



Abstract—An efficient and reliable key-establishment

method is the most important building block of any secure

cryptographic channels. Public-key cryptography was a

revolution in cyber security key administration and enabled

peers to dynamically create keys for each cryptographic session.

The Diffie-Hellman (DH) algorithm is the first published

public-key cryptosystem. DH and its variants are extensively

investigated, standardized, and widely used in network security

protocols. However, DH is vulnerable to some concerning

mathematical, implementation-related and network-specific

attacks. Defending against these attacks is important in secure

implementation of DH in network protocols. This paper

categorizes various attacks on DH scheme with focuses on

attacks related to the DH integration in network protocols

(referred as network-specific attacks). Furthermore, we

comparatively review the approaches taken by commercial

protocols to tackle network attacks and analyze the strength of

these solutions.

Index Terms—Key-exchange, DH, ECDH, MiTM, DoS, reply

attack, SSH, ZRTP, SSL/TLS, IPsec, IKEv2.

I. INTRODUCTION

A secure and reliable key distribution system is the most

important ingredient of constructing cryptographic channel

between two or more peers. Key distribution may be

accomplished in a number of ways:

 Manual delivery of key between peers

 Sending the key through existing cryptographic channel

 Taking Advantage of public-key cryptography schemes

The first two options have proven to be problematic.

Physical delivery of keys through face-to-face meeting or

trusted courier can be unsafe and impractical for large

number of participants. The security of sending a new key

through an existing secure channel depends on security of

previously established channel and the previous key

exchange. These problems have been addressed by

introducing the public-key cryptography. Diffie-Hellman

(DH) key exchange scheme was the first published

public–key algorithm [1] and later standardized by IETF in

[2]. This protocol is widely used in many important

commercial protocols. However, DH is subject to number of

Manuscript received October 10, 2014; revised February 19, 2015.

Iraj Fathirad and John Devlin are with the Department of Electronic

Engineering, La Trobe University, Victoria 3086, Australia (e-mail:
I.fathirad@latrobe.edu.au, J.devlin@latrobe.edu.au).

Sepidehsadat Atshani is with Faculty of Business, Economics and Law,

La Trobe University, Victoria 3086, Australia (e-mail:

satshani@students.latrobe.edu.au).

mathematical and network attacks. Particularly, it is required

to implements DH along with techniques to tackle

network-specific attacks. This paper first reviews the DH key

exchange scheme, then study some of the most important

network attacks on this scheme, and finally analysis the

suggested methods to counter these attacks in commercial

protocols.

II. DESCRYPTION OF DH KEY-EXCHANGE

The DH key exchange protocol allows two peers to

negotiate a secret over public communication medium. The

security of DH relies on the difficulty of computing discrete

logarithm over a large prime order cyclic group.

To negotiate key using DH, parties agree on a cyclic group

G of prime order and generator . Then, user A selects a

random and computes and sends

to B. similarly B calculates from and sends it to A.

Users A and B compute
 and

 to

achieve the shared secret of .
There exist a variant to the DH over elliptic curve

cryptography [3] and defined as ECDH [3-5]. ECC use two

families of curves: (1) prime curves defined with the cubic

equation of over , and

(2) binary curves defined with the cubic equation of

 over . The security

ECDH relies on intractability of EC discrete logarithm. Two

parties first agree on a random elliptic curve with group of

points and a base point with a large

prime order of . Then, user A selects a random integer

 and computes and sends it to B. Similarly,

B calculates from random and sends it to A. User A

and B calculates and user to achieve the shared

secret key . The ECDH requires a smaller

key/parameters size and is more efficient at the same level of

security [6].

III. DH VULNRABILITIES

A. Attacks on Mathematical Structure of DH

These attacks affect mathematical design and

computational texture of DH algorithm and include [7]:

 Degenerate message attacks: Cases that protocol is not

effective (unity public keys lead to unity shared key).

 Simple exponent attack: If one of the private keys is

simple enough to be determined and break the protocol.

 Simple substitution attack: In this attack, an adversary

substitutes one of the public-keys with one “1” which

leads to both parties computing the shared secret key

equal with one.

