
  

 

Abstract—Key retrieval is very important in various 

applications. A trie and DAWG are data structures for key 

retrieval. The double array is one of methods to construct a trie 

and has both high speed and compactness. In this paper, a data 

structure of DAWG by the double array using BASE and 

CHECK is compared with that of DAWG by the double array 

using CHECK and NEXT, and the retrieval speed and the space 

usage are theoretically observed. When DAWG and DFA by the 

double array are constructed, it turns out that it is important to 

consider indexes for CHECK and NEXT arrays as edge 

numbers. 

 
Index Terms—Automaton, DAWG, double array, triple 

array.  

 

I. INTRODUCTION 

Key retrieval is used in various applications [1]. A trie is 

one of data structures to retrieve keys and merge common 

prefixes of keys [2]. Moreover, Directed Acyclic Word 

Gragh (DAWG) is a data structure to reduce the number of 

trie states [3]. DAWG merges common parts of keys. As the 

trie and DAWG are kinds of Deterministic Finite Automaton 

(DFA), they can be traditionally represented by a matrix form 

(transition table) and a linked list. 

The triple array is a data structure to construct DFA [4]. 

This method uses three one-dimensional arrays called BASE, 

CHECK, and NEXT in order to compress the matrix form. It 

has high speed because keys of length k can be retrieved by 

O(k). There is also a method called the double array [5], 

which compresses the triple array. This method deletes a 

NEXT array from the triple array and consists of BASE and 

CHECK. The double array is used in various applications and 

fields because of its high speed [6], [7]. However, because 

one state has only one parent state, the original double array 

can construct a trie but cannot construct DAWG and DFA. 

Moreover, the compact double array was proposed as a 

method to compress the double array [8]. This method 

reduces the space usage by storing traversed characters in 

CHECK. A method to construct DAWG by the features of 

the compact double array was proposed [9]. This method has 

higher speed and less space usage than other methods such as 

the matrix form, linked list and TST [10]. Furthermore, a 

method to construct DFA with CHECK and NEXT by 

deleting a BASE array from the triple array was proposed 

[11]. 

In this paper, a data structure of DAWG by the double 

array using BASE and CHECK(BC DAWG) is compared 

with that of DAWG by the double array using CHECK and 

 
Manuscript received August 4, 2014; revised November 16, 2014. 

The authors are with the Department of Information Science and 

Intelligent Systems, University of Tokushima, Tokushima, Japan (e-mail: 

{fuketa, kam, aoe}@is.tokushima-u.ac.jp). 

NEXT(CN DAWG), and the retrieval speed and the space 

usage are theoretically observed. A construction algorithm of 

CN DAWG is proposed. Moreover, features of DAWG by 

the double array are discussed. 

 

II. DOUBLE ARRAY AND DAWG 

A. Trie 

A trie is a tree structure used for key retrieval in the field of 

natural language processing, and is a kind of DFA. Fig. 1 

shows examples of the trie in key set K = {“aaa”, “aba”, 

“bbc”, “cbc”, “cc”}. Double circles show terminal states. The 

trie merges common prefixes of keys. Retrieval always starts 

from a root state (for example, state number 1 in Fig. 1), and 

traverses states by one-by-one character in the key. The trie is 

traditionally represented as a matrix form (transition table) 

and a linked list. Fig. 2 shows the matrix form for Fig. 1. A 

vertical axis shows state number s, a horizontal axis shows 

traversed character c, and matrix [s], [c] shows a state number 

for the destination of traversal. This matrix form is very 

sparse. 

B. Triple Array 

There is a method called the triple array to implement 

DFA. This method is a data structure which the matrix form 

is compressed. The triple array uses three one-dimensional 

arrays called BASE, CHECK, and NEXT. In the triple array, 

the following three equations are satisfied in the case of 

traversal from state s to state t in character c; 

 

e = BASE[s]+CODE(c)

CHECK[e]= s

t = NEXT[e]

                   (1) 

 

where CODE is numerical values for character c and returns 

different numbers for each character. An index for the 

destination of traversal is calculated in the first equation, the 

traversal is checked if it is correct in the second equation, and 

NEXT is referred and the next state number is obtained in the 

third equation. 

