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Skeletal Algorithms: Sequential Pattern Mining

Michal R. Przybylek

Abstract—The basic idea behind the skeletal algorithm is to
express a problem in terms of congruences on a structure, build
an initial set of congruences, and improve it by taking limited
unions/intersections, until a suitable condition is reached.
Skeletal algorithms naturally arise in the context of
data/process mining, where the skeleton is the “free” structure
on initial data and congruence corresponds to similarities in
data. In this paper we study skeletal algorithms applied to
sequential pattern mining and compare their performance with
real models, Markov chains and models based on Shannon
entropy.

Index Terms—Evolutionary algorithms, pattern mining,
process mining, language recognition, skeletal algorithms.

I. INTRODUCTION

"Nowadays, there is no longer any question that the
quality of a company's business processes has a crucial
impact on its sales and profits. The degree of innovation built
into these business processes, as well as their flexibility and
efficiency, are critically important for the success of the
company. The importance of business processes is further
revealed when their are considered as the link between
business and IT; business applications only become business
solutions when the processes are supported efficiently. The
essential task of any standard business software is and
always will be to provide efficient support of internal and
external company processes."— Torsten Scholz

In order to survive in today's global economy more and
more enterprises have to redesign their business processes.
The competitive market creates the demand for high quality
services at lower costs and with shorter cycle times. In such
an environment business processes must be identified,
described, understood and analysed to find inefficiencies
which cause financial losses.

One way to achieve this is by modelling. Business
modelling is the first step towards defining a software
system. It enables the company to look afresh at how to
improve organization and to discover the processes that can
be solved automatically by software that will support the
business. However, as it often happens, such a developed
model corresponds more to how people think of the processes
and how they wish the processes would look like, then to the
real processes as they take place.

Another way is by extracting information from a set of
events gathered during executions of a process. Process
mining [1]-[14] is a growing technology in the context of
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business process analysis. It aims at extracting this
information and using it to build a model. Process mining is
also useful to check if the “a priori model” reflects the actual
situation of executions of the processes. In either case, the
extracted knowledge about business processes may be used
to reorganize the processes to reduce they time and cost for
the enterprise.

TABLE I: AN EVENT LOG

Case¢l Observable Actor Timestamp| Data
Action
127 START Dr. 11:30:52
Moor 07.02.2011
127 Listen to Dr. 11:34:27 headache
patient’s Moor 07.02.2011
complaints
127 | Listen to Dr. 11:35:59 fever
patient’s Moor 07.02.2011
complaints
107 START Dr. No 11:36:50
07.02.2011
127 Listen to Dr. 11:39:33 catarrh
patient’s Moor 07.02.2011
complaints
107 Listen to Dr. No 11:39:37 pain in the left
patient’s 07.02.2011 foot
complaints
127 Select a candi- Dr. 11:58:30 angina
date disease Moor 07.02.2011
127 Query pa- Dr. 12:01:11 sore throat?
tient about Moor 07.02.2011 ves
symptoms
127 Query pa- Dr. 12:08:21 white patches
tient about Moor 07.02.2011 on the tonsils?
symptoms yes
107 Sel 12:10:31 broken leg

et a candi- Dr. No
ise 07.02.2011

12:11:01 swollen leg?

07.02,2011 No

107 pa- Dr. No

about

tient

symptoms

107 Select a candi- Dr. No 12:11:33 Joint disloca-
date disease 07.02.2011 tion

107 Query pa- Dr. No 12:14:00 blood inflam-
tient about 07.02.2011 mation?
symptoms Yes

107 Make a diag- Dr. No 12:16:02 joint disloca-
nosis 07.02.2011 tion

107 END Dr. No 12:16:50

07.02.2011

127 Make a diag- Dr. 12:34:01 angina
nosis Moor 07.02.2011

127 END Dr. 12:34:55

Moor 07.02.2011

Table | shows a typical event-log gathered during
executions of the process to determine and identify a possible
disease or disorder of a patient. In this paper, we assume that
with every such an event-log there are associated:

1) An identifier referring to the execution (the case) of the
process that generated the event.

2) A unique timestamp indicating the particular moment
when the event occurred.