Network-Specific Attacks on Diffie-Hellman

Key-Exchange in Commercial Protocols

Iraj Fathirad, John Devlin, and Sepidehsadat Atshani

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

129DOI: 10.7763/IJCTE.2016.V8.1031

mailto:I.fathirad@latrobe.edu.au

 Attacks based on Pohlig-Hellman algorithm: This

algorithm can solve the discreet logarithm problem of

 if the prime factorization of generator’s order

contains small primes [8].

 Attacks based on Composite order subgroups:

Subgroups without a large prime order can be exploited

by an adversary and generally is applicable to primes of

the form of ([9].

 Attacks based on Pollard-Lambda Algorithm: This

algorithm enables an adversary to compute the private

exponent () from , if is known to lye within a

certain intervals [10].

 Attacks based on the number field sieve algorithms:

Inadequately chosen small groups and public/private

exponents are vulnerable to be compromised.

 Attacks on prime order subgroups: This attack [11]

computes part or all of the secret key using small order

subgroups in .

B. Attacks on Imlementation Detail of DH

These attacks are concerned with the protocol

implementation and include [7]:

 Attack on context: In this attack an adversary blocks or

deletes previous messages using sequence numbers.

 Obtaining ephemeral secret from memory: If parties

don’t clear private secrets from memory, the secrets

might be written to disk and extracted through unwanted

access, or even be extracted from RAM.

 Timing attack: This attack [12] relies on the fact that the

time taken for most of the modular exponentiations is

dependent on the input, and an adversary might be able

to precisely determine the computation time.

C. Network Attacks of DH Integration in Protocols

These attacks include common network attacks which are

also applicable to DH implementation in network protocols

for key-exchange purposes. The most important attacks on

protocols using DH are as below:

 Man-In-The-Middle (MITM) attack: An opponent

impersonates peer A to peer B and vice versa.

 Denial-Of-Service (DoS): An opponent requests a high

number of DH keys to clog the victim’s system.

 Reply attack: attacker records and replays legitimate

packets to break the connection or handshake session

with out-of-order and irrelevant packets.

Attacks on implementation of DH and mathematical

attacks linked to DH architecture are not limited to those

issues reviewed here; Additional attacks and in depth

analysis is beyond the scope of this paper. However, most if

not all of these attacks can be prevented by proper

implementation: using adequate and proven techniques in

realization of the algorithm (e.g. using a source of

randomness to defend against a timing-attack); being

cautious about handling private secrets; and following

specific recommendations in selecting the subgroups,

public/private exponents, modulo and generator. However,

the network attacks on protocols which use DH are source of

serious concern. Properly implemented DH using secure

groups and public/private parameters is can still be

vulnerable to certain deadly attacks if the host protocol

doesn’t provide assurance against network attacks. These

attacks are not linked to the DH algorithm directly, and more

concern with the architecture of the host protocol which use

DH algorithm.

Note: There exists another type of network-specific attacks

which targets the physical layer of network (e.g. network

connectivity) [13]-[16]. These attacks target the physical

layer of network connection, and applicable to all higher

level network-oriented protocols. Investigating the details of

these attacks is out of scope of this paper.

IV. DH IN COMMERCIAL PROTOCOLS

A. SSH

Developed by SSH communication security Ltd is

application layer protocol for secure remote login, command

execution, remote shell service and other secure network

services. The SSH [17] protocol consists of three major

components: (1) SSH transport layer protocol [18] which

provide server authentication, confidentiality, integrity

protection and optional compression; (2) SSH user

authentication [19] which describes user-side

authentication(to server); and (3) SSH connection protocol

[20] which provides secure network service over SSH

transport protocol and essentially is responsible to multiplex

the multiple logical connection in secure authenticated

connection(tunnel). SSH works over any 8-bit clean,

binary-transparent transport with (recommended)

transmission error protection, but usually is used over TCP.

In SSH, the core protocol use DH algorithm for key

generation; however, the RSA was later suggested as

alternative to DH in [21]. Also, other algorithms based on

ECC, specifically ECDH, ECMQV and ECDSA, were

standardized for SSH in [22].

B. ZRTP

The ZRTP[23] was developed by Phil Zimmerman and

defines a cryptographic key agreement scheme for VoIP

(voice over internet protocol) applications which rely on

real-time protocol (RTP) [24]. ZRTP enables two VoIP

parties to agree on session key/parameters for establishing

secure real-time transport protocol (SRTP) [25]. The SRTP (a

profile of RTP), in turn provides RTP with authentication,

confidentiality and reply protection. ZRTP also use two

non-DH modes.