 

 
Fig. 1. Trie. 

Comparisons of Efficient Implementations for DAWG 

Masao Fuketa, Kazuhiro Morita, and Jun-ichi Aoe 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

48DOI: 10.7763/IJCTE.2016.V8.1018



  

 
Fig. 2. Matrix form. 

 

 
Fig. 3. Triple array. 

 

As traversal is calculated by (1), the key with length k can 

be retrieved by O(k). Furthermore, it can also construct the 

trie, because the triple array has a data structure to construct 

DFA. Fig. 3 shows the triple array in key set K. 

C. Double Array 

There is a method called the double array, which reduces 

the space usage of the triple array. The double array reduces 

NEXT of the triple array by t = e = NEXT[e]. The following 

two equations are satisfied in the case of traversal from state s 

to state t in character c; 

 
t = BASE[s]+CODE(c)

CHECK[t]= s
                     (2) 

 

As NEXT is deleted, the space usage of the double array is 

small and its retrieval speed is improved. In the same manner 

of the triple array, the key with length k can be retrieved by 

O(k). Moreover, the compact double array was proposed by 

Yata. This method is a data structure to compact the size of 

CHECK by storing traversed characters in CHECK. In the 

compact double array, the following two equations are 

satisfied for traversal; 

 
t = BASE[s]+CODE(c)

CHECK[t]= c
                     (3) 

 

However, in different states s and s‟, if BASE[s] and 

BASE[s‟] are the same, these are traversed to the same state t. 

In the compact double array, all BASE values need to be 

constructed as different values. Fig. 4 shows the compact 

double array in key set K. CODE uses the same value as Fig. 

3. State numbers in Fig. 4 are different from state numbers in 

Fig. 1 because the values of two arrays are determined to 

satisfy (3). This double array is defined as the BC double 

array. 

As the parent state of state t is only state s, these double 

arrays cannot construct DFA. 

D. DAWG 

DAWG is possible to have less number of states than a trie 

because it merges all common substrings. Fig. 5 shows 

DAWG for key set K. In the same manner of a trie, retrieval 

of DAWG starts from the root state. As DAWG is a kind of 

DFA, it is possible to be represented as a matrix form and a 

linked list. In DAWG, terminal states cannot keep records for 

each key because some keys reach to the same terminal 

states.  

 

 
Fig. 4. Compact double array. 

 

 
Fig. 5. DAWG. 

 

III. DAWG USING COMPACT DOUBLE ARRAY 

Yata proposed a method to construct DAWG by the 

compact double array. In the double array, indexes of BASE 

and CHECK are represented as the state number.  

 

 
Fig. 6. Custom designed DAWG. 

 

From (3), only character c can traverse to state t. 

Therefore, different characters cannot traverse the same state; 

for example, edges of characters „a‟ and „b‟ from state 2 to 

state 3 in Fig. 5 cannot be represented by the BC double 

array. However, it can traverse from states s and s‟ to state t 

by character c if the same values are stored in BASE for states 

s and s‟(s≠s‟), because the compact double array stores 

traversed characters in CHECK.  In other words, because of 

BASE[s] = BASE[s‟], the values of BASE[s]+CODE(c) and 

BASE[s‟]+CODE(c) are the same value t and are possible to 

satisfy CHECK[t]=c. DAWG in Fig. 5 modified by the 

above-mentioned features is shown in Fig. 6. State 3 in Fig. 5 

corresponds to states 5 and 6 in Fig. 6 and traverses from 

states 5 and 6 to state 10 by the same character „a‟. Also, Fig. 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

49



  

7 shows the double array form of DAWG in Fig.6. Hereafter, 

this DAWG is defined as BC DAWG. Although the number 

of states in Fig. 6 seems to be more than the number in Fig. 5, 

the number is considered not to increase because of the same 

state as state 5 and 6 in Fig. 6. DAWG needs to be changed in 

order to construct BC DAWG as the changes from Fig. 5 to 

Fig. 6. 

