcanonical transfer matrix 

[14]-[39] is an exact computation method to calculate the 

exact integer values for the density of states. Until now, the 

exact integer values for the density of states of the Ising model 

on equilateral triangular lattice with free boundary conditions 

have been obtained up to fifteen spins on a side 
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(corresponding to 36120 103.12   states) [15]. In this work, 

for the first time, we evaluate the exact integer values for the 

density of states of the triangular-lattice Ising model with 

eighteen spins on a side (corresponding to 51171 100.32   

states). It is very difficult task to classify all 2
171

 spin 

configurations according to their energy values.  

Using the exact density of states of the triangular-lattice 

Ising model with eighteen spins on a side, we obtain much 

more accurately the specific heats of two different systems 

(the triangular-lattice Ising ferromagnet and antiferromagnet) 

at the same time. Based on the specific heats of the 

triangular-lattice Ising ferromagnet and antiferromagnet, we 

discuss the phase transitions and critical phenomena of these 

systems. 

 

II. ISING MODEL 

The Ising model on the equilateral triangular lattice [15] 

with eighteen spins on a side and free boundary conditions is 

defined by the Hamiltonian  
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,
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where J is the coupling constant, <i, j> indicates a sum over 

all bonds between any nearest-neighbor spin pairs σi and σj, 

and σi=±1 (1 for upward magnetic spin and –1 for downward 

magnetic spin). On triangular lattice, each spin has the six 

nearest neighbor spins except for the spins on the boundary 

edges. The triangular-lattice Ising model with L spins on a 

side has N=L(L+1)/2 spins and B=3(N–L) bonds. Therefore, 

there are N=171 spins and B=459 bonds for the equilateral 

triangular lattice with eighteen spins on a side (L=18) and free 

boundary conditions. 

Next, we define the density of states, Ω(E), with a given 

energy 
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where E is integers between 0 and 4B/3=612 for L=18. Then, 

the partition function of the triangular-lattice Ising model (a 

sum over all possible spin configurations) 
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where β=1/kT (k is the Boltzmann constant and T is 

temperature), can be written as 
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thermodynamics, statistical mechanics, and physical 

chemistry. 

 

III. DENSITY OF STATES 

The microcanonical transfer matrix [14]-[39], an exact 

computation method, is applied to calculate the exact integer 

values for the density of states of the Ising model on the 

equilateral triangular lattice with eighteen spins on a side 

(L=18, N=171, B=459). First, an array )1( , which is indexed 

by energy E and the eighteen spin variables (1) (1 18) iσ i  

for the first row, is initialized with the seventeen horizontal 

bonds as 
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where δ  is the Kronecker delta. Second, by introducing the 

seventeen spin variables (2) (1 17) iσ i  for the second row 

and considering the thirty-four vertical bonds between the 

first and second rows, the array )1(  is modified into 
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After taking the sixteen horizontal bonds of the second-row 

spins, we obtain 
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Next, for the third row, if we introduce the sixteen spin 

variables (3) (1 16) iσ i  and consider the thirty-two vertical 

bonds, we have 
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Now, the fifteen horizontal bonds connecting the spins in 

the third row are taken into account by shifting the energy: 
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After repeating these steps, the final spin )18(

1 in the 

eighteenth row is introduced with the two vertical bonds such 

as 
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Finally, the exact integer values for the density of states of 

the triangular-lattice Ising model with eighteen spins on a side 

is given by 
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as shown in Table I, II, and III. The sum over all densities of 

states is exactly equal to the number of all possible spin 

configurations: 

.100.32)( 51171 
E

E  

TABLE I: EXACT INTEGER VALUES FOR THE DENSITY OF STATES ( ) E  OF 

THE ISING MODEL ON THE EQUILATERAL TRIANGULAR LATTICE WITH 

EIGHTEEN SPINS ON A SIDE AND FREE BOUNDARY CONDITIONS, AS A 

FUNCTION OF ENERGY E (=0~248) 