C. TLS

Netscape originated secure socket layer (SSL) [26] and its

internet standard successor transport layer security (TLS)

[27] are multi-purpose and real-time transport layer

cryptographic protocol. TLS can supply connection-oriented

and secure channel (tunnel) between peers and must run over

reliable transport protocol such as TCP. Different application

layer protocols running over reliable transport channel can

use SSL/TLS as underlying security mechanism for their data

segments. TLS may employs (1) DH or RSA; (2) hybrid

asymmetric algorithms including ephemeral DH with RSA

(DHE-RSA) or DSA (DHE-DSA); (3) pre-shared key

authentication method [28] which consist of using pre-shared

secret lonely or in combination with RSA (RSA-PSK) or

ephemeral DH (DHE-PSK); (4) Secure remote password

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

130

method (SRP) [29] authentication method which as

side-effect generate a shared key based on DH; (5) using

Kerberos[30]-based authentication [31] to securely deliver

the client-generated pre-master session key to server.

D. DTLS

Datagram transport layer security (DTLS) [32] is a variant

of TLS which can provide same level of security for

unreliable datagram traffic. DTLS is based on

stream-oriented TLS, designed to run over unreliable

transport medium and can provide similar security to UDP,

DCCP [33] (Datagram Congestion Control Protocol) and

SCTP [34] (Stream Control Transmission Protocol). DTLS is

very similar to TLS in cipher suits, key derivation and

authentication and the main difference is the message profile

and added mechanism for running TLS handshake over

unreliable transfer medium.

E. IPsec

IPsec is peer-to-peer protocol that provide security

standard for network layer traffic and supply

cryptographically protection for any kind of transport layer

packets in both IPv4 and IPv6 environments. IPsec consists

of set of protocols in order to provide two security services:

confidentiality, authenticity, anti-reply service, and

connectionless integrity through ESP (Encapsulation

Security Payload) [35] or message authenticity only through

AH (authentication header) [36]. In IPsec, the

mandatory-to-use algorithms for both ESP and AH modes are

described in [37] and the keying materials and security

parameters are established through IKEv2 (internet key

exchange version 2) [38] protocol.

V. DH NETWORK ATTACKS AND SOLUTIONS

A. Man-in-the-Middle(MiMT) Attack

In this attack an opponent impersonate peer A while

communicating with peer B and vice versa. As a result of this

attack both peers calculate the shared-key with the adversary.

The lack of authentication in DH is motivation for MiTM

attack and protocols need to use a mechanism to assure the

link between public value and peer’s ID. The methods of

commercial protocols to authenticate DH exchange can be

classified into four main groups:

1) Certificate (DH parameters/public-key) — TLS/DTLS

The public DH public parameters and public key of server

are sent to client in certificate. This method also requires

client to provide authentication on its DH public key (e.g.

digital signature on exchange or certificate) for mutual

protection against MiTM attack. If client use the same

method as server, then provided certificate must use the

parameters (group/generator) suggested by the server.

2) Signature on exchange — TLS/DTLS/ IKEv2

In this method all the exchanged messages together with

relevant peer IDs and nonces are signed with

signature-capable certificate and sent to other peer together

with the corresponding certificate. In TLS/DTLS client use

the digital signature method to sign the exchange and in IPsec

both parties sign the exchange, IDs and nonces.

3) Signature on exchange and public-key — SSH

In this method, the SSH server provide the mean of

authentication by sending the hash of previously exchanged

messages, server’s DH public key, ID of peers together with

server’s host which is signed with server’s private key. The

signature together with public-key pair of signing key is sent

to user. The authenticity of the signing key may be verified

by either (1) certificate or (2) local database (cached keys in

user side). This method is accompanied with user

authentication to server to tackle MiTM attack. The user

authentication does not authenticate the exchange, but can

authenticate the user. The user authentication is carried out

by:

1) User send raw public-key in a message with signature on

that message with private key pair of that public key

together with optional certificate which also contains the

public-key used for authentication. The possession of a

private key serves as authentication and sever verify the

signature with certificate or local database.

2) User sends a message contains an encrypted password

3) Host-based authentication which the authentication is

performed in client’s host. In this method, server allows

authentication based on the host that the user is coming

from and the user name on the remote host.