 

 
Fig. 7. BC DAWG. 

 

 
Fig. 8. CN DAWG. 

 

A. Data Structures 

Maeda proposed a data structure to represent DFA by the 

double array [11]. The paper by Maeda explained that BASE 

was deleted by storing BASE values in NEXT. This means 

BASE is deleted by s=BASE[s] in the same manner of 

Fuketa‟s method [12]. Therefore, (1) in the triple array is 

changed as follows; 

 

e = s+CODE(c)

CHECK[e] = s

t = NEXT[e]

                                (4) 

 

As traversal to the same state is possible by storing the 

same value in NEXT, DFA can be constructed by the double 

array with CHECK and NEXT. In this double array, 

CHECK[e] stores state number s for the source of traversal, 

and NEXT[e] stores state number t for the destination of 

traversal. Moreover, CODE values for traversed character c 

from s to t can be calculated by CODE(c)=e-CHECK[e] with 

considering (4). 

Different states don‟t become the same values because 

values stored in NEXT are the state numbers. Traversed 

character c can be stored in CHECK[e] in the same manner of 

the compact double array. In this double array, traversal is 

satisfied with the following equation; 

 

e = s+CODE(c)

CHECK[e] = c

t = NEXT[e]

                              (5) 

The double array to implement DFA is defined as the CN 

double array. As DAWG is a kind of DFA, DAWG is 

represented by the CN double array.  

This DAWG is defined as the CN DAWG in order to 

distinguish from the method proposed by Yata. Fig. 8 shows 

the CN DAWG built for key set K. In the state diagram 

shown in Fig. 5, state numbers are different from Fig. 8, but 

the shape of the figure is the same. In other words, it is 

possible to construct DAWG without construction of custom 

designed DAWG. 

B. Construction Algorithm 

In this subsection, a construction algorithm of CN DAWG 

is described. After DAWG is constructed by the matrix form, 

it is converted into the CN double array. In the algorithm, the 

following variables and functions are used; 

 ROOT STATE NUMBER: A root state number in a 

matrix form 

 PUSH (S_SET,s): To add state s to set S_SET. 

 POP (S_SET): To return one value from set S_SET. 

 GET_LABELS(s): To return all traversed characters 

from state s.  

 N [s]: An array to store a state number of CN DAWG 

corresponding to state s in the matrix form.  

 X_CHECK (C_SET): A function returns a minimum 

value of states s which s+CODE(c) (c in C_SET) are all 

unused indexes. Simultaneously, index=s+CODE(c) is 

set as used indexes. 

 

 
Fig. 9. Construction algorithm. 

 

Fig. 9 shows a construction algorithm. This algorithm can 

construct both DAWG and DFA. In (C-3), a root state of CN 

DAWG is set to the NEXT array. The loop of (C-5) repeats 

for all states in DAWG. The loop from (C-8) to (C-22) sets 

the CHECK and NEXT values for all child states of state 

number s. In (C-10), the same state are not processed twice. 

In (C-15)-(C-21), if t is processed for the first time, a new 

state number is searched by X_CHECK. If not, values which 

have already been set are used. 

 

V. RELATED WORK 

Aoe proposed a method to construct DFA using the double 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

50

IV. DAWG USING CN DOUBLE ARRAY 



  

array by BASE and CHECK[13]. In the double array, as only 

one parent state is defined, a data structure which represents 

different states as the same states is necessary in order to 

traverse the same state by different characters. In this method, 

different states are once traversed by different characters, and 

then the traversal from one side to the other side is stored in 

BASE. The traversal to the same state is represented as 

BASE[s]<0, because BASE usually stores positive values. 

For example, in the custom designed DAWG of Fig. 6, states 

5 and 6 are the same states. By defining BASE[6] =-5 for 

states 5 and 6, it shows that these states are the same states. 