E ( )E  

0 

4 

8 

12 

16 

20 

24 

28 

32 

36 

40 

44 

48 

52 

56 

60 

64 

68 

72 

76 

80 

84 

88 

92 

96 

100 

104 

108 

112 

116 

120 

124 

128 

132 

136 

140 

144 

148 

152 

156 

160 

164 

168 

172 

176 

180 

184 

188 

192 

196 

200 

204 

208 

212 

216 

220 

224 

228 

232 

236 

240 

244 

248 

2 

6 

120 

698 

4926 

32898 

183598 

1077360 

5732928 

29742908 

149995056 

725682150  

3441025398  

15850948398  

71378421714  

314842377450  

1360270736442  

5773198112370  

24079429379534  

98835422837142  

399631763275344  

1593020943584184  

6266017974032538  

24336615611053698  

93394373030137502  

354349069960204254  

1329908486113610586  

4939747629298345624  

18166324908534247938  

66172517125822650006  

238828273199602595280  

854324137189574254854  

3029724735335329863798  

10654321072330846416222  

37159871767171454952942  

128563609273897927138074  

441279588731867009146194  

1502816275339314440210718  

5078404212126656898914814  

17029451373598977602838314  

56668176518722621470880116  

187131754821406286835976524  

613227992362498144545682982 

1994123411279023994947380294  

6434584028140782226639532112 

20601752121939915250005359616  

65444705313464469115525800978 

206251950660318896085506890758  

644817488924589508544194155446 

1999625296622038907636275808550  

6150176507800464864457145926374 

18758764707707840199874164120552  

56734322502598178279959938358008 

170120524893135900490975462542828  

505682708225017649369928170719504 

1489870977644177452447531651457436  

4350151776353064838774025656713900 

12585743860761393660220709604901732  

36074742254773441282921967499712296 

102425068949841268490650936689064146  

288014606367086068382310243413145754 

801959230924593393823151339228959818  

2210760545258121573655221760353521826  

 

The ferromagnetic (J > 0) ground states correspond to 
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2,)0(  E  

and the antiferromagnetic (J < 0) ground states are quite 

degenerate such as 

( = 612) = 23665003296449525435806996826,Ω E  

corresponding approximately to .104.2 28  

The largest density of states is  

( = 460) = 223344742615528798625291061965

                       299440306354840893412,

Ω E
 

corresponding approximately to .102.2 50  This kind of a 

large integer number is stored in a computer by using a 

positional numeral system with a radix (or base) of 2
31

 such as 

 
j

j

jPE .)2()460( 131  

Here, we need the six Pj’s as follows: 

143620068,1P  

2 1321816796,P  

3 1227133195,P  

4 1023651300, P  

5 424290496,P  

and 

4890.6P  

It should be noted that the exact integer values for the 

density of states of the Ising model on the equilateral 

triangular lattice with eighteen spins on a side and free 

boundary conditions are obtained for the first time. Even the 

approximate values for the density of states of the 

triangular-lattice Ising model with eighteen spins on a side 

and free boundary conditions have never been calculated by 

using other non-exact methods. 

 

IV. EXACT SPECIFIC HEATS 

Given the exact integer values for the density of states 

Ω(E), the free energy F is exactly given by 

).(ln TZkTF   

From the exact free energy, the exact thermodynamic 

functions can be obtained. For example, the exact specific 

heat can be expressed as [32], [37] 

).(ln)()(
2

2
12 TZNkTTC



   

It should be noted that the exact specific heats of two 

different systems (the ferromagnet and the antiferromagnet) 

can be obtained at the same time in this work. 

Fig. 1 shows the exact specific heat of the Ising 

ferromagnet (J>0) on the equilateral triangular lattice with 

eighteen spins on a side and free boundary conditions. The 

specific heat shows the sharp peak at T=3.232J/k, signaling 

the phase transition between the low-temperature 

ferromagnetic phase and the high-temperature paramagnetic 

phase. 
 

TABLE II: EXACT INTEGER VALUES FOR THE DENSITY OF STATES ( ) E  OF 

THE ISING MODEL ON THE EQUILATERAL TRIANGULAR LATTICE WITH 

EIGHTEEN SPINS ON A SIDE AND FREE BOUNDARY CONDITIONS, AS A 

FUNCTION OF ENERGY E (=252~500) 