3) An observable action of the event; we shall assume, that
we are given only some rough information about the real
actions.

and we shall forget about any additional information and

attributes associated with an execution of a process. The first

property says that we may divide a list of events on
collections of events corresponding to executions of the
process, and the second property let us linearly order each of
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the collections. If we use only information about the relative
occurrences of two events (that is: which of the events was
first, and which was second), then the log may be equally
described as a finite list of finite sequences over the set
Observable Action of all possible observable actions.
Therefore we may think of the log as a finite sample of a
probabilistic language over alphabet Observable Action, or
more accurately, as the image of a finite sample of a
probabilistic language over Action, under a morphis
h : Action — Observable Action Morphism h describes our

imperfect information about the real actions. In the example
from Table I (here we use the first letter of the name of an
action as abbreviate for the action)
Observable Action = {l, s, g, m}
and the sample contains sequences
S = {<|| Il Il Sl ql q: m>l <I| Sl ql Sy ql m>}
Fig. 1 shows a model recognized from this sample. Here

Action = Observable Action and h is the identity morphism
(there are no duplicated events).

25

Fig. 1. Model mined from Table I.

Organization of the Paper

In this paper we compare performance of three algorithms
for sequential pattern mining: the skeletal algorithm as
described in [15], Bayesian inference method to build a
Markov chain from a sample, and arithmetic coding based on
Shannon entropy.

We assume that the reader is familiar with basic
mathematical concepts. The paper is structured as follows. In
Section Il we shall briefly recall the idea of skeletal
algorithms [15], Markov chain models and Shannon
entropy-based models. Section 11l describes experimental
results on our benchmark instances and discusses the
outcomes. We conclude the paper in Section 1V.
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If we forget about additional information and attributes
associated with an execution of a process, then the task of
identifying a process reduces to the task of language
recognition. The theory of language recognition that gives
most negative results is “identification of a language in the
limit” developed by Mark Gold [16]. The fundamental
theorem published by Dan Angluin [17] says that a class of
recursively indexed languages is (recursively) identifiable in
the limit iff for every language L from the class there exists an
effectively computable finite “tell-tale” - that is: a subset T of
L such that: if T is a subset of any other language K from the
class, then K is not a subset of L. An easy consequence of this
theorem is that the set of regular languages is not identifiable
in the limit. Another source of results in this context is the
theory of PAC-learning developed by Leslie Valiant [2].

Although these results are fairly interesting, in the context
of sequential pattern recognition, we are mostly given a very
small set of sample data, and our task is to find the most likely
hypothesis --- the question: “if we were given sufficiently
many data, would it have been possible to find the best
hypothesis?” is not really practical.

In this section we briefly present three approaches to mine
sequential patterns: skeletal algorithms, Markov chains and
models based on Shannon entropy.

Skeletal algorithm [1], [2] is a new branch of evolutionary
metaheuristics [3]-[6] concerned on data and process mining.
The crucial observation that leads to skeletal algorithms
bases on Minimum Description Length Principle [7], which
among other things, says that the task of finding “the best
model” describing given data is all about discovering
similarities in the data. Thus, when we start from a model that
fully describes the data (i.e. the skeletal model of the data),
but does not see any similarities, we may obtain a “better
model” by unifying some parts of the model. Unifying parts
of a model means just taking a quotient of that model, or
equally - finding a congruence relation.

Thus, skeletal algorithms search for a solution of a
problem in the set of quotients of a given structure called the
skeleton of the problem. More formally, let S be a set, and
denote by Eq(S) the set of equivalence relations on S. If i is
any element of S and A is an element of Eq(S) then by [i], we
shall denote the abstraction class of i in A - i.e. the set

{jeS:jAi}. We shall consider the following skeletal

MODELS

operations on Eq(S):
1) Splitting

The operation split:{0,1}° xSxEq(S)— Eq(S) takes a
predicate P:S — {0,1}, an element i from S, an equivalence

relation A from Eq(S) and gives the largest equivalence
relation R that is contained in A and satisfies:

Vi iRi= P(i)=p(j)- Thatis, it splits the equivalence

class [i]a on two classes: one for the elements that satisfy P
and the other of the elements that do not.
2) Summing

The operation sum:SxSx Eq(S)— Eq(S) takes two

elements i, j from S, an equivalence relation A from Eq(S) and
gives the smallest equivalence relation R satisfying i R j and
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containing A. That is, it merges the equivalence class [i], with
[ila-
3) Union

The operation ynjon:SxEq(S)xEq(S)—>Eq(S)xEq(S)
takes one element i from S, two equivalence relations A, B
from Eq(S) and gives a pair <R, Q) , Where R is the smallest

equivalence relation satisfying ‘v’jei] i Rj and containing
B

[
A, and dually Q is the smallest equivalence relation satisfying
Vjemin and containing B. That is, it merges the

equivalence class corresponding to an element in one
relation, with all elements taken from the equivalence class
corresponding to the same element in the other relation.
4) Intersection

The operation intersection:

SxEq(S)xEq(S)— Eq(S)xEq(S) takes one element i from S,
two equivalence relations A, B from Eq(S) and gives a pair
(R, Q) , where R is the largest equivalence relation

satisfying vx,ye[i] X R y = Xl y € [I]B Vv X' y 2 [I]B and

contained in A, and dually Q is the largest equivalence
relation  satisfying Y,y X Q y=xyeli],vxye[i,

and contained in $B$. That is, it intersects the equivalence
class corresponding to an element in one relation, with the
equivalence class corresponding to the same element in the
other relation.

