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Abstract—The basic idea behind the skeletal algorithm is to 

express a problem in terms of congruences on a structure, build 

an initial set of congruences, and improve it by taking limited 

unions/intersections, until a suitable condition is reached. 

Skeletal algorithms naturally arise in the context of 

data/process mining, where the skeleton is the “free” structure 

on initial data and congruence corresponds to similarities in 

data. In this paper we study skeletal algorithms applied to 

sequential pattern mining and compare their performance with 

real models, Markov chains and models based on Shannon 

entropy. 

 
Index Terms—Evolutionary algorithms, pattern mining, 

process mining, language recognition, skeletal algorithms.  

 

I. INTRODUCTION 

"Nowadays, there is no longer any question that the 

quality of a company's business processes has a crucial 

impact on its sales and profits. The degree of innovation built 

into these business processes, as well as their flexibility and 

efficiency, are critically important for the success of the 

company. The importance of business processes is further 

revealed when their are considered as the link between 

business and IT; business applications only become business 

solutions when the processes are supported efficiently. The 

essential task of any standard business software is and 

always will be to provide efficient support of internal and 

external company processes."— Torsten Scholz 

In order to survive in today's global economy more and 

more enterprises have to redesign their business processes. 

The competitive market creates the demand for high quality 

services at lower costs and with shorter cycle times. In such 

an environment business processes must be identified, 

described, understood and analysed to find inefficiencies 

which cause financial losses. 

One way to achieve this is by modelling. Business 

modelling is the first step towards defining a software 

system. It enables the company to look afresh at how to 

improve organization and to discover the processes that can 

be solved automatically by software that will support the 

business. However, as it often happens, such a developed 

model corresponds more to how people think of the processes 

and how they wish the processes would look like, then to the 

real processes as they take place. 

Another way is by extracting information from a set of 

events gathered during executions of a process. Process 

mining [1]-[14] is a growing technology in the context of 
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business process analysis. It aims at extracting this 

information and using it to build a model. Process mining is 

also useful to check if the “a priori model” reflects the actual 

situation of executions of the processes. In either case, the 

extracted knowledge about business processes may be used 

to reorganize the processes to reduce they time and cost for 

the enterprise.  

 
TABLE I: AN EVENT LOG 

 
 

Table I shows a typical event-log gathered during 

executions of the process to determine and identify a possible 

disease or disorder of a patient. In this paper, we assume that 

with every such an event-log there are associated: 

1) An identifier referring to the execution (the case) of the 

process that generated the event. 

2) A unique timestamp indicating the particular moment 

when the event occurred. 

3) An observable action of the event; we shall assume, that 

we are given only some rough information about the real 

actions. 

and we shall forget about any additional information and 

attributes associated with an execution of a process. The first 

property says that we may divide a list of events on 

collections of events corresponding to executions of the 

process, and the second property let us linearly order each of 
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the collections. If we use only information about the relative 

occurrences of two events (that is: which of the events was 

first, and which was second), then the log may be equally 

described as a finite list of finite sequences over the set 

Observable Action of all possible observable actions. 

Therefore we may think of the log as a finite sample of a 

probabilistic language over alphabet Observable Action, or 

more accurately, as the image of a finite sample of a 

probabilistic language over Action, under a morphis 

h : Action Observable Action  Morphism h describes our 

imperfect information about the real actions. In the example 

from Table I (here we use the first letter of the name of an 

action as abbreviate for the action) 

 

Observable Action = {l, s, q, m} 

 

and the sample contains sequences 

 

S = {<l, l, l, s, q, q, m>, <l, s, q, s, q, m>} 

 

Fig. 1 shows a model recognized from this sample. Here 

Action = Observable Action and h is the identity morphism 

(there are no duplicated events). 

 

 
Fig. 1. Model mined from Table I. 

 

Organization of the Paper 

In this paper we compare performance of three algorithms 

for sequential pattern mining: the skeletal algorithm as 

described in [15], Bayesian inference method to build a 

Markov chain from a sample, and arithmetic coding based on 

Shannon entropy. 