E ( )E  

252 

256 

260 

264 

268 

272 

276 

280 

284 

288 

292 

296 

300 

304 

308 

312 

316 

320 

324 

328 

332 

336 

340 

344 

348 

352 

356 

360 

364 

368 

372 

376 

380 

384 

388 

392 

396 

400 

404 

408 

412 

416 

420 

424 

428 

432 

436 

440 

444 

448 

452 

456 

460 

464 

468 

472 

476 

480 

484 

488 

492 

496 

500 

6032574296702207567992159617631054388  

16291195531867254409681753011959573286 

43531947414286528716741831764080745418 

115075126573566581358408907157488958812  

300873678653252315209962248506197217320  

777902547118917508886357885597026371366  

1988433439781483966312131893603101542126  

5023958673368655601048981585747322922204  

12543885244867446025652519130032502285132 

30943435281169248372287421652274949167448 

75396697989825485392612164879262241525340 

181416915513496537802958960691994207820984 

430959549961245438057562394617210011264808 

1010455910177551377990340814506184069953140 

2337794510734717746244322204432816224734456 

5335638573482537573490477967589333546397300 

12009846987882627333999323765431938145155756 

26652393902684429250696803548595613647326734 

58298310736110255123305274354978237303067770 

125651170264436331856921237358213453896069668 

266768220748538447476589754247011255114467706 

557726120368120620395722344793580882465983536 

1147851147704756884493869558888840041533574048 

2324780929925745325235296380495955520750686530 

4631910578468230284770764119614881772222106046 

9075387362796883330336224354705276013549719348 

17479838923327154950510934380492643075364900888 

33083560464058716419199680375817998937570681962 

61506299526417504864955335620459187482958031548 

112275207284978890115800573591860818881023776790 

201151604933687224887819792212492026300496077482 

353549914805816553550110672952201751485673345844 

609356184799887613362709199930535233554098666606 

1029398830001625559753762008003729222640666522202 

1703646342247042457834241306547706659577566228218 

2760845787272406555573996114171202185297260231814 

4378719827587143093460219433647641846027105118498 

6792992427163107607330591388598583409311604038806 

10302472823119506572551114792442523831590149014978 

15266370194980358625705190888815790266438642426302 

22089262612143002704248051819439686486356276466066 

31189169632766629985795474696554089831603362694564 

42945512870251241349677149761961196285738164376340  

57626836356124675863137961179245217030105494120710  

75303113020939996316545143187513130695899814814958  

95753806349040845154443893768987044017052089168192  

118389329416043473011419930462233300764094757778936  

142208141171905046740916723511813585532991827339074  

165812058367006765384057007646193071136749750987574  

187496418825096013726516930528609480748581983635754  

205418817021640234882736178728743807730007752178450  

217831755706261800880699734153843652400701430461078  

223344742615528798625291061965299440306354840893412  

221166015404198799821872320331558576084831981659624  

211269309152492812119488374854525701462767985296124  

194440864822807089868319235365666649412871411180940  

172185929905909902442436348164816469818599994947408  

146506912841695542187622155503529962943797769036172  

119597709009310355684848476855733332051653835280332  

93520159958647237984995369509626383559951598328372  

69931766814162508421556977727470656380144332831802  

49917393007869262174557191391305210208311870740686  

33947391382667604774400754087373481647747354286902  
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TABLE III: EXACT INTEGER VALUES FOR THE DENSITY OF STATES ( ) E  OF 

THE ISING MODEL ON THE EQUILATERAL TRIANGULAR LATTICE WITH 

EIGHTEEN SPINS ON A SIDE AND FREE BOUNDARY CONDITIONS, AS A 

FUNCTION OF ENERGY E (=504~612) 

E ( )E  

504 

508 

512 

516 

520 

524 

528 

532 

536 

540 

544 

548 

552 

556 

560 

564 

568 

572 

576 

580 

584 

588 

592 

596 

600 

604 

608 

612 

21950781726445057354293572646890974133910427062586  

13465804322590765693109900843417171490205709454840  

7818704538801627208348282883093631189281721542472  

4286118920863464319012351239079820313385928372184  

2212305652992360430441136002143791362484968188504  

1072041653307650893550563631998246073083876491714  

486181006450383850841607109660327484773133664052  

205649417094675483217121122612034006852750305776  

80835122735378429057361360565289896153212053658  

29408820840369626431217743962720078903176877928  

9859751964338024711704821054735749328800880912  

3031755345218311633082572397197569224058917256  

850526355685300635904139272904828377861799116  

216439491775713945247246780347735395063388510  

49642320030960240892240905384932124041386758  

10188582054939574080136950772359492660736290  

1856076608608365806023004991979821849783174  

297351124582870094358418260738393802564494  

41444399841439401286605731668575495441304  

4962271488410140540704733439860177529052  

502673946829119573918563783000154607602  

42275793284432184726316549690456143940  

2881565478570894451055004821430792480  

154143255292560847456301000415328128 

6182853767838614190348673645213992  

173315951796170858726377113576180 

2994826377002713783475651283510  

23665003296449525435806996826 

 

 
Fig. 1. Exact specific heat (in units of the Boltzmann constant k) per volume 

as a function of temperature (in units of J/k) for the triangular-lattice Ising 

ferromagnet (J > 0) with eighteen spins on a side. 

 

 
Fig. 2. Exact specific heat (in units of k) per volume as a function of 

temperature (in units of |J|/k) for the triangular-lattice Ising antiferromagnet 

(J < 0) with eighteen spins on a side. 

Fig. 2 shows the exact specific heat of the Ising 

antiferromagnet (J<0) on the equilateral triangular lattice with 

eighteen spins on a side and free boundary conditions. The 

specific heat shows a peak at T=1.340|J|/k. But the peak of the 

triangular-lattice Ising antiferromagnet is not sharp, 

compared to the peak of the triangular-lattice Ising 

ferromagnet. Rather, the peak for the specific heat of the 

triangular-lattice Ising antiferromagnet resembles the 

Schottky-anomaly peak for the specific heat of the 

one-dimensional Ising model [40]. 

 

V. CONCLUSION 

For the first time, we have evaluated the exact integer 

values for the density of states of the Ising model on the 

equilateral triangular lattice with eighteen spins on a side and 

free boundary conditions, by classifying all 51171 100.32   

spin configurations according to their energy values. Using 

the exact density of states of the triangular-lattice Ising model 

with eighteen spins on a side, we have obtained much more 

accurately the specific heats of two different systems (the 

triangular-lattice Ising ferromagnet and antiferromagnet) at 

the same time. Based on the specific heats of the 

triangular-lattice Ising ferromagnet and antiferromagnet, we 

have investigated the phase transitions and critical 

phenomena of these systems. The specific heat of the 

triangular-lattice Ising ferromagnet has shown a sharp peak, 

signaling the phase transition between the low-temperature 

ferromagnetic phase and the high-temperature paramagnetic 

phase. On the other hand, the specific heat of the 

triangular-lattice Ising antiferromagnet has shown the 

Schottky-anomaly peak. 
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