
  

 

Abstract—The sampling literature contains many examples 

of estimators of population parameter. To deal with this 

problem many authors have suggested family of estimators of 

population parameter. But in the case of generalization of these 

estimators, estimation of optimum values is a problem. Some 

authors can define estimator replacing the unknown 

parameters by their sample estimates. To get the optimum 

estimator, one need to solve complex mean square error 

equation with many parameters and nonlinear constraints. In 

this study we have tried to get these optimum parameter in 

stratified random sampling using genetic algorithms and 

sequential quadratic programming. A numerical example is 

also done to compare these algorithms. The results show that 

genetic algorithm is more efficient than sequential quadratic 

programming to solve the complex model with more 

parameters under non-linear constraints. 

 
Index Terms—Efficiency, genetic algorithm, mean square 

error, stratified random sampling. 

 

I. INTRODUCTION 

Genetic Algorithms (GAs) are stochastic optimization 

methods based on concepts of natural selection and genetics 

([1], [2]). They work with a population of individuals, each 

representing a possible solution to a given problem. GAs 

typically works by iteratively generating and evaluating 

individuals using an evaluation function. The simplest of 

GAs work according to scheme given by [3]. Evolutionary 

Process consists following steps: 1. Create initial population 

(k=0), 2. Evaluate fitness, 3. Selection, 4. Crossover, 5. 

Mutation, 6. Select next generation, 7. Check stopping 

criteria (if yes: go next step; if no: k=k+1), 8. Get the best 

solution.  

A. Selection Mechanism 

Selection is the process which guides the evolutionary 

algorithm to the optimal solution by preferring 

choromosomes with high fitness. The choromosomes evolve 

trough successive iterations, called generations. Each 

generation, the choromosemes are evaluated using same 

measure of fitness.  

B. Crossover 

Crossover is the main genetic operator. It provides the 

main search operator while bit mutation simply serves as a 

background operator to ensure that all possible solutions can 
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enter the population.  

C. Mutation 

Mutation is a background operator which produces some 

random changes in various choromosomes. In GAs, mutation 

play the role of replacing the genes lost during the 

evalutionary process in a new form or produce new genes 

which were nor explored before in the initial population. One 

way to do mutation would be to alter one or more genes. 

 

 
Fig. 1. Simple GAs process. 

 

D. Fitness Function 

GAs evaluates the individuals in the population using a 

selected fitness function. This function indicates should 

indicate how good or bad a candidate solution is.  

GAs gain a great popularity due to their known attributes. 

These are: 

1) GAs can handle both continuous and discrete 

optimization problems 

2) They require no derivative information about the fitness 

criterion. 

3) GAs have the advantageous over others each algorithms 

since it is less likely to be trapped by local minimum 

4) GAs provide a more optimal and global solution.  

5) In the case studies they are less sensitive to the presence 

of noise and uncertainty in measurements.  
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6) GAs use probabilistic operators not deterministic ones. 

For these reasons they have been successful used in 

numerous applications in engineering and computer science. 

They have been applied to a wide range of problems in 

diverse fields such as engineering, mathematics, operations 

research etc. Most of the problems in these fields are stated as 

constrained optimization problems. In survey sampling many 

authors have suggested many estimators of population mean. 

To deal with this problem family of estimators is proposed to 

collect all estimators in a form ([4]-[7]). But in this case 

parameter estimation is a problem. In this paper we have 

solved this problem using genetic algorithm and sequential 

quadratic programming. 

 

II. NONLINEAR PROGRAMMING PROBLEM FORMULATION 

A constraint nonlinear programming problem can be 

described as follows: 

 

  nRSFx,xfMin   

Subject to  

  0, 1,2, ,  ih x i p  

  q,,pj,xg j 10 
 

Given that kkk bxa  , n,,k 1 .  nx,,xx 1  

is a vector of n variables.  

 xf  is the objective function.  

 xhi  i. equality constraint   1,2, , i p  

 xg j
:  q,,pj 1  nq   j. inequality constraint   

S: whole search space 

F: feasible search space 

ka  and kb  present the lower and upper bounds of 

variable kx  respectively. 

When you submit your final version, after your paper has 

been accepted, prepare it in two-column format, including 

figures and tables.  