If user authentication fails, the server allows user to retry

the authentication and if user cannot prove its authenticity the

server dismiss the negotiated key. In SSH server uses this

method to sign its half of DH exchange.

4) Signature on parameters/public-key — TLS/DTLS

The server’s public DH parameters and key are signed by a

signature-capable certificate and sent to client together with

the corresponding certificate. This method also requires

client authentication on its DH public key for mutual MiTM

protection. In TLS/DTLS this method is used by DHE-RSA

and DHE-DSA cipher suits.

5) Pre-shared key — TLS/DTLS

A key derived by some out-of-band mechanism can be

combined with un-authenticated shared DH key and result in

authenticated shared secret. This authenticated shared-secret

authenticates the shared DH secret and the exchange. The

DHE-PSK in TLS use this method.

6) MAC with shared secret — IPsec (IKEv2)

The MAC code of mutually obtainable block of data is

signed using padded pre-shared secret, where the secret is

derived from a user chosen password or derived from

negotiated shared DH secret, nonces and SPIs.

7) EAP methods (auth through third party server) —

IKEv2

The Extensible Authentication Protocol (EAP) is an

authentication framework which can provide host plug-in

module for many other authentication methods. There are

many flavours of EAP which are named after the

accompanying protocol/technique (e.g. EAP-TLS is based on

TLS protocol, EAP-PSK based on pre-shared key). EAP

methods employ an authentication server to grant an access to

a network service. While EAP techniques can be mutual in

some flavours, but typically these methods are asymmetric

(the peer does not authenticate the authenticator), and

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

131

vulnerable to MiTM and consequently should be used in

conjunction with other authentication methods for

authenticator. It’s also possible for the EAP server and peer to

derive a mutually authenticated key for later use. In this case,

the EAP methods with key derivation capability must be

used.

8) Using cached shared secret or SAS — ZRTP

The ZRTP uses cached shared secret to authenticate peers

to each other and when there is no such a secret both parties

should use a SAS (short authentication string). The SAS is

ideally displayed for human users and each party should

verbally compare the SAS with other party. Each ZRTP

endpoints maintains long-term cache of shared-secrets that

has previously negotiated with other parties and linked to that

party with ZID (peer’s unique ID). During the DH key

negotiation, peers first discover if they have any cached

shared-secret in common and use it in session key

calculation. Each party attach the series of mutually

obtainable MAC codes to their public DH key. The key to the

MACs are selected as bellow:

1) Cached secret (rs1) which derived from shared-secret of

previous session

2) Cashed secret (rs2) which is old rs1 of previous session

and derived from shared-secret of two session ago

(previous previous session)

3) Trusted MiTM PBX shared secret (pbxsecret) if the other

party is PBX

4) Out-of-band shared secret

If the authenticated DH shared secret negotiation success,

then the cached shared secret (rs1) will be updated with new

value and (rs2) will be replaced with old (rs1). The secret

corresponding to matching hashes are kept and mismatch

secrets are set to null. To authenticate the exchange, one of

the initiator’s (rs1) or (rs2) should match to responder’s either

(rs1) or (rs2); the first match (rs1 or rs2) with matched

auxsecret/pbxsecret (where applicable) authenticates the key

exchanges and together with DH shared key contribute to

final shared key calculation. If each party detect the

mismatch between both rs1/rs2 hashes and (or)

auxsecret/pbxsecret (where applicable) then they may use

SAS technique and if it’s not possible to compare the SAS

value, the session may be terminated. As extra protection, the

initiator also sends a hash value over some information

including its DH public value prior to DH key negotiation.

The responder recalculates this hash value after DH

negotiation and compares it to received hash to constrain the

attacker only one guess to generate the correct SAS.

9) Summary

Summarizing the approaches of each protocol in

authenticating DH key exchange and public-key/prams:

In SSH, the server side authentication is based on digital

signature on DH exchange/public-key and relies on

authenticity of signing public-key (server’s host key). This

key can be either sent in (1) raw format to be verified through

local database (cached secrets) or (2) in certificate. The client

also can (1) send its public-key in a message together with

signature on that message by user’s private key along with

optional certificate, (2) use password-based or (3) host-based

authentication. When using public-key, the authenticity of

the key can be assured by presenting it in certificate or

verifying the key with local database. IETF has defined

OpenPGP as standard for SSH protocol, however, later on an

IETF draft [39] suggested the method of using X509.

