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Abstract—An efficient and reliable key-establishment 

method is the most important building block of any secure 

cryptographic channels. Public-key cryptography was a 

revolution in cyber security key administration and enabled 

peers to dynamically create keys for each cryptographic session. 

The Diffie-Hellman (DH) algorithm is the first published 

public-key cryptosystem. DH and its variants are extensively 

investigated, standardized, and widely used in network security 

protocols. However, DH is vulnerable to some concerning 

mathematical, implementation-related and network-specific 

attacks. Defending against these attacks is important in secure 

implementation of DH in network protocols. This paper 

categorizes various attacks on DH scheme with focuses on 

attacks related to the DH integration in network protocols 

(referred as network-specific attacks). Furthermore, we 

comparatively review the approaches taken by commercial 

protocols to tackle network attacks and analyze the strength of 

these solutions. 

 
Index Terms—Key-exchange, DH, ECDH, MiTM, DoS, reply 

attack, SSH, ZRTP, SSL/TLS, IPsec, IKEv2. 

 

I. INTRODUCTION 

A secure and reliable key distribution system is the most 

important ingredient of constructing cryptographic channel 

between two or more peers. Key distribution may be 

accomplished in a number of ways: 

 Manual delivery of key between peers 

 Sending the key through existing cryptographic channel 

 Taking Advantage of public-key cryptography schemes 

The first two options have proven to be problematic. 

Physical delivery of keys through face-to-face meeting or 

trusted courier can be unsafe and impractical for large 

number of participants. The security of sending a new key 

through an existing secure channel depends on security of 

previously established channel and the previous key 

exchange. These problems have been addressed by 

introducing the public-key cryptography. Diffie-Hellman 

(DH) key exchange scheme was the first published 

public–key algorithm [1] and later standardized by IETF in 

[2]. This protocol is widely used in many important 

commercial protocols. However, DH is subject to number of 
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mathematical and network attacks. Particularly, it is required 

to implements DH along with techniques to tackle 

network-specific attacks. This paper first reviews the DH key 

exchange scheme, then study some of the most important 

network attacks on this scheme, and finally analysis the 

suggested methods to counter these attacks in commercial 

protocols. 

 

II. DESCRYPTION OF DH KEY-EXCHANGE 

The DH key exchange protocol allows two peers to 

negotiate a secret over public communication medium. The 

security of DH relies on the difficulty of computing discrete 

logarithm over a large prime order cyclic group. 

To negotiate key using DH, parties agree on a cyclic group 

G of prime order   and generator  . Then, user A selects a 

random      and computes             and sends    

to B. similarly B calculates    from    and sends it to A. 

Users A and B compute    
        and   

        to 

achieve the shared secret of            .  
There exist a variant to the DH over elliptic curve 

cryptography [3] and defined as ECDH [3-5]. ECC use two 

families of curves: (1) prime curves defined with the cubic 

equation of                        over   , and 

(2) binary curves defined with the cubic equation of 

               over         . The security 

ECDH relies on intractability of EC discrete logarithm. Two 

parties first agree on a random elliptic curve with group of 

points         and a base point            with a large 

prime order of  . Then, user A selects a random integer 

     and computes        and sends it to B. Similarly, 

B calculates    from random    and sends it to A. User A 

and B calculates      and user       to achieve the shared 

secret key           . The ECDH requires a smaller 

key/parameters size and is more efficient at the same level of 

security [6]. 

 

III. DH VULNRABILITIES 

A. Attacks on Mathematical Structure of DH 

These attacks affect mathematical design and 

computational texture of DH algorithm and include [7]: 

 Degenerate message attacks: Cases that protocol is not 

effective (unity public keys lead to unity shared key). 

 Simple exponent attack: If one of the private keys is 

simple enough to be determined and break the protocol. 

 Simple substitution attack: In this attack, an adversary 

substitutes one of the public-keys with one “1” which 

leads to both parties computing the shared secret key 

equal with one. 
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 Attacks based on Pohlig-Hellman algorithm: This 

algorithm can solve the discreet logarithm problem of 

   if the prime factorization of generator’s order 

contains small primes [8]. 

 Attacks based on Composite order subgroups: 

Subgroups without a large prime order can be exploited 

by an adversary and generally is applicable to primes of 

the form of (                     [9].  

 Attacks based on Pollard-Lambda Algorithm: This 

algorithm enables an adversary to compute the private 

exponent ( ) from   , if   is known to lye within a 

certain intervals [10]. 