Therefore, the traversal from state s to state t by character c in 

the double array is conducted by the following conditions; 

1) BASE[s]≧0 

t = BASE[s]+CODE(c)  

CHECK[t] = s 

2) BASE[s]<0 

s‟ = -BASE[s] 

t = BASE[s‟]+CODE(c) 

CHECK[t] = s‟ 

Fig. 10 shows this double array representation of key set 

K. Fig. 10 shows that states (5 and 6; 7 and 9; 8, 10, and 11) 

are the same states. If positive values stored in BASE are 

unique, this double array can change into the compact double 

array. As this data structure needs to judge positives or 

negatives for each traversal, the retrieval speed of this data 

structure is slower than that of the BC double array and CN 

double array. 

 

 
Fig. 10. DAWG for Aoe‟s method. 

 

VI. OBSERVATIONS 

BC DAWG merges traversal of the same characters by the 

feature to store traversed characters in CHECK of the BC 

double array. Therefore, the original DAWG is one state, but 

BC DAWG can be more than two states. For example, state 4 

in Fig. 5 becomes states 8, 10, and 11 in Fig. 6. However, as 

retrieval can be conducted by k times of traversal if length of 

a retrieval key is k, time complexity becomes O(k) and is very 

fast. In the case of large key sets, as BASE and CHECK 

respectively requires 4 bytes and 1 byte when the number of 

all states is n, the space usage becomes 5n bytes. In this 

method, DFA which traverses from state s to state s cannot be 

constructed. 

Because CN DAWG uses the CN double array which can 

deal with DFA, the same state diagram can be represented as 

the original DAWG. Its retrieval speed is very fast, and its 

time complexity for a key of length k is O(k). When the 

custom designed DAWG for BC DAWG in Fig. 6 is 

compared with the state diagram in Fig. 8, the state number of 

Fig. 8 is less, but the number of indexes in arrays is the same 

in BC DAWG of Fig. 7 and CN DAWG of Fig. 8. As the 

number of indexes in arrays except for the first index matches 

the number of edges in CN DAWG, indexes of CHECK and 

NEXT arrays are considered as the edge numbers. For 

example, character „a‟ (=CHECK[2]) traverses from state 1 

to state 4 （=NEXT[2]） through edge number 2. Variable e 

in (5) represents the edge number. In BC DAWG, the number 

of all states is the same as the number of indegrees of all 

states, when the number of edges with the same character (for 

example, traversal from states 5 and 6 to state 10 in Fig. 6) is 

counted as 1. In other words, n is considered as the number of 

edges in BC DAWG as well as CN DAWG. In CN DAWG, 

as CHECK and NEXT respectively requires 1 byte and 4 

bytes when the number of edges is n, the space usage 

becomes 5n bytes. The space usage of BC DAWG is the same 

as that of CN DAWG. This means BC DAWG and CN 

DAWG have the same speed and space usage. 

Moreover, when BASE in BC DAWG is compared with 

NEXT in CN DAWG, it finds out that they are exactly the 

same values except for values of NEXT to terminal states.  

However, BC DAWG needs to create the custom designed 

DAWG. The reason is indexes of the double array are 

considered as state numbers because there is a limitation 

which one state has only one parent state in the double array. 

BC DAWG cannot construct DFA because of the limitation. 

Therefore, it is important to consider indexes of the double 

array as edge numbers in order to construct DAWG and DFA 

in the double array. 

 

VII. CONCLUSION 

This paper has compared a data structure of DAWG by the 

double array using BASE and CHECK arrays with that of 

DAWG by the double array using CHECK and NEXT arrays, 

and has mentioned that the retrieval speed and the space 

usage are the same. Moreover, when DAWG and DFA by the 

double array are constructed, it turns out that it is important to 

consider indexes for CHECK and NEXT arrays as edge 

numbers. 

A future work is to propose a method to conduct a dynamic 

construction by CN DAWG. 

REFERENCES 

[1] A. V. Aho and M. J. Corasick, "Efficient string matching: An aid to 

bibliographic search," Communications of the ACM, vol. 18, no. 6, pp. 

333-340, 1975. 

[2] D. E. Knuth, “The art of computer programming,” Sorting and 

Searching, vol. 3, Addison-Wesley, 1972. 

[3] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures and 

Algorithms, Addison Wesley, 1983. 

[4] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, 

Techniques, and Tools, Addison-Wesley, 1985. 