In TLS/DTLS, the server side authentication include (1)

using public-key certificate to present CA signed DH public

key/prams or (2) using digital signature on server’s DH

public key/prams with signature-capable certificate. The

client also optionally authenticate itself by (1) presenting its

CA signed DH public key/prams in certificate or (2) use

digital signature on previously exchanged message, nonces

and peer IDs via signature-capable certificate. Peers

alternatively can commit an un-authenticated exchange and

combine out-of-band shared key with shared DH key for

mutual authentication. The supported public-key certificate

in TLS/DTLS is X.509.

In IPsec(IKEv2), the exchanged messages together with

peer IDs, nonces and SPI are called mutually obtained block

of data and both peers mutually authenticate the shared DH

key and exchange by: (1) providing the digital signature on

mutually obtained block of data with signature-capable

certificate, or (2) calculating MAC code of this data with

shared-key which that shared key is (2.1) derived from shared

DH key (each direction use different mutually obtainable

shared key — This method just provides message

authentication a.k.a integrity protection and don’t

authenticate the shared DH key), or (2.2) derived from

user-chosen password or (2.3) is pre-shared key; the peers

alternatively may use (3) EAP authentication methods. The

IKv2 certificate types include X509, PGP, Kerberos tokens,

SPKI and DNS signed key

In ZRTP, both peers use hash over mutually obtainable

MAC codes which calculated with series of cached secrets to

authenticate their DH public keys. These secrets include: (1)

Two secrets which derived from two shared key of previously

negotiated sessions which is compulsory to have at least one

match, (2) One situation dependant secret if one party is

PBX, and (3) One out-of-band obtained shared-key. In case

of fatal mismatch, peers may try SAS technique.

B. Denial-of-Service(DoS) Attack

The very damaging DoS attack consists of clogging one

peer with bogus requests with forged source IP addresses.

Due to computationally intensive nature of modular

exponentiation, the DH key exchange is highly vulnerable to

clogging (DoS) attack.

Concerning with DH key negotiation, we can assume one

of the peers as initiator and other one as responder. Initiator

request DH negotiation and calculates its public-key after

receiving the public-key of responder. Three different DoS

attack is applicable to DH key negotiation:

1) The attacker can send huge amount of DH negotiation

requests with forged source IP addresses to responder so

that the victim is compelled to compute many modular

exponentiations to carry out the public-key.

2) The attacker can use same way to send random number as

other peer’s public-key to both initiator or responder and

waste their resources by computing wrong shared DH

key.

3) The attacker can flood the initiator (victim) with DH

group and public-key by sending fake DH request with

forged source.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

132

Obviously, all these three attacks triggered by lack a

mechanism to distinguish between legitimate and bogus

requests/messages. The protection against DoS attack in DH

is carried out in one of following ways:

1) Using reliable transport medium — TLS and SSH

The negotiation can rely on connection-oriented transport

level mechanism such as TCP to mitigate the DoS attack.

However, The DoS attack may target the underplaying

protocol itself. The TCP layer is a very common target of

various DoS attack such as SYN flood etc.

2) Using stateless cookies — DTLS and IKEv2

The responder(server) can validate the legitimacy of

initiator(client) through some additional message exchange

prior to DH key negotiation by sending block of data

(stateless cookie) and asking the initiator to retransmit the

request message and include the cookie in the message.

Server then verifies the valid cookie and proceeds with the

handshake. This mechanism forces the attacker/client to be

able to receive the cookie, which makes DoS attacks with

spoofed IP addresses difficult but cannot prevent DoS attacks

from valid IP addresses.

3) One-way hash chain — ZRTP

Parties use one-way hash chain, which is a series of

successive hash images to be send as the part of successive

message

C. Reply Attack

The very deadly Reply attack generally interpreted as an

attack which adversary simply eavesdrop and capture a valid

data packet and retransmit that later in order to replicate the

transaction, break the connection, gain access to a service or

cause a remote action. The reply attack on key negotiation is

specifically implies an action which an adversary tries to

break the key-negotiation or handshake by inserting

previously exchanged legitimate message or fool one of the

parties to negotiated previously used session key again.

These attacks are also easy to defend by adding randoms

(nonces) to each exchanged message of relevant

key-calculation session and integrate these nonces in shared

key computation.