 Attacks based on the number field sieve algorithms: 

Inadequately chosen small groups and public/private 

exponents are vulnerable to be compromised. 

 Attacks on prime order subgroups: This attack [11] 

computes part or all of the secret key using small order 

subgroups in   . 

B. Attacks on Imlementation Detail of DH 

These attacks are concerned with the protocol 

implementation and include [7]: 

 Attack on context: In this attack an adversary blocks or 

deletes previous messages using sequence numbers.  

 Obtaining ephemeral secret from memory: If parties 

don’t clear private secrets from memory, the secrets 

might be written to disk and extracted through unwanted 

access, or even be extracted from RAM. 

 Timing attack: This attack [12] relies on the fact that the 

time taken for most of the modular exponentiations is 

dependent on the input, and an adversary might be able 

to precisely determine the computation time.    

C. Network Attacks of DH Integration in Protocols 

These attacks include common network attacks which are 

also applicable to DH implementation in network protocols 

for key-exchange purposes. The most important attacks on 

protocols using DH are as below: 

 Man-In-The-Middle (MITM) attack: An opponent 

impersonates peer A to peer B and vice versa. 

 Denial-Of-Service (DoS): An opponent requests a high 

number of DH keys to clog the victim’s system. 

 Reply attack: attacker records and replays legitimate 

packets to break the connection or handshake session 

with out-of-order and irrelevant packets. 

Attacks on implementation of DH and mathematical 

attacks linked to DH architecture are not limited to those 

issues reviewed here; Additional attacks and in depth 

analysis is beyond the scope of this paper. However, most if 

not all of these attacks can be prevented by proper 

implementation: using adequate and proven techniques in 

realization of  the algorithm (e.g. using a source of 

randomness to defend against a timing-attack); being 

cautious about handling private secrets; and following 

specific recommendations in selecting the subgroups, 

public/private exponents, modulo and generator. However, 

the network attacks on protocols which use DH are source of 

serious concern. Properly implemented DH using secure 

groups and public/private parameters is can still be 

vulnerable to certain deadly attacks if the host protocol 

doesn’t provide assurance against network attacks. These 

attacks are not linked to the DH algorithm directly, and more 

concern with the architecture of the host protocol which use 

DH algorithm.  

Note: There exists another type of network-specific attacks 

which targets the physical layer of network (e.g. network 

connectivity) [13]-[16]. These attacks target the physical 

layer of network connection, and applicable to all higher 

level network-oriented protocols. Investigating the details of 

these attacks is out of scope of this paper. 

 

IV. DH IN COMMERCIAL PROTOCOLS 

A. SSH 

Developed by SSH communication security Ltd is 

application layer protocol for secure remote login, command 

execution, remote shell service and other secure network 

services. The SSH [17] protocol consists of three major 

components: (1) SSH transport layer protocol [18] which 

provide server authentication, confidentiality, integrity 

protection and optional compression; (2) SSH user 

authentication [19] which describes user-side 

authentication(to server); and (3) SSH connection protocol 

[20] which provides secure network service over SSH 

transport protocol and essentially is responsible to multiplex 

the multiple logical connection in secure authenticated 

connection(tunnel). SSH works over any 8-bit clean, 

binary-transparent transport with (recommended) 

transmission error protection, but usually is used over TCP. 

In SSH, the core protocol use DH algorithm for key 

generation; however, the RSA was later suggested as 

alternative to DH in [21]. Also, other algorithms based on 

ECC, specifically ECDH, ECMQV and ECDSA, were 

standardized for SSH in [22]. 

B. ZRTP 

The ZRTP[23] was developed by Phil Zimmerman and 

defines a cryptographic key agreement scheme for VoIP 

(voice over internet protocol) applications which rely on 

real-time protocol (RTP) [24]. ZRTP enables two VoIP 

parties to agree on session key/parameters for establishing 

secure real-time transport protocol (SRTP) [25]. The SRTP (a 

profile of RTP), in turn provides RTP with authentication, 

confidentiality and reply protection. ZRTP also use two 

non-DH modes.  