Furthermore, we shall assume that there is also a fitness
function A:Eq(S)—>iR- The general template of skeletal

algorithm is shown on Fig. 2.
Given a finite list K of sample terms over a common
alphabet ), we shall construct the skeletal automaton

skeleton (K ) =(Q,q,,A) of K, where:
o s={(ik)ienkel. . |K (i)} Ufo,}
| (—o0) =start,l (o) =end, I (({i,k))=K (i), . where

the subscript k indicates the k-th element of the sequence
& (—o0,(i,1)) =1, 8 (o0,00) =1,

S((i|K (i)]),0) =18 ({i,k), (i k+1)) =1

So the skeleton of a list of data is just an automaton
corresponding to this list enriched with two states --- initial
and final. This automaton describes the situation, where all
actions are different. Given a list of sample data K, our search
space EQ(S) consists of all congruences on S. Skeletal
algorithm will try to glue some actions that give the same
output (shall search for the best fitting automaton in the set of
quotients of the skeletal automaton).

The Markov chain over K is the probabilistic transition

system markov (K ):='x %" —[0,1] , where:
z‘ =Y U{start, end} is alphabet > enriched with two

additional symbols: the starting symbol start and the
terminal symbol end
if we denote by K'

K'(i)=(start,K (i),end)

. the list of sequences:
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then forall X,y eX’:

the number of substrings(x, y) in K’

markov(K)(x,y)=
( )( y) the number of occurrences of x in K’

The Shannon model over K is the probability distribution
shannon(K): > U {end}— [0, 1] given by:
3 n

the total number of symbols in K +n

shannon(K)(end)

and for all x in

_the number of occurrences of x in K
the total number of symbols in K+n

shannon(K)(x)

A

‘ Build the skeleton of the data ‘

A

‘ select initial pop ‘

v

Compute fitness of each
congruence from the population

4

condition

Y
Randomly select congruences
from the population, such that
the p ility of i
a congruence is proportional
to its fitness

Y

’ Select the best congruence ‘

= 5 28 =
felurn the quotient

of the skeleton

! ‘ by the congruence

Apply skeletal operations
to the selected congruences

v

Fig. 2. Skeletal algorithm.

A

Create a new population ‘

I1l. EXPERIMENTAL RESULTS

We examine three classes of instances mentioned in [15]:
finite state automaton, non-rational probability source, and
some “hardcoded” sequences.

A. Non-Deterministic Automata

E 800
),

Fig. 3. Non-deterministic automaton.
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Given a non-deterministic automata like on Fig. 3, we
generate training sample of n=4, 16 words and a testing
sample of 128 words by moving through each arrow with
equal probability. Then we build three models based on the
training sample: the model discovered by skeletal algorithms,
the Markov chain model and the model based on Shannon
entropy. For each of 128 sample words we compute the
probability of generating the word by the true (optimal)
model and each of the described models.

Fig. 4 shows the complexities in natural bits corresponding
to the probabilities for n=4. Only 11 out of 128 words have
finite complexities (i.e. non-zero probabilities) according to

30
25

20

>

A
A A A 4
A AA 4 ah im

A w0 5 Mt ]

PRLD R P RLLCEROAA PR P

Ab

]
AA

the model discovered by skeletal algorithms, and 80 out of
128 words have finite complexities according to the Markov
chain model. Only Shannon model classifies correctly every
word from our testing sample. Fig. 5 shows relative distances
to the optimal complexity generated by the true model.
Observe that all 11 cases of finite complexities discovered by
skeletal algorithms, are lower than the optimal. Moreover, the
total complexity of the training sample shown on Fig. 13:
according to the skeletal models, was about four times lower
than the optimal complexity. Clearly, the training sample was
too short to learn reasonable models, and models overfit the
data.

W optimal

+ skeletal
markov

A shannon

>

A

fl_-hnA Ty

Fig. 4. Complexities of testing words for n=4. Average: optimal=3.17, skeletal=co, markov=co, shannon=7.33.
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# skeletal to natural
markov to natural

A shannon to natural

Fig. 5. Relative distances to the optimal complexity for n=4.