We assume that the reader is familiar with basic 

mathematical concepts. The paper is structured as follows. In 

Section II we shall briefly recall the idea of skeletal 

algorithms [15], Markov chain models and Shannon 

entropy-based models. Section III describes experimental 

results on our benchmark instances and discusses the 

outcomes. We conclude the paper in Section IV. 

II. MODELS 

If we forget about additional information and attributes 

associated with an execution of a process, then the task of 

identifying a process reduces to the task of language 

recognition. The theory of language recognition that gives 

most negative results is “identification of a language in the 

limit” developed by Mark Gold [16]. The fundamental 

theorem published by Dan Angluin [17] says that a class of 

recursively indexed languages is (recursively) identifiable in 

the limit iff for every language L from the class there exists an 

effectively computable finite “tell-tale” - that is: a subset T of 

L such that: if T is a subset of any other language K from the 

class, then K is not a subset of L. An easy consequence of this 

theorem is that the set of regular languages is not identifiable 

in the limit. Another source of results in this context is the 

theory of PAC-learning developed by Leslie Valiant [2]. 

Although these results are fairly interesting, in the context 

of sequential pattern recognition, we are mostly given a very 

small set of sample data, and our task is to find the most likely 

hypothesis --- the question: “if we were given sufficiently 

many data, would it have been possible to find the best 

hypothesis?” is not really practical. 

In this section we briefly present three approaches to mine 

sequential patterns: skeletal algorithms, Markov chains and 

models based on Shannon entropy. 

Skeletal algorithm [1], [2] is a new branch of evolutionary 

metaheuristics [3]-[6] concerned on data and process mining. 

The crucial observation that leads to skeletal algorithms 

bases on Minimum Description Length Principle [7], which 

among other things, says that the task of finding “the best 

model” describing given data is all about discovering 

similarities in the data. Thus, when we start from a model that 

fully describes the data (i.e. the skeletal model of the data), 

but does not see any similarities, we may obtain a “better 

model” by unifying some parts of the model. Unifying parts 

of a model means just taking a quotient of that model, or 

equally - finding a congruence relation. 

Thus, skeletal algorithms search for a solution of a 

problem in the set of quotients of a given structure called the 

skeleton of the problem. More formally, let S be a set, and 

denote by Eq(S) the set of equivalence relations on S. If i is 

any element of S and A is an element of Eq(S) then by [i]A we 

shall denote the abstraction class of i in A - i.e. the set 

 :   j S j A i . We shall consider the following skeletal 

operations on Eq(S): 

1) Splitting 

The operation      : 0,1
S

split S Eq S Eq S    takes a 

predicate  : 0,1P S  , an element i from S, an equivalence 

relation A from Eq(S) and gives the largest equivalence 

relation R that is contained in A and satisfies: 

       
A

j i
i R j P i p j


   . That is, it splits the equivalence 

class [i]A on two classes: one for the elements that satisfy P 

and the other of the elements that do not. 

2) Summing 

The operation    :sum S S Eq S Eq S    takes two 

elements i, j from S, an equivalence relation A from Eq(S) and 

gives the smallest equivalence relation R satisfying i R j and 
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containing A. That is, it merges the equivalence class [i]A with 

[j]A. 

3) Union 

The operation        :union S Eq S Eq S Eq S Eq S     

takes one element i from S, two equivalence relations A, B 

from Eq(S) and gives a pair ,R Q , where R is the smallest 

equivalence relation satisfying 
    

B
j i

i R j


  and containing 

A, and dually Q is the smallest equivalence relation satisfying 

    
A

j i
i Q j


  and containing B. That is, it merges the 

equivalence class corresponding to an element in one 

relation, with all elements taken from the equivalence class 

corresponding to the same element in the other relation. 

4) Intersection 

The operation intersection: 

       S Eq S Eq S Eq S Eq S     takes one element i from S, 

two equivalence relations A, B from Eq(S) and gives a pair 

,R Q , where R is the largest equivalence relation 

satisfying      ,
  , ,


    

A
x y i B B

x R y x y i x y i  and 

contained in A, and dually Q is the largest equivalence 

relation satisfying 
     ,

  , ,
B

x y i A A
x Q y x y i x y i


      

and contained in $B$. That is, it intersects the equivalence 

class corresponding to an element in one relation, with the 

equivalence class corresponding to the same element in the 

other relation. 