C. TLS 

Netscape originated secure socket layer (SSL) [26] and its 

internet standard successor transport layer security (TLS) 

[27] are multi-purpose and real-time transport layer 

cryptographic protocol. TLS can supply connection-oriented 

and secure channel (tunnel) between peers and must run over 

reliable transport protocol such as TCP. Different application 

layer protocols running over reliable transport channel can 

use SSL/TLS as underlying security mechanism for their data 

segments. TLS may employs (1) DH or RSA; (2) hybrid 

asymmetric algorithms including ephemeral DH with RSA 

(DHE-RSA) or DSA (DHE-DSA); (3) pre-shared key 

authentication method [28] which consist of using pre-shared 

secret lonely or in combination with RSA (RSA-PSK) or 

ephemeral DH (DHE-PSK); (4) Secure remote password 
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method (SRP) [29] authentication method which as 

side-effect generate a shared key based on DH; (5) using 

Kerberos[30]-based authentication [31] to securely deliver 

the client-generated pre-master session key to server.  

D. DTLS 

Datagram transport layer security (DTLS) [32] is a variant 

of TLS which can provide same level of security for 

unreliable datagram traffic. DTLS is based on 

stream-oriented TLS, designed to run over unreliable 

transport medium and can provide similar security to UDP, 

DCCP [33] (Datagram Congestion Control Protocol) and 

SCTP [34] (Stream Control Transmission Protocol). DTLS is 

very similar to TLS in cipher suits, key derivation and 

authentication and the main difference is the message profile 

and added mechanism for running TLS handshake over 

unreliable transfer medium.  

E. IPsec 

IPsec is peer-to-peer protocol that provide security 

standard for network layer traffic and supply 

cryptographically protection for any kind of transport layer 

packets in both IPv4 and IPv6 environments. IPsec consists 

of set of protocols in order to provide two security services: 

confidentiality, authenticity, anti-reply service, and 

connectionless integrity through ESP (Encapsulation 

Security Payload) [35] or message authenticity only through 

AH (authentication header) [36]. In IPsec, the 

mandatory-to-use algorithms for both ESP and AH modes are 

described in [37] and the keying materials and security 

parameters are established through IKEv2 (internet key 

exchange version 2) [38] protocol.  

 

V. DH NETWORK ATTACKS AND SOLUTIONS 

A. Man-in-the-Middle(MiMT) Attack 

In this attack an opponent impersonate peer A while 

communicating with peer B and vice versa. As a result of this 

attack both peers calculate the shared-key with the adversary. 

The lack of authentication in DH is motivation for MiTM 

attack and protocols need to use a mechanism to assure the 

link between public value and peer’s ID. The methods of 

commercial protocols to authenticate DH exchange can be 

classified into four main groups: 

1) Certificate (DH parameters/public-key) — TLS/DTLS 

The public DH public parameters and public key of server 

are sent to client in certificate. This method also requires 

client to provide authentication on its DH public key (e.g. 

digital signature on exchange or certificate) for mutual 

protection against MiTM attack. If client use the same 

method as server, then provided certificate must use the 

parameters (group/generator) suggested by the server. 

2) Signature on exchange — TLS/DTLS/ IKEv2 

In this method all the exchanged messages together with 

relevant peer IDs and nonces are signed with 

signature-capable certificate and sent to other peer together 

with the corresponding certificate. In TLS/DTLS client use 

the digital signature method to sign the exchange and in IPsec 

both parties sign the exchange, IDs and nonces. 

3) Signature on exchange and public-key — SSH  

In this method, the SSH server provide the mean of 

authentication by sending the hash of previously exchanged 

messages, server’s DH public key, ID of peers together with 

server’s host which is signed with server’s private key. The 

signature together with public-key pair of signing key is sent 

to user. The authenticity of the signing key may be verified 

by either (1) certificate or (2) local database (cached keys in 

user side). This method is accompanied with user 

authentication to server to tackle MiTM attack. The user 

authentication does not authenticate the exchange, but can 

authenticate the user. The user authentication is carried out 

by: 

1) User send raw public-key in a message with signature on 

that message with private key pair of that public key 

together with optional certificate which also contains the 

public-key used for authentication. The possession of a 

private key serves as authentication and sever verify the 

signature with certificate or local database. 

2) User sends a message contains an encrypted password 

3) Host-based authentication which the authentication is 

performed in client’s host. In this method, server allows 

authentication based on the host that the user is coming 

from and the user name on the remote host.  

If user authentication fails, the server allows user to retry 

the authentication and if user cannot prove its authenticity the 

server dismiss the negotiated key. In SSH server uses this 

method to sign its half of DH exchange. 

4) Signature on parameters/public-key — TLS/DTLS  

The server’s public DH parameters and key are signed by a 

signature-capable certificate and sent to client together with 

the corresponding certificate. This method also requires 

client authentication on its DH public key for mutual MiTM 

protection. In TLS/DTLS this method is used by DHE-RSA 

and DHE-DSA cipher suits. 