In TLS and DTLS both client and server generate a random

value consist of timestamp and opaque generated by a secure

random number generator. These values serve as nonces and

are used during key exchange and contributed to master-key

generation to prevent replay attacks. Unlike

connection-oriented TLS, in the connectionless DTLS the

record layer employ retransmission timers and implicit

sequence number with recommended sliding windows to

provide transmission error and reply protection. In DTLS, the

sequence number is assigned to each handshake message to

ensure they are transmitted and received in a defined order.

In SSH, the random values are generated by both parties

and exchanged prior to key negotiation. During the key

negotiation the hash of messages containing the cookies

together with DH public key of server is signed and sent

along with the server’s public-key to client for authentication

purpose and this hash value also contribute to master session

key generation.

IKEv2 runs over unreliable UDP and includes recovery

procedure from transmission errors such as packet loss,

packet replay and packet forgery. IKE use retransmission

timers to prevent packet loss and every message contain a

Message ID as part of its fixed header to match up requests

and responses. All IKE messages carry IKE header including

two unique SPIs of initiator and responder. To prevent the

reply attack on key negotiation, both initiator and responder

generate random nonces and send it to other party in their first

exchange. These random values together with negotiated

shared DH key contribute to first IKE SA (security

association) master key which in turn is used again with

nonces and SPIs for generating all other keys.

The ZRTP is designed to run over unreliable transport

layer and include sequence number in the header of each

message. The Sequence Number is a count that is

incremented for each ZRTP packet sent and is initialized to a

random value. This is useful in estimating ZRTP packet loss

and also detecting when ZRTP packets arrive out of

sequence. The ZRTP protocol detects transmission errors

using Cyclic Redundancy Check (CRC). The one-way hash

chain which is used to defend against DoS attack can also

protect the exchange against reply attack.

VI. DISCUSSION AND CONCLUSION

This paper reviewed the approaches taken by network

protocols to counter MiTM, DoS and Replay attacks.

Concerning with MiTM attack, these protocol use a

definition of authentication to defend against active

eavesdropper in the following flavors:

1) What they authenticate (DH public-key prams or the

exchange resulted in shared key).

2) Whom to trust for authentication (Certificate, cashed keys

or password).

In authentication methods based on pre-shared secret,

password, cached public-key keys and cached dynamic

shared keys, the peers “themselves” are responsible for

trustworthiness of authentication parameters (e.g. strength of

keys/password/prams etc) and reliability of the process

depends to some external factors. For instance, when using

pre-shared key, the reliability of key depends to security of

out-of-band delivery method; or when using password-based

authentication, the reliance of method depends on strength of

chosen password or how safe the user can keep it away from

adversary; when using asymmetric authentication method

with cached-stored public key (a.k.a digital signature), the

assurance of method depends on how reliably the recipient

obtained the cached public-key and how certain is about the

authenticity of cached key. When using symmetric dynamic

cached secret (e.g. ZRTP) the trustworthiness of method

depends on how secret the peers can keep the cached key

from adversary to avoid eavesdropping and tampering of

keys and when the keys are derived from last negotiated

session, the reliability of present keys depend on secrecy of

previous session(s).

When using certificate-based authentication or EAP

methods, the peers rely on third party(s) or enterprise for

certifying the public key/prams or peers. Due to asymmetric

mechanism of EAP methods, they may not be mutual and

typically can be used to authenticate the initiator to responder

and should be used with digital signature of responder to

initiator. There exist two main types of certificates: X.509

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

133

and PGP. The X.509 relies on centralized trust model, or

typical PKI (public key infrastructure) scheme. The PGP

certificate is based on decentralized trust scheme, or

“web-of-trust model” where the signature is created by the

user itself or other users as endorsements. PGP is more

popular in circle of acquaintances; and centralize scheme

(x.509) is superior solution in large and broaden

infrastructure, where high number of public-key can be

generated. To defend against DoS attack, these protocols

either

1) Rely on a connection-oriented transport medium (TLS,

SSH)

2) Use un-reliable transport layer with special mechanisms

such as hash chain (ZRTP) or stateless cookies (DTLS,

IKEv2) to mitigate DoS Attacks

Concerning with anti-reply protection, all the mentioned

protocol includes mean of random structure in exchanged

messaged of a session and integrates that opaque in final

master session key calculation.