Furthermore, we shall assume that there is also a fitness 

function  : Eq S  . The general template of skeletal 

algorithm is shown on Fig. 2. 

Given a finite list K of sample terms over a common 

alphabet ∑, we shall construct the skeletal automaton 

  , ,sskeleton K Q q   of K, where: 

      , : , 1, , ,S i k i n k K i       

       , , ,
k

l start l end l i k K i     , where 

the subscript k indicates the k-th element of the sequence 

    , ,1 1, , 1,i       

    , , 1, , , , 1 1i K i i k i k       

So the skeleton of a list of data is just an automaton 

corresponding to this list enriched with two states --- initial 

and final. This automaton describes the situation, where all 

actions are different. Given a list of sample data K, our search 

space Eq(S) consists of all congruences on S. Skeletal 

algorithm will try to glue some actions that give the same 

output (shall search for the best fitting automaton in the set of 

quotients of the skeletal automaton). 

The Markov chain over K is the probabilistic transition 

system    : 0,1markov K     , where: 

    endstart,
'  is alphabet ∑ enriched with two 

additional symbols: the starting symbol start and the 

terminal symbol end 

 if we denote by K' the list of sequences: 

   , ,K i start K i end   

then for all ,x y  : 

  
   ,   

,
       

the number of substrings x y in K
markov K x y

the number of occurrences of x in K





 

The Shannon model over K is the probability distribution 

     1,0:)( endKshannon  given by: 

  
      

n
shannon K end

the total number of symbols in K n



 

and for all x in ∑: 

  
       

      

the number of occurrences of x in K
shannon K x

the total number of symbols in K n



 

 
Fig. 2. Skeletal algorithm. 

 

III. EXPERIMENTAL RESULTS 

We examine three classes of instances mentioned in [15]: 

finite state automaton, non-rational probability source, and 

some “hardcoded” sequences.  

A. Non-Deterministic Automata 

 

 
Fig. 3. Non-deterministic automaton. 
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Given a non-deterministic automata like on Fig. 3, we 

generate training sample of n=4, 16 words and a testing 

sample of 128 words by moving through each arrow with 

equal probability. Then we build three models based on the 

training sample: the model discovered by skeletal algorithms, 

the Markov chain model and the model based on Shannon 

entropy. For each of 128 sample words we compute the 

probability of generating the word by the true (optimal) 

model and each of the described models. 

Fig. 4 shows the complexities in natural bits corresponding 

to the probabilities for n=4. Only 11 out of 128 words have 

finite complexities (i.e. non-zero probabilities) according to 

the model discovered by skeletal algorithms, and 80 out of 

128 words have finite complexities according to the Markov 

chain model. Only Shannon model classifies correctly every 

word from our testing sample. Fig. 5 shows relative distances 

to the optimal complexity generated by the true model. 

Observe that all 11 cases of finite complexities discovered by 

skeletal algorithms, are lower than the optimal. Moreover, the 

total complexity of the training sample shown on Fig. 13: 

according to the skeletal models, was about four times lower 

than the optimal complexity. Clearly, the training sample was 

too short to learn reasonable models, and models overfit the 

data. 

 
Fig. 4. Complexities of testing words for n=4. Average: optimal=3.17, skeletal=∞, markov=∞, shannon=7.33. 

 

 
Fig. 5. Relative distances to the optimal complexity for n=4. 

 

Fig. 6 shows the complexities in natural bits for n=16. All 

testing words have finite complexities in every model (Fig. 

6). The model discovered by skeletal algorithms is close to 

the optimal (average 3.17 natural bits vs. 3.22 natural bits). 

As shown on Fig. 7, 76 words from our testing sample have 

higher complexity, and 52 words have lower complexity 

according to the skeletal model. Markov model cannot take 

advantage of the knowledge that every word starts from three 

consecutive zeros and, thus, uses about one natural bit more 

information to describe samples. The total complexity of the 

training sample (see Fig. 13) in the skeletal model is still a bit 

lower than the optimal one, which means that the model is 

still slightly overfitted. 