5) Pre-shared key — TLS/DTLS  

A key derived by some out-of-band mechanism can be 

combined with un-authenticated shared DH key and result in 

authenticated shared secret. This authenticated shared-secret 

authenticates the shared DH secret and the exchange. The 

DHE-PSK in TLS use this method. 

6) MAC with shared secret — IPsec (IKEv2) 

The MAC code of mutually obtainable block of data is 

signed using padded pre-shared secret, where the secret is 

derived from a user chosen password or derived from 

negotiated shared DH secret, nonces and SPIs. 

7) EAP methods (auth through third party server) — 

IKEv2 

The Extensible Authentication Protocol (EAP) is an 

authentication framework which can provide host plug-in 

module for many other authentication methods. There are 

many flavours of EAP which are named after the 

accompanying protocol/technique (e.g. EAP-TLS is based on 

TLS protocol, EAP-PSK based on pre-shared key). EAP 

methods employ an authentication server to grant an access to 

a network service. While EAP techniques can be mutual in 

some flavours, but typically these methods are asymmetric 

(the peer does not authenticate the authenticator), and 
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vulnerable to MiTM and consequently should be used in 

conjunction with other authentication methods for 

authenticator. It’s also possible for the EAP server and peer to 

derive a mutually authenticated key for later use. In this case, 

the EAP methods with key derivation capability must be 

used.  

8) Using cached shared secret or SAS — ZRTP  

The ZRTP uses cached shared secret to authenticate peers 

to each other and when there is no such a secret both parties 

should use a SAS (short authentication string). The SAS is 

ideally displayed for human users and each party should 

verbally compare the SAS with other party. Each ZRTP 

endpoints maintains long-term cache of shared-secrets that 

has previously negotiated with other parties and linked to that 

party with ZID (peer’s unique ID). During the DH key 

negotiation, peers first discover if they have any cached 

shared-secret in common and use it in session key 

calculation. Each party attach the series of mutually 

obtainable MAC codes to their public DH key. The key to the 

MACs are selected as bellow: 

1) Cached secret (rs1) which derived from shared-secret of 

previous session  

2) Cashed secret (rs2) which is old rs1 of previous session 

and derived from shared-secret of two session ago 

(previous previous session)  

3) Trusted MiTM PBX shared secret (pbxsecret) if the other 

party is PBX  

4) Out-of-band shared secret  

If the authenticated DH shared secret negotiation success, 

then the cached shared secret (rs1) will be updated with new 

value and (rs2) will be replaced with old (rs1). The secret 

corresponding to matching hashes are kept and mismatch 

secrets are set to null. To authenticate the exchange, one of 

the initiator’s (rs1) or (rs2) should match to responder’s either 

(rs1) or (rs2); the first match (rs1 or rs2) with matched 

auxsecret/pbxsecret (where applicable) authenticates the key 

exchanges and together with DH shared key contribute to 

final shared key calculation. If each party detect the 

mismatch between both rs1/rs2 hashes and (or) 

auxsecret/pbxsecret (where applicable) then they may use 

SAS technique and if it’s not possible to compare the SAS 

value, the session may be terminated. As extra protection, the 

initiator also sends a hash value over some information 

including its DH public value prior to DH key negotiation. 

The responder recalculates this hash value after DH 

negotiation and compares it to received hash to constrain the 

attacker only one guess to generate the correct SAS. 

9) Summary 

Summarizing the approaches of each protocol in 

authenticating DH key exchange and public-key/prams: 

In SSH, the server side authentication is based on digital 

signature on DH exchange/public-key and relies on 

authenticity of signing public-key (server’s host key). This 

key can be either sent in (1) raw format to be verified through 

local database (cached secrets) or (2) in certificate. The client 

also can (1) send its public-key in a message together with 

signature on that message by user’s private key along with 

optional certificate, (2) use password-based or (3) host-based 

authentication. When using public-key, the authenticity of 

the key can be assured by presenting it in certificate or 

verifying the key with local database. IETF has defined 

OpenPGP as standard for SSH protocol, however, later on an 

IETF draft [39] suggested the method of using X509. 