ACKNOWLEDGMENT

The authors are thankful to the anonymous referees for

their careful reading and valuable comments that have

improved the quality of the paper

REFERENCES

[1] W. Diffie and M. Hellman, "New directions in cryptography," IEEE

Transactions on information Theory, vol. 22, pp. 644-654, Nov. 1976.

[2] E. Rescorla, RFC2631 (Diffie-Hellman Key Agreement Method), June
1999.

[3] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of

Computation, vol. 48, pp. 203-209, January 1987.
[4] E. Barker, D. Johnson, and M. Smid, "NIST SP 800-56A,

Recommendation for pair-wise key establishment schemes using

discrete logarithm cryptography," National Institue of Standard and
Technology, NIST Special Publication, March 2007.

[5] C. Research, "Standards for efficient cryptography," Elliptic Curve

Cryptography (Version 1.9), August 22, 2008.
[6] S. Burnett. and S. Paine, RSA Security’s Official Guide to

Cryptography, Osborne/McGraw-Hill, 2001.

[7] J. F. Raymond. and A. Stiglic, Security Issues in the Diffe-Hellman Key
Agreement Protocol, Zeroknowledge Systems Inc., 2000.

[8] S. Pohling and M. Hellman, "An improved algorithm for computing

logarithms over GF(p) and its cryptographic significance," IEEE
Transactions on Information Theory, vol. 24, pp. 106-110, Jan. 1978.

[9] P. C. V. Oorschot, "On diffe-hellman key agreement with short

exponents," Advances in Cryptology — Eurocrypt’ 96, 1996, pp.

332-343.

[10] J. M. Pollard, "Methods for index computation (modp)," Mathematics
of Computation, vol. 32, pp. 918-924, July 1978.

[11] P. J. Lee et al., "A key recovery attack on discrete log-based schemes

using a prime order subgroup," Advances in Cryptology — CRYPTO’

97, 1997, pp. 249-263.

[12] P. Kocher, "Cryptanalysis of Diffe-Hellman, RSA, DSS, and other
cryptosystems using timing attacks," in Proc. 15th Annual

International Cryptology Conference on Advances in Cryptology,

Santa Barbara, California, USA, 1995, pp. 171-183.
[13] S. Iyer, T. Killingback, B. Sundaram, and Z. Wang, "Attack robustness

and centrality of complex networks," PloS One, vol. 8, p. e59613,

2013.
[14] Y. Shang, "Vulnerability of networks: Fractional percolation on

random graphs," Physical Review E, vol. 89, p. 012813, 2014.

[15] Y. Shang, "Robustness of scale-free networks under attack with
tunable grey information," EPL (Europhysics Letters), vol. 95, p.

28005, 2011.

[16] A. Srivastava, B. Mitra, N. Ganguly, and F. Peruani, "Correlations in
complex networks under attack," Physical Review E, vol. 86, p.

036106, 2012.

[17] T. Ylonen, RFC4251 (The Secure Shell (SSH) Protocol Architecture),
Internet Engineering Task Force (IETF): Network Working Group,

January 2006.

[18] T. Ylonen, RFC 4253 (The Secure Shell (SSH) Transport Layer

Protocol, Internet Engineering Task Force (IETF): Network Working

Group, January 2006.
[19] T. Ylonen, RFC4252 (The Secure Shell (SSH) Authentication

Protocol), Internet Engineering Task Force (IETF): Network Working

Group, January 2006.
[20] T. Ylone, RFC4254 (The Secure Shell (SSH) Connection Protocol),

Internet Engineering Task Force (IETF): Network Working Group,

January 2006.
[21] B. Harris, RFC 4432 (RSA Key Exchange for the Secure Shell (SSH)

Transport Layer Protocol), Internet Engineering Task Force (IETF):

Network Working Group, March 2006.
[22] D. Stebila and J. Green, RFC 5656 (Elliptic Curve Algorithm

Integration in the Secure Shell Transport Layer), Internet Engineering

Task Force (IETF): Network Working Group, December 2009.
[23] P. Zimmermann and J. Callas, RFC 6189 (ZRTP: Media Path Key

Agreement for Unicast Secure RTP), Internet Engineering Task Force

(IETF), April 2011.
[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RFC 3550

(RTP: A Transport Protocol for Real-Time Applications, Internet

Engineering Task Force (IETF): Network Working Group, July 2003.
[25] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,

RFC 3711 (The Secure Real-time Transport Protocol (SRTP)), Internet

Engineering Task Force (IETF): Network Working Group, March
2004.

