
 

Abstract—The conventional stress wave signal interpretation 

in heat exchanger tube inspection is human dependent. The 

difficulties associated with accurate defect interpretations are 

skills and experiences of the inspector. Hence, in present study, 

alternative pattern recognition approach was proposed to 

interpret the presence of defect in carbon steel heat exchanger 

tubes SA179. Several high frequency stress wave signals 

propagated in the tubes due to impact are captured using 

Acoustic Emission method. In particular, one reference tube 

and two defective tubes were adopted. The signals were then 

clustered using the feature extraction algorithms. This paper 

tested two feature extraction algorithms namely Principal 

Component Analysis (PCA) and Auto-Regressive (AR). The 

pattern recognition results showed that the AR algorithm is 

more effective in defect identification. Good comparisons with 

the commonly global statistical analysis demonstrate the 

effective application of the present approach for defect 

detection. 

 
Index Terms—Auto-regressive, pattern recognition, 

principal component analysis, stress wave. 

 

I. INTRODUCTION 

Heat exchanger tube leakage is expensive for plant 

operation. It has high potential of catastrophic failure that 

could results in property damage and loss of life. Hence, 

tubes inspection is carried out at specified periodical interval 

as a proactive measure in monitoring and assessing the tube 

health and integrity. Several different approach have been 

developed to gain information on the tube condition. One of 

successful approach is interactions of stress wave 

propagation with the irregularities in the tube structure. Since 

this approach is indirect, the evaluation of recorded signals 

requires basic understanding involved in the physical process 

to infer the tube health condition [1]. 

Moreover, in conventional tube inspection methods, defect 

is typically visually interpreted by certified personnel by 

comparing the captured signals from inspected tubes with the 

signals from calibrated tube according to either time of 

arrival or single parameter such as amplitude and frequency 

level [2]. Prior knowledge of defect signal pattern and 

experience are essential for a reliable interpretation. This 
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requires adequate training hours to develop the expertise and 

competency. A large sum of resources is required for proper 

training, but more often being neglected because of limited 

fund [3]. 

Driven by the demand for higher performance and faster 

industrial production, advancing trends in automated signal 

interpretation are expected. One suitable approach to 

autonomous interpretation is the application of feature 

extraction based pattern recognition techniques. Previous 

studies are found to be successfully employed pattern 

recognition techniques to interpret the hidden trends of the 

complex stress wave signals [4]–[7]. Additionally, pattern 

recognition has successfully facilitated autonomous defect 

identification process in many structural application such as 

bearing, composite beam and pressure vessel [8]–[10].  

Hence, the aim of this paper is to explore an alternative to 

signal interpretation using pattern recognition approach, 

which was not considered in these earlier studies. The present 

work compares two feature extraction algorithms, namely 

Principal Component Analysis (PCA) and Auto-Regressive 

(AR) to distinguish high frequency stress wave signal data 

from Vibration Impact Acoustic Emission (VIAE). VIAE 

was carried out on three similar dimension and material, with 

exceptional of presence of artificial defect in each of the tube. 

The findings of this study demonstrated the potential of 

pattern recognition approach and its suitability for signal 

interpretation is investigated. The current study will help the 

inspector to gain better insight on the stress wave signal 

pattern in the presence of defect and thus, improve defect 

assessment. 

 

II. PATTERN RECOGNITION APPROACH 

The objective of pattern recognition is to obtain the ideal 

patterns based on specified factor and thus split them into 

distinct groups. Generally, there are three major stages 

involves in pattern recognition, which are: i) preprocess of 

the stress wave signals, ii) clustering and iii) validation of 

formed clusters. The primary step in pattern recognition is 

preprocessing includes filtering and feature selection based 

on selected preprocessing algorithm. In current study, the 

feature extraction algorithms undertaken are PCA and AR in 

the attempt to speedy the signal interpretation. PCA has been 

successfully used in classifying the signals from different 

sources [11]–[13]. This algorithm determined the covariance 

value that represent relationship between each signal. 

Covariance is a measure between 2 dimensions (X and Y) is 

calculated using (1). If the data has more than 2 dimensions, 

there will be more than one covariance to be calculated. For 

an n-dimensional data set, the number of covariance, ncv 
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values can be calculated is given by (2): 

1

))((
),(Covariance 1





 

n

YYXX
YX

n

i ii                  (1) 

!

( 2)! 2 
cv

n

n
n                                 (2) 

Structural differences between these observed signals will 

be obtained through decomposition of eigenvalues and 

eigenvectors. The sequential of PCA algorithm is illustrated 

in the flowchart as in Fig. 1. 

 

 
Fig. 1. PCA sequential procedure. 