Fig. 6 shows the complexities in natural bits for n=16. All
testing words have finite complexities in every model (Fig.
6). The model discovered by skeletal algorithms is close to
the optimal (average 3.17 natural bits vs. 3.22 natural bits).
As shown on Fig. 7, 76 words from our testing sample have
higher complexity, and 52 words have lower complexity
according to the skeletal model. Markov model cannot take
advantage of the knowledge that every word starts from three
consecutive zeros and, thus, uses about one natural bit more
information to describe samples. The total complexity of the
training sample (see Fig. 13) in the skeletal model is still a bit
lower than the optimal one, which means that the model is
still slightly overfitted.

B. Prime Numbers

In this example we show how one can learn from a
probabilistic source p that does not correspond to any
finite-state model. We define p to be non-zero only on prime
numbers, and such that the probability for the k-th prime
number is proportional to the number of bits in binary
representation of k.

We generate training sample of n=64, 1024 prime
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numbers and a testing sample of 128 prime numbers. Then
we build three models based on the training sample: the
model discovered by skeletal algorithms, the Markov chain
model and the model based on Shannon entropy. For each of
128 sample prime numbers we compute the probability of
generating the number by p (times the probability of
generating a number at all; we call the probability
distribution obtained in such a way “the natural model”) and
the probability in each of the described models. For n=64 the
average natural complexity is 1.33 natural bits, 1.37
according to the skeletal model, 2.22 according to the
Markov chain model and 3.51 natural bits according to the
Shannon model (see Fig. 8 and Fig. 9). Detailed data for
n=1024 are shown on Fig. 10 and Fig. 11. Although there is
no model corresponding to p that can be discovered by
skeletal algorithms (i.e. the language of prime numbers is not
regular), the skeletal complexity is almost indistinguishable
form the natural complexity induced by probability
distribution p.

C. Sequences

In this example we use samples from [15], [26]:
L1=AB,C,AB,CB,ACB,ACAB,CBAC,
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B,A C AB,C,B,ACAB,CAB,CBAC,B,A algorithms, the Markov model and the model based on

e L2=AB,C,D,CEFGHG,I1IJG,I K,L, M, N, Shannonentropy. The exact values are shown on Fig. 13. The

O,P,R,F,G LKL MN,OPQ,S complexities of L2 are pretty low in both skeletal and Markov

Fig. 12 shows the total complexities of sequences L1 and  models - almost the whole information about the sequence is
L2 according to the models discovered by skeletal encoded in the models themselves.

18 A
16 I ¥
14 & ry
A
12 r's A A A A ad LYY m optimal
10 A A = M + skeletal
A A AA i " " A Al a
8 Ak A ' A AA A LA, A markov
A A ‘ A A A shannon

AR S LT N et e
.f.‘.’w#“x'b'n lh! ’ ml !nf!m

“”%$$¢$@#4w@@&@@@@ﬁﬂ&#@&&@@@&&w&

Fig. 6. Complexities of testing words for n=16. Average: optimal=3.17, skeletal=3.22, markov=4.53, shannon=6.88.
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Fig. 7. Relative distances to the optimal complexity for n=16.
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Fig. 8. Complexities of primary numbers, n = 64. Average: natural=1.33, skeletal=1.37, markov=2.22, shannon=3.51.
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Fig. 9. Relative distances to the natural complexity for primary numbers, n = 64.
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Fig. 10. Complexities of primary numbers, n = 64. Average: natural=1.33, skeletal=1.35, markov=2.37, shannon=3.4.
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Fig. 11. Relative distances to the natural complexity for primary numbers, n = 1024.
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Fig. 12. Total complexities of L1 and L2 according to the models.

optimal skeletal markov shannon
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Fig. 13. Complexities of training samples according to the models.

IV. CONCLUSION

This paper compares performance of three algorithms for
sequential pattern mining: the skeletal algorithm as
described, Bayesian inference method to build a Markov
chain, and arithmetic coding based on Shannon entropy. Our
benchmark instances include: finite state automaton,
non-rational probability source (prime numbers) and some
hardcoded sequences. We generated random samples from
the instances and divided them on two classes: the training
samples and the testing samples. We used training samples to
rediscover models, and then tried to find complexities of
testing samples (or tried to “compress” testing samples)
according to the models (i.e. the shorter description is, more
the model knows about the sample). In each case skeletal
algorithms outperformed Markov chains followed by
Shannon models - on condition that the training samples were
of a reasonable size. Moreover, when “a priori” distribution
was given, skeletal algorithms built the model close to the
real one.

In future work we will be interested in performance of
skeletal algorithms applied to non-sequential pattern
recognition.
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