 

III. SEQUENTIAL QUADRATIC PROGRAMMING (SQP) 

The sequential quadratic programming is a powerful 

technique for solving nonlinear constrained optimization 

problems. SQP allows you to closely mimic Newton’s 

method for constrained optimization just is done for 

unconstraint optimization. At each iteration an 

approximation is made of the Hessian of the Lagrangian 

function using a quasi Newton updating method. This is then 

used to generate a Quadratic subproblem. Then its solution is 

used to form a search direction for a line search procedure. 

SQP is an iterative method which solves at the k iteration a 

QP of the following form: 

  dxfdHdMinimize
t

kk

t 
2

1
                    (1) 

Subject to  

    0, 1,2, ,    
t

i k i kh x d h x i p             (2) 

    q,,pj,xgdxg kj

t

kj 10            (3) 

d is defined as the search direction and kh  is a positive 

definite approximation to the Hessian matrix of Lagrangian 

function can be described as: 
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, ,   
  

   
p q

i i j j

i j p

L x f x h x g x           (4) 

  and   are the Lagrangian multipliers. The developed 

quadratic sub problems can then be solved using the active 

set strategy. The solution kx  at each iteration is updated 

according to  

 

kkkk dxx 1                             (5) 

 

  is defined as the step size and takes values in interval [0, 

1]. After each iteration the matrix kH  is updated based on 

the Newton Method.  
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where  
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IV. STRATIFIED RANDOM SAMPLING  

A stratified random sample is obtained by partitioning the 

population then taking a simple random sampling without 

replacement of specified size from each strata ([5], [6], [8]). 

With this method, we get more efficient estimates compared 

to simple random sampling.  Consider a finite population 

 NuuuU ,...,, 21  of size N and let y and x, respectively, 

be the study and auxiliary variables associated with each unit 

ju   Nj ....,,2,1  of the population. Let the population of 

size, N, is stratified into L strata with h-th stratum containing 

hN  units, where Lh ...,,2,1  such that 



L

h

h NN
1

. A 

simple random sample of size hn  is drawn without 

replacement from the h-th stratum such that 



L

h

h nn
1

. Let 

 hihi xy ,  denote the observed values of y and x on the i-th 

unit of the h-th stratum, where 
hNi ...,,2,1  and 

Lh ...,,2,1 . Moreover, let 
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and 
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 be the sample and 

population means of y, respectively, where 
N

N
W h

h   is the 

stratum weight. Similar expressions for x can also be defined.  

To obtain the bias and the MSE, let us define 

  YYye st 0  and   XXxe st 1 . Using these 

notations, 
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Reference [4] suggested a family of estimators for the 

population mean in the stratified random sampling as 
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where  ,  ,  , and w  can take finite values. When these 

four parameters are conveniently chosen, many estimators 

are obtainable. Also, when one parameter is considered as 

“free parameter”, it is possible to obtain some subclasses of 

estimators. Here, free parameter means that one of the four 

parameters is such a scalar that the mean square error of 

CSTy  gets the minimum value. In other words, we minimize 

the MSE equation according to the free parameter. Rewriting 

class in terms of e’s, we have 

     
 11 111 ewweyy STCST         (10) 

To obtain the bias and the MSE, the term   11 e  is 

expandable as  
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and similarly the term    
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expandable as   
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Up to the first order of approximation, the bias and the 

MSE of the estimator CSTy  are respectively given by 

 

   0,221,11 VcVcYyBias CSTI  ,                  (13) 
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where 
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  . 

Up to the second order of approximation, the bias and the 

MSE of the estimator CSTy  are respectively given by 
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V. NUMERICAL EXAMPLE 

In this section, we use the data concerning the number of 

teachers as study variable and the number of students as 

auxiliary variable in both primary and secondary schools for 

923 districts at 6 regions as: Marmara, Agean, 

Mediterranean, Central Anatolia, Black Sea, East and 

Southeast Anatolia in Turkey in 2007. We used the Neyman 

allocation for allocating the samples to different strata. Using 

this data set we try to minimize equation (16) both genetic 

algorithm and sequential quadratic algorithm. The optimum 

parameters and MSE values are given in Table II. According 

to Table II we can say that genetic algorithm gives more 

efficient result than sequential quadratic programming. 
 

TABLE I: SOME MEMBERS OF DIANA (1993) ESTIMATOR 
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TABLE II: OPTIMUM PARAMETERS AND MSE VALUES USING GA AND SQP 

  w      MSE Algorithm 

0.15 1.732 1.827 -0.796 211.79 SQP 

4.98 -0.212 -0.543 0.328 0.000131  GA 
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