 

Marec et al. [11] has exploited PCA coefficients to identify 

the damage mechanisms in polymer-based composite. Stress 

waves associated with damage mechanisms were effectively 

discriminated the damage mechanisms. Besides, Holford 

[12] have applied PCA to several groups of acoustic emission 

(AE) signals radiating from different defect source in aircraft 

structures. The results of the analysis show that AE signals 

from defects in the landing gear were successfully isolated in 

the different cluster. In different studies, Omid et al. [13] 

were able to separate pistachio nuts according to their sizes 

and condition by taking advantage of this extraction 

algorithm. In the study, stress wave signal emitted from a 

kernel when hitting a steel plate can be properly classified 

according to different nut condition. 

Similarly, AR coefficients have been used by other 

researchers including Jamaludin and Mba [14], [15] and 

Atamturktur et al. [16] to classify stress wave signatures. A 

stationary random process x(n) may be described as an AR 

model of order M is expressed as: 

1
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in which W(n) is a white noise process of zero mean and 

variance 2, h(k) is the AR coefficients and M is the model 

order. Works by Jamaludin and Mba [14], [15] involved the 

study of bursts associated with low speed machinery. They 

have employed Levinson-Durbin’s forward linear prediction 

algorithm to solve (3) to represent the shape of the bursts by a 

set of AR coefficients. Stress waves signatures associated 

with several simulated mechanical defects normally 

encountered in a roller bearing were successfully classified 

using cluster analysis technique. In another study, Jamaludin 

and Mba [15] also extended the application of AR 

coefficients to successfully identify defects in real roller 

bearings. In addition, Atamturktur et al. [16] has 

demonstrated that AR algorithm show great achievement in 

detecting structural separation in historic masonry. 

Subsequently, the clustering is made based on basic and 

incremental distance value of the preprocess feature using 

hierarchical procedure or K-means [17], [18]. Then, the most 

similar clusters that have the smallest distance combine into a 

new cluster. Hierarchical clustering procedure are often 

preferred when discovering the natural pattern of the data. 

Accurate interpretation of the clusters involves examining 

each component in the cluster and allocate label that 

representing the nature of the cluster. As the final stage, 

validation is required to ensure the clustering results 

represent the general population or has practical significance. 

The main advantage of pattern recognition is that it 

executes classification without having any idea about the 

distribution of the measurements [17]. Albeit huge mass of 

stress wave data analysed by employing pattern recognition, 

the right patterns are identified, and any outliers is able to be 

spotted. Hence, pattern recognition approach can be regarded 

as suitable to automate the signal interpretation of 

measurement for defect detection. This attempt is suitable for 

the current circumstance that requires effective condition 

classification. 

 

III. METHODOLOGY 

A. Tube Description 

Heat exchanger steel tubes A179 were used for the 

inspection using integrated vibration and acoustic emission 

(AE) systems called VIAE. These 1m long tubes have a 

19.05mm outside diameter and 2.11mm wall thickness. The 

measurement of stress wave was performed on three steel 

tubes R, Tube 1 and Tube 2. R is the reference tube, and Tube 

1 and Tube 2 are the defective tubes. The defect is a 1mm 

diameter hole artificially crafted by electrical discharge 

machining at 100mm from one of the tube ends. Tube 1 has 

40% wall loss depth defect and Tube 2 is through-hole defect. 

Both tube ends were fixed supported as illustrated in Fig. 2. 

 

 
Fig. 2. Experimental set up in laboratory environment. 
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B. Testing Procedure 

The impact was repeated for 20 times for each tube 

condition. Input force load and coherency plot are retrieved 

from PULSE Labshop. The impact force load represent the 

magnitude of force impacted on the tube. A typical time 

history of the applied force load on the tubes is shown in Fig. 

3(a). Distinctively, Fig. 3(a) clearly showed that the typical 

impact has a time delay of 18 ms and features a sharp peak of 

37 N. The consistency of the repeated impact was validated 

using coherency plot. The coherency plot represents the 

linearity of the impact loads on the tube. The coherence plot 

illustrated in Fig. 3(b) verified that a uniform impact force 

load has been applied to the tubes. 

 

  
(a) Impact force load. (b) Coherence plot. 

Fig. 3. Typical vibration data. 

 

The impact by hammer initiated stress wave propagation in 

the tube. In VisualAE software, 20 time history of stress 

wave signals were recorded for each impact in each tube 

condition. Each stress wave signals for reference tube was 

labelled as R. Stress wave signals from the defective tubes 

Tube 1 and Tube 2 were labelled as T1 and T2, respectively.  

The stress wave signals acquired by the high frequency 

transducer were analysed using PCA and AR algorithms. 