In TLS/DTLS, the server side authentication include (1) 

using public-key certificate to present CA signed DH public 

key/prams or (2) using digital signature on server’s DH 

public key/prams with signature-capable certificate. The 

client also optionally authenticate itself by (1) presenting its 

CA signed DH public key/prams in certificate or (2) use 

digital signature on previously exchanged message, nonces 

and peer IDs via signature-capable certificate. Peers 

alternatively can commit an un-authenticated exchange and 

combine out-of-band shared key with shared DH key for 

mutual authentication. The supported public-key certificate 

in TLS/DTLS is X.509. 

In IPsec(IKEv2), the exchanged messages together with 

peer IDs, nonces and SPI are called mutually obtained block 

of data and both peers mutually authenticate the shared DH 

key and exchange by: (1) providing the digital signature on 

mutually obtained block of data with signature-capable 

certificate, or (2) calculating MAC code of this data with 

shared-key which that shared key is (2.1) derived from shared 

DH key (each direction use different mutually obtainable 

shared key —  This method just provides message 

authentication a.k.a integrity protection and don’t 

authenticate the shared DH key), or (2.2) derived from 

user-chosen password or (2.3) is pre-shared key; the peers 

alternatively may use (3) EAP authentication methods. The 

IKv2 certificate types include X509, PGP, Kerberos tokens, 

SPKI and DNS signed key  

In ZRTP, both peers use hash over mutually obtainable 

MAC codes which calculated with series of cached secrets to 

authenticate their DH public keys. These secrets include: (1) 

Two secrets which derived from two shared key of previously 

negotiated sessions which is compulsory to have at least one 

match, (2) One situation dependant secret if one party is 

PBX, and (3) One out-of-band obtained shared-key. In case 

of fatal mismatch, peers may try SAS technique.  

B. Denial-of-Service(DoS) Attack 

The very damaging DoS attack consists of clogging one 

peer with bogus requests with forged source IP addresses. 

Due to computationally intensive nature of modular 

exponentiation, the DH key exchange is highly vulnerable to 

clogging (DoS) attack.  

Concerning with DH key negotiation, we can assume one 

of the peers as initiator and other one as responder. Initiator 

request DH negotiation and calculates its public-key after 

receiving the public-key of responder. Three different DoS 

attack is applicable to DH key negotiation: 

1) The attacker can send huge amount of DH negotiation 

requests with forged source IP addresses to responder so 

that the victim is compelled to compute many modular 

exponentiations to carry out the public-key. 

2) The attacker can use same way to send random number as 

other peer’s public-key to both initiator or responder and 

waste their resources by computing wrong shared DH 

key.  

3) The attacker can flood the initiator (victim) with DH 

group and public-key by sending fake DH request with 

forged source.  
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Obviously, all these three attacks triggered by lack a 

mechanism to distinguish between legitimate and bogus 

requests/messages. The protection against DoS attack in DH 

is carried out in one of following ways: 

1) Using reliable transport medium — TLS and SSH 

The negotiation can rely on connection-oriented transport 

level mechanism such as TCP to mitigate the DoS attack. 

However, The DoS attack may target the underplaying 

protocol itself. The TCP layer is a very common target of 

various DoS attack such as SYN flood etc.  

2) Using stateless cookies — DTLS and IKEv2 

The responder(server) can validate the legitimacy of 

initiator(client) through some additional message exchange 

prior to DH key negotiation by sending block of data 

(stateless cookie) and asking the initiator to retransmit the 

request message and include the cookie in the message. 

Server then verifies the valid cookie and proceeds with the 

handshake. This mechanism forces the attacker/client to be 

able to receive the cookie, which makes DoS attacks with 

spoofed IP addresses difficult but cannot prevent DoS attacks 

from valid IP addresses. 

3) One-way hash chain — ZRTP 

Parties use one-way hash chain, which is a series of 

successive hash images to be send as the part of successive 

message  

C. Reply Attack 

The very deadly Reply attack generally interpreted as an 

attack which adversary simply eavesdrop and capture a valid 

data packet and retransmit that later in order to replicate the 

transaction, break the connection, gain access to a service or 

cause a remote action. The reply attack on key negotiation is 

specifically implies an action which an adversary tries to 

break the key-negotiation or handshake by inserting 

previously exchanged legitimate message or fool one of the 

parties to negotiated previously used session key again. 

These attacks are also easy to defend by adding randoms 

(nonces) to each exchanged message of relevant 

key-calculation session and integrate these nonces in shared 

key computation.  