[26] A. Freier, P. Karlton, and P. Kocher, RFC6101 (The Secure Sockets

Layer (SSL) Protocol Version 3.0), Internet Engineering Task Force
(IETF), August 2011.

[27] T. Dierks and E. Rescorla, RFC 5246 (The Transport Layer Security

(TLS) Protocol Version 1.2), Internet Engineering Task Force (IETF):
Network Working Group, August 2008.

[28] P. Eronen and H. Tschofenig, RFC 4279 (Pre-Shared Key Ciphersuites

for Transport Layer Security (TLS)), Internet Engineering Task Force
(IETF): Network Working Group, December 2005.

[29] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin, RFC 5054

(Using the Secure Remote Password (SRP) Protocol for TLS
Authentication), Internet Engineering Task Force (IETF): Network

Working Group, November 2007.

[30] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, RFC 4120 (The
Kerberos Network Authentication Service (V5)), Internet Enginering

Task Force (IETF): Network Working Group, July 2005.
[31] A. Medvinsky and M. Hur, RFC 2712 (Addition of Kerberos Cipher

Suites to Transport Layer Security (TLS)), Internet Engineering Task

Force (IETF): Network Working Group, October 1999.
[32] E. Rescorla and N. Modadugu, RFC 6347 (Datagram Transport Layer

Security Version 1.2), Internet Engineering Task Force (IETF), January

2012.
[33] T. Phelan, RFC 5238 (Datagram Transport Layer Security (DTLS)

over the Datagram Congestion Control Protocol (DCCP)), Internet

Engineering Task Force: Network Working Group, May 2008.
[34] M. Tuexen and R. Seggelmann, RFC 6083 (Datagram Transport Layer

Security (DTLS) for Stream Control Transmission Protocol (SCTP)),

Internet Engineering Task Force (IETF), January 2011.
[35] S. Kent, RFC 4303 (IP Encapsulating Security Payload (ESP)),

Internet Engineering Task Force (IETF): Network Working Group,

December 2005.
[36] S. Kent, RFC 4302 (IP Authentication Header), Internet Engineering

Task Force (IETF): Network Working Group, December 2005.

[37] V. Manral, RFC 4835 (Cryptographic Algorithm Implementation
Requirements for Encapsulating Security Payload (ESP) and

Authentication Header (AH)), Internet Engineering Task Force (IETF):

Network Working Group, April 2007.
[38] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, RFC 5996 (Internet

Key Exchange Protocol Version 2 (IKEv2)), Internet Engineering Task

Force (IETF), September 2010.
[39] O. Saarenmaa and J. Galbraith, X.509 Authentication in SSH

(Draft-saarenmaa-ssh-x509-00), Internet Engineering Task Force

(IETF) - Network Working Group, February 7, 2007.

Iraj Fathirad received the B.E. degree from LIAU
University, Lahidjan, Iran, in 2006, and the postgraduate

diploma in electronic engineering from Latrobe

University, Melbourne, Australia, in 2009, and the master
degree in electronic engineering from Latrobe University,

Melbourne, Australia in 2010. He is currently pursuing his

Ph.D. degree with the Department of Electronic
Engineering, Latrobe University, Melbourne, Australia.

His research areas are elliptic curve cryptography, public-key hybrid

encryption and group key-exchange schemes.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

134

John Devlin received the B.E. degree in electrical

engineering from Latrobe University, Melbourne,

Australia, in 1974, and the Ph.D. degree in electronic
engineering from Latrobe University, Melbourne,

Australia in 1979. He is currently a professor and the

head of the Department of Electronic Engineering,
Latrobe University, Melbourne, Australia. His research

lies in the area of communications, real time systems

design, data storage, transmission and analysis techniques.

Sepidehsadat Atshani received her bachelor degree in

human science from Parand Azad University, Tehran,

Iran, in 2009. She is currently pursuing his master degree
in information management and systems with the Faculty

of Business, Economics and Law, Latrobe University,

Melbourne, Australia. Her research areas are database
management and data protection techniques.

International Journal of Computer Theory and Engineering, Vol. 8, No. 2, April 2016

135