Having calculated the appropriate covariance or AR 

coefficients associated with each signals, the pattern 

recognition analysis was undertaken using hierarchical 

clustering. The cluster analysis is undertaken to classify 

similar signals into similar groups. Several methods are 

possible, with each of specific similarity characteristic. The 

most recognized measure of similarity distance is Euclidean 

distance, or also referred to as straight-line distance [19]. In 

this study, the Euclidean distance is exploited as measures of 

similarity. The hierarchical clustering measures the 

Euclidean distance between the covariance or AR 

coefficients associated with each signals. The similarity is 

calculated between each of the signals to enable each signal 

to be compared with each other. Smaller distances signified 

the signals have greater similarity.  

Then, Ward’s method is employed as the agglomerative 

algorithm. The signals with minimum sum of square are 

grouped together. The sum of squares of the distances 

between all signals in the cluster is recalculated, and the 

signals with the minimum sum of square to the newly formed 

group are clustered with it. This step is repeated every time a 

signal is added to the cluster until all the signals are grouped. 

Finally, the validation is done to check whether the algorithm 

produced the correct cluster. The results were illustrated 

using dendrogram, with the nearest Euclidean distances are 

clustered together. The resulted clustering is illustrated using 

dendrogram. The computing software used was MATLAB.  

IV. RESULTS AND DISCUSSION 

A. Time History 

The typical high frequency stress wave propagated along 

the tubes are obtained when the tube is impacted on one of 

tube ends. Fig. 4 illustrates time waveforms of propagated 

stress wave in the three inspected tubes. Generally, the 

typical stress wave represents multiple repetitive burst signal 

prior to complete attenuation. Each burst has approximately 

250µs period length. In addition, the shape and characters of 

reference tube R and defective tubes Tube 1 and Tube 2 are 

distinctly different due to different propagation path. It is 

clearly shown that Tube 1 and Tube 2 has additional burst 

signals compared to R. Since Tube 1 and Tube 2 have 

artificial defect that obstruct the stress wave propagation, 

more reflection of the stress wave from the original 

propagation path is observed. As illustrated in Fig. 4(a), the 

stress wave in reference tube R completely attenuated at 

4542µs. Meanwhile, the stress wave in defective tubes Tube 

1 and Tube 2 completely attenuated at longer period of 

7262µs and 8674µs, as shown in Fig. 4(b) and Fig. 4(c) 

respectively. 

Based on stress wave propagation theory, the different 

waveforms are attributed to different stress wave propagation 

path. From the above findings, it appears that the presence of 

defect modifies the stress wave propagation path in the tube 

structure. The artificial defect caused more reflection of 

stress wave, diffraction, beam spreading and surface waves, 

which effected the stress wave to attenuate at longer period 

and have more multiple burst. The deeper the defect depth, 

more burst attenuation of stress wave is observed. By 

inspection, it is obvious that defective signals appear to be 

more complex than the reference tube R signals. Each tube 

has a distinct stress wave signal. However, actual physical 

interpretation of the stress wave signals is more difficult, 

especially as no obvious differences in the amplitude levels 

and the burst repetitions of the two defective tubes are almost 

identical.  

B. Cluster Analysis 

The works presented here has focused on the use of the 

PCA and AR algorithms, which takes advantage of feature 

extraction analysis of data to classify the stress wave signals 

by employing hierarchical clustering. Only 100,000 data 

point from the stress wave history is considered in the cluster 

analysis as it is observed that the stress wave is completely 

attenuated by 0.01s. The purpose of cluster analysis is to put 

together similar characteristic into a group and dissimilar 

characteristic into another group, to meet the objective of 

pattern recognition. Each and every group has unique 

characteristics that differentiate one from another. The 

achieved clustering results are illustrated using dendrogram 

plot as demonstrated in Fig. 5 and Fig. 6. The x-axis 

represents the Euclidean distances between the input values. 

The y-axis represents the stress wave signals. The stress wave 

signals by label R, T1 and T2 represented stress wave signals 

of reference tube, defective tube T1 and defective tube T2, 

respectively.  

PCA is a statistical technique that involved variable 

reduction procedure. The relationship between the signals 
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was determined by exploiting covariance matrix. It is 

achieved through decomposition of covariance matrix into 

eigenvalue and eigenvector. The hidden pattern in the signals 

is observed at first principal component (PC). Typically the 

first PC has eigenvalue greater than 1. Each signals 

contributes one unit of variance to the total variance in the 

data set. Any component that displays an eigenvalue greater 

than 1 is accounting for a greater amount of variance, while 

the later components account for relatively smaller amounts 

[19].  
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Fig. 4. Time history produces by force impact at the tube end of the carbon 

steel tubes. 