In TLS and DTLS both client and server generate a random 

value consist of timestamp and opaque generated by a secure 

random number generator. These values serve as nonces and 

are used during key exchange and contributed to master-key 

generation to prevent replay attacks. Unlike 

connection-oriented TLS, in the connectionless DTLS the 

record layer employ retransmission timers and implicit 

sequence number with recommended sliding windows to 

provide transmission error and reply protection. In DTLS, the 

sequence number is assigned to each handshake message to 

ensure they are transmitted and received in a defined order.  

In SSH, the random values are generated by both parties 

and exchanged prior to key negotiation. During the key 

negotiation the hash of messages containing the cookies 

together with DH public key of server is signed and sent 

along with the server’s public-key to client for authentication 

purpose and this hash value also contribute to master session 

key generation. 

IKEv2 runs over unreliable UDP and includes recovery 

procedure from transmission errors such as packet loss, 

packet replay and packet forgery. IKE use retransmission 

timers to prevent packet loss and every message contain a 

Message ID as part of its fixed header to match up requests 

and responses. All IKE messages carry IKE header including 

two unique SPIs of initiator and responder. To prevent the 

reply attack on key negotiation, both initiator and responder 

generate random nonces and send it to other party in their first 

exchange. These random values together with negotiated 

shared DH key contribute to first IKE SA (security 

association) master key which in turn is used again with 

nonces and SPIs for generating all other keys. 

The ZRTP is designed to run over unreliable transport 

layer and include sequence number in the header of each 

message. The Sequence Number is a count that is 

incremented for each ZRTP packet sent and is initialized to a 

random value.  This is useful in estimating ZRTP packet loss 

and also detecting when ZRTP packets arrive out of 

sequence. The ZRTP protocol detects transmission errors 

using Cyclic Redundancy Check (CRC). The one-way hash 

chain which is used to defend against DoS attack can also 

protect the exchange against reply attack. 

 

VI. DISCUSSION AND CONCLUSION 

This paper reviewed the approaches taken by network 

protocols to counter MiTM, DoS and Replay attacks. 

Concerning with MiTM attack, these protocol use a 

definition of authentication to defend against active 

eavesdropper in the following flavors: 

1) What they authenticate (DH public-key prams or the 

exchange resulted in shared key).  

2) Whom to trust for authentication (Certificate, cashed keys 

or password).  

In authentication methods based on pre-shared secret, 

password, cached public-key keys and cached dynamic 

shared keys, the peers “themselves” are responsible for 

trustworthiness of authentication parameters (e.g. strength of 

keys/password/prams etc) and reliability of the process 

depends to some external factors. For instance, when using 

pre-shared key, the reliability of key depends to security of 

out-of-band delivery method; or when using password-based 

authentication, the reliance of method depends on strength of 

chosen password or how safe the user can keep it away from 

adversary; when using asymmetric authentication method 

with cached-stored public key (a.k.a digital signature), the 

assurance of method depends on how reliably the recipient 

obtained the cached public-key and how certain is about the 

authenticity of cached key. When using symmetric dynamic 

cached secret (e.g. ZRTP) the trustworthiness of method 

depends on how secret the peers can keep the cached key 

from adversary to avoid eavesdropping and tampering of 

keys and when the keys are derived from last negotiated 

session, the reliability of present keys depend on secrecy of 

previous session(s).     

When using certificate-based authentication or EAP 

methods, the peers rely on third party(s) or enterprise for 

certifying the public key/prams or peers. Due to asymmetric 

mechanism of EAP methods, they may not be mutual and 

typically can be used to authenticate the initiator to responder 

and should be used with digital signature of responder to 

initiator. There exist two main types of certificates: X.509 

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

133



  

and PGP. The X.509 relies on centralized trust model, or 

typical PKI (public key infrastructure) scheme. The PGP 

certificate is based on decentralized trust scheme, or 

“web-of-trust model” where the signature is created by the 

user itself or other users as endorsements. PGP is more 

popular in circle of acquaintances; and centralize scheme 

(x.509) is superior solution in large and broaden 

infrastructure, where high number of public-key can be 

generated. To defend against DoS attack, these protocols 

either  

1) Rely on a connection-oriented transport medium (TLS, 

SSH) 

2) Use un-reliable transport layer with special mechanisms 

such as hash chain (ZRTP) or stateless cookies (DTLS, 

IKEv2) to mitigate DoS Attacks 

Concerning with anti-reply protection, all the mentioned 

protocol includes mean of random structure in exchanged 

messaged of a session and integrates that opaque in final 

master session key calculation. 
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