B. Prime Numbers 

In this example we show how one can learn from a 

probabilistic source p that does not correspond to any 

finite-state model. We define p to be non-zero only on prime 

numbers, and such that the probability for the k-th prime 

number is proportional to the number of bits in binary 

representation of k. 

We generate training sample of n=64, 1024 prime 

numbers and a testing sample of 128 prime numbers. Then 

we build three models based on the training sample: the 

model discovered by skeletal algorithms, the Markov chain 

model and the model based on Shannon entropy. For each of 

128 sample prime numbers we compute the probability of 

generating the number by p (times the probability of 

generating a number at all; we call the probability 

distribution obtained in such a way “the natural model”) and 

the probability in each of the described models. For n=64 the 

average natural complexity is 1.33 natural bits, 1.37 

according to the skeletal model, 2.22 according to the 

Markov chain model and 3.51 natural bits according to the 

Shannon model (see Fig. 8 and Fig. 9). Detailed data for 

n=1024 are shown on Fig. 10 and Fig. 11. Although there is 

no model corresponding to p that can be discovered by 

skeletal algorithms (i.e. the language of prime numbers is not 

regular), the skeletal complexity is almost indistinguishable 

form the natural complexity induced by probability 

distribution p.   

C. Sequences 

In this example we use samples from [15], [26]: 

 L1 = A, B, C, A, B, C, B, A, C, B, A, C, A, B, C, B, A, C, 
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B, A, C, A, B, C, B, A, C, A, B, C, A, B, C, B, A, C, B, A 

 L2 = A, B, C, D, C, E, F, G, H, G, I, J, G, I, K, L, M, N, 

O, P, R, F, G, I, K, L, M, N, O, P, Q, S 

Fig. 12 shows the total complexities of sequences L1 and 

L2 according to the models discovered by skeletal 

algorithms, the Markov model and the model based on 

Shannon entropy. The exact values are shown on Fig. 13. The 

complexities of L2 are pretty low in both skeletal and Markov 

models - almost the whole information about the sequence is 

encoded in the models themselves. 

 
Fig. 6. Complexities of testing words for n=16. Average: optimal=3.17, skeletal=3.22, markov=4.53, shannon=6.88. 

 

 
Fig. 7. Relative distances to the optimal complexity for n=16. 

 

 
Fig. 8. Complexities of primary numbers, n = 64. Average: natural=1.33, skeletal=1.37, markov=2.22, shannon=3.51. 

 

 
Fig. 9. Relative distances to the natural complexity for primary numbers, n = 64. 

 

 
Fig. 10. Complexities of primary numbers, n = 64. Average: natural=1.33, skeletal=1.35, markov=2.37, shannon=3.4. 
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Fig. 11. Relative distances to the natural complexity for primary numbers, n = 1024. 

 

 
Fig. 12. Total complexities of L1 and L2 according to the models. 

 

 
Fig. 13. Complexities of training samples according to the models. 

 

IV. CONCLUSION 

This paper compares performance of three algorithms for 

sequential pattern mining: the skeletal algorithm as 

described, Bayesian inference method to build a Markov 

chain, and arithmetic coding based on Shannon entropy. Our 

benchmark instances include: finite state automaton, 

non-rational probability source (prime numbers) and some 

hardcoded sequences. We generated random samples from 

the instances and divided them on two classes: the training 

samples and the testing samples. We used training samples to 

rediscover models, and then tried to find complexities of 

testing samples (or tried to “compress” testing samples) 

according to the models (i.e. the shorter description is, more 

the model knows about the sample). In each case skeletal 

algorithms outperformed Markov chains followed by 

Shannon models - on condition that the training samples were 

of a reasonable size. Moreover, when “a priori” distribution 

was given, skeletal algorithms built the model close to the 

real one.  

In future work we will be interested in performance of 

skeletal algorithms applied to non-sequential pattern 

recognition.  
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