 

Application of PCA to the stress wave signals resulted two 

major groups as demonstrated in Fig. 5. However, it was 

examined in Fig. 5 that major distinction between the stress 

wave signals of reference tube R and defective tubes Tube 1 

or Tube 2 were not achieved using PCA algorithm. It can be 

identified from Fig. 5(a) that 12 of stress wave signals 

associated with Tube 1 signals were merged with all the 

stress wave signals associated with reference tube in Cluster 

1 whereas only 8 of stress wave signals associated with Tube 

1 were grouped in Cluster 2. Similar outcome was observed 

when clustering stress wave signals from reference tube and 

Tube 2. Cluster 1 and Cluster 2 consist of combination of 

stress wave signals associated with reference tube and Tube 2 

as portrayed in Fig. 5(b). It was clearly evident that clustering 

results using PCA approach did not result in any clear 

grouping, thus becomes inappropriate for pattern recognition 

of stress wave propagation in steel tube. 

 

(a) Reference tube vs Tube 1. 

(b) Reference tube vs Tube 2. 

Fig. 5. Classification analysis using Principal Component Analysis 

algorithm. 

 

The lack of success in discriminating between the stress 

wave signals was observed due to PCA as a statistical pattern 

recognition. Similar peak amplitude was observed from time 

history of stress wave propagation (see Fig. 4) for all the 

three tubes, which resulted in a statistically similarity in 

variance between all the measured stress wave. 

Consequently, small variance between these observed signals 

caused no characteristic differences. Thus, all the signals 

were mixed up and show lack of group structure when 

employing PCA algorithm. 

Conversely, AR approach is utilized due to the ability of 

the AR coefficients to identify and classify burst type signals 

based on their shape feature. The shape is represented by AR 

coefficients. Application of Levinson-Durbin’s forward 

prediction error on the stress wave signals indicated that a 

20th model order was sufficient to represent the stress wave 

signals. Every signal is represented by a 21 AR coefficients 

(20th AR model order). Subsequently, the hierarchical 

clustering method described in Section III was applied to 

group the signals. 

It is noticeable in Fig. 6 that pattern recognition of stress 

wave signals using AR algorithm resulted into two major 

clusters. Primarily, two major groups separate between the 

reference tube and defective tube T1 signals. The first cluster 

comprises of stress wave signals of reference tube R and the 

second cluster contains stress wave signals of defective tube 
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T1 as illustrated in Fig. 6(a). Classifying stress wave signals 

from reference tube and Tube 2 produced identical result. All 

signals associated with reference tube R are clustered into 

Cluster 1 and signals associated with T2 are assembled in 

Cluster 2 as depicted in Fig. 6(b). The separation between the 

reference tube R signals and defective tubes T1 and T2 

signals are clearly pronounced. In all cases different cluster 

groups of R signals and defective tubes T1 and T2 signals 

were clearly distinct, with the Euclidean distances between 

the clusters was in excess of 0.4. It is clear that reasonable 

good defect signals has been attained using AR algorithm. 

The two cluster groups associated with tube condition are 

attributed to the different stress wave propagation path. 

Defective tubes have longer attenuation time, which resulted 

to different shape feature compared to reference tube.  

 

 
(a) Reference tube vs Tube 1 

 
(b) Reference tube vs Tube 2 

Fig. 6. Classification analysis using Auto-regressive algorithm. 

 

It was evident that AR cluster technique showed distinct 

separations between the stress wave signals. As introduced in 

Section I, the aim of the application of pattern recognition in 

stress wave captured from VIAE feature extraction is the 

identification of defect signal. Hence, it is postulated that 

stress wave classification using AR algorithm is more 

suitable than the established PCA algorithm. Given the 

scenario of the tube with a defect, it is probable that the stress 

wave captured from VIAE method could be successfully 

differentiated using AR algorithm. Thus, clustering results 

yielded distinct cluster groups from the reference signals as 

demonstrated in Fig. 6, this would be evident for the presence 

of defect in the tube. If no distinct groups were evident, then 

the tube would be passed a defect free. Application of PCA 

algorithm would generally mislead the interpretation results 

as no clearly defined groups as shown in Fig.5, which will be 

interpreted as defect free, when the actual is not the case. The 

present finding using AR algorithm is consistent with stress 

wave data when assessed using global statistical analysis 

[20]. 

 

V. CONCLUSION 

The application of two feature extraction algorithms have 

been demonstrated. AR algorithm successfully distinguish 

the defective signals pattern than PCA algorithm. The 

dendrogram enable a clear division of signal wave and enable 

quick and easy interpretation. The application of feature 

extraction using AR algorithm reveals meaningful 

information in the stress wave data sets from VIAE methods. 

This findings provide insights that can be useful to meet the 

unique demands of the rapidly evolving industry so that the 

inspector is able to accurately identify the defect and at the 

same time evaluate the tube health effectively.  
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