[5] J. Aoe, “An Efficient digital search algorithm by using a double-array 

structure,” IEEE Transactions on Software Engineering, vol. 15, no. 9, 

pp. 1066-1077, 1989.  

[6] Z. Yuan, B. Yang, X. Ren, and Y. Xue, “TFD: a multi-pattern matching 

algorithm for large-scale URL filtering,” in Proc. Intl. Conf. 

Computing, Networking and Communications, Communications and 

Information Security, 2013, pp. 359-363. 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

51



  

[7] C. Zheng, Q. Zheng, Z. Zhou, and F. Tian, "A method for large 

cross-language lexicon management based on collaborative work of 

hash family and double-array trie," in Proc. 14th International 

Conference on Computer Supported Cooperative Work in Design, New 

York, 2010, pp. 658-663.  

[8] S. Yata, M. Oono, K. Morita, M. Fuketa, T. Sumitomo, and J. Aoe, “A 

compact static double-array keeping character codes,” Information 

Processing and Management, vol. 43, no. 1, pp. 237-247, 2007. 

[9] S. Yata, K. Morita, M. Fuketa, and J. Aoe, “Fast string matching with 

space-efficient word graphs,” Innovations in Information Technology, 

pp. 79-83, 2008.  

[10] J. L. Bentley and R. Sedgewick, "Fast algorithms for sorting and 

searching strings," in Proc. Eighth Annual ACM-SIAM Symposium on 

Discrete Algorithms, 1997, pp. 360-369. 

[11] A. Maeda and K. Mizushima, “A compressed-array representation of 

automata and its application to programming language,” in Proc. the 

49th Programming Symposium on Information Processing Society of 

Japan, 2008, pp. 49-54. 

[12] M. Fuketa, H. Kitagawa, T. Ogawa, K. Morita, and J. Aoe, 

“Compression of double array structures for fixed length keywords,” 

Information Processing & management, vol. 50, no. 5, pp. 796-806, 

2014.  

[13] J. Aoe, “An efficient implementation of finite state machines using 

double-array structures,” The IEICE Transactions on Information and 

Systems, vol. J70-D, pp. 653-662, 1987. 

 

 

Masao Fuketa received B.Sc., M.Sc. and Ph.D. 

degrees in information science and intelligent systems 

from University of Tokushima, Japan, in 1993, 1995 

and 1998, respectively. He had been a research assistant 

from 1998 to 2000 in information science and 

intelligent systems, University of Tokushima, Japan. He 

is currently an associate professor in the Department of 

Information Science and Intelligent Systems, 

University of Tokushima, Japan. He is a member of the information 

processing society in Japan and the association for natural language 

processing of Japan. His research interests are information retrieval and 

natural language processing. 

 

 

Kazuhiro Morita received B.Sc., M.Sc. and Ph.D. 

degrees in information science and intelligent systems 

from University of Tokushima, Japan, in 1995, 1997 

and 2000, respectively. Since 2006, he has been a 

research associate in the Department of Information 

Science and Intelligent systems, University of 

Tokushima, Japan. His research interests are sentence 

retrieval from huge text databases, double array 

structures and binary search tree. 

 

 

Jun-ichi Aoe received B.Sc. and M.Sc. degrees in 

electronic engineering from the University of 

Tokushima, Japan, in 1974 and 1976, respectively, and 

received the Ph.D. degree in communication 

engineering from the University of Osaka, Japan, in 

1980. Since 1976, he has been with the University of 

Tokushima. He is currently a professor in the 

Department of Information Science and Intelligent 

Systems, University of Tokushima, Japan. His research interests are natural 

language processing, a shift-search strategy for interleaved LR parsing, a 

robust method for understanding NL interface commands in an intelligent 

command interpreter, and trie compaction algorithms for large key sets. He 

was the editor of the computer algorithm series of the IEEE Computer 

Society Press. He is a member of the association for computing machinery 

and the association for the natural language processing of Japan. 

 

 

 

International Journal of Computer Theory and Engineering, Vol. 8, No. 1, February 2016

52




