



Abstract—The basic idea behind the skeletal algorithm is to

express a problem in terms of congruences on a structure, build

an initial set of congruences, and improve it by taking limited

unions/intersections, until a suitable condition is reached.

Skeletal algorithms naturally arise in the context of

data/process mining, where the skeleton is the “free” structure

on initial data and congruence corresponds to similarities in

data. In this paper we study skeletal algorithms applied to

sequential pattern mining and compare their performance with

real models, Markov chains and models based on Shannon

entropy.

Index Terms—Evolutionary algorithms, pattern mining,

process mining, language recognition, skeletal algorithms.

I. INTRODUCTION

"Nowadays, there is no longer any question that the

quality of a company's business processes has a crucial

impact on its sales and profits. The degree of innovation built

into these business processes, as well as their flexibility and

efficiency, are critically important for the success of the

company. The importance of business processes is further

revealed when their are considered as the link between

business and IT; business applications only become business

solutions when the processes are supported efficiently. The

essential task of any standard business software is and

always will be to provide efficient support of internal and

external company processes."— Torsten Scholz

In order to survive in today's global economy more and

more enterprises have to redesign their business processes.

The competitive market creates the demand for high quality

services at lower costs and with shorter cycle times. In such

an environment business processes must be identified,

described, understood and analysed to find inefficiencies

which cause financial losses.

One way to achieve this is by modelling. Business

modelling is the first step towards defining a software

system. It enables the company to look afresh at how to

improve organization and to discover the processes that can

be solved automatically by software that will support the

business. However, as it often happens, such a developed

model corresponds more to how people think of the processes

and how they wish the processes would look like, then to the

real processes as they take place.

Another way is by extracting information from a set of

events gathered during executions of a process. Process

mining [1]-[14] is a growing technology in the context of

Manuscript received February 25, 2014; revised April 26, 2014. This

work has been partially supported by Polish National Science Center,

project~DEC-2011/01/N/ST6/02752.

Michal R. Przybylek is with the University of Warsaw, Poland (e-mail:

mrp@mimuw.edu.pl).

business process analysis. It aims at extracting this

information and using it to build a model. Process mining is

also useful to check if the “a priori model” reflects the actual

situation of executions of the processes. In either case, the

extracted knowledge about business processes may be used

to reorganize the processes to reduce they time and cost for

the enterprise.

TABLE I: AN EVENT LOG

Table I shows a typical event-log gathered during

executions of the process to determine and identify a possible

disease or disorder of a patient. In this paper, we assume that

with every such an event-log there are associated:

1) An identifier referring to the execution (the case) of the

process that generated the event.

2) A unique timestamp indicating the particular moment

when the event occurred.

3) An observable action of the event; we shall assume, that

we are given only some rough information about the real

actions.

and we shall forget about any additional information and

attributes associated with an execution of a process. The first

property says that we may divide a list of events on

collections of events corresponding to executions of the

process, and the second property let us linearly order each of

Skeletal Algorithms: Sequential Pattern Mining

Michal R. Przybylek

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

132DOI: 10.7763/IJCTE.2015.V7.944

the collections. If we use only information about the relative

occurrences of two events (that is: which of the events was

first, and which was second), then the log may be equally

described as a finite list of finite sequences over the set

Observable Action of all possible observable actions.

Therefore we may think of the log as a finite sample of a

probabilistic language over alphabet Observable Action, or

more accurately, as the image of a finite sample of a

probabilistic language over Action, under a morphis

h : Action Observable Action Morphism h describes our

imperfect information about the real actions. In the example

from Table I (here we use the first letter of the name of an

action as abbreviate for the action)

Observable Action = {l, s, q, m}

and the sample contains sequences

S = {<l, l, l, s, q, q, m>, <l, s, q, s, q, m>}

Fig. 1 shows a model recognized from this sample. Here

Action = Observable Action and h is the identity morphism

(there are no duplicated events).

Fig. 1. Model mined from Table I.

Organization of the Paper

In this paper we compare performance of three algorithms

for sequential pattern mining: the skeletal algorithm as

described in [15], Bayesian inference method to build a

Markov chain from a sample, and arithmetic coding based on

Shannon entropy.

We assume that the reader is familiar with basic

mathematical concepts. The paper is structured as follows. In

Section II we shall briefly recall the idea of skeletal

algorithms [15], Markov chain models and Shannon

entropy-based models. Section III describes experimental

results on our benchmark instances and discusses the

outcomes. We conclude the paper in Section IV.

II. MODELS

If we forget about additional information and attributes

associated with an execution of a process, then the task of

identifying a process reduces to the task of language

recognition. The theory of language recognition that gives

most negative results is “identification of a language in the

limit” developed by Mark Gold [16]. The fundamental

theorem published by Dan Angluin [17] says that a class of

recursively indexed languages is (recursively) identifiable in

the limit iff for every language L from the class there exists an

effectively computable finite “tell-tale” - that is: a subset T of

L such that: if T is a subset of any other language K from the

class, then K is not a subset of L. An easy consequence of this

theorem is that the set of regular languages is not identifiable

in the limit. Another source of results in this context is the

theory of PAC-learning developed by Leslie Valiant [2].

Although these results are fairly interesting, in the context

of sequential pattern recognition, we are mostly given a very

small set of sample data, and our task is to find the most likely

hypothesis --- the question: “if we were given sufficiently

many data, would it have been possible to find the best

hypothesis?” is not really practical.

In this section we briefly present three approaches to mine

sequential patterns: skeletal algorithms, Markov chains and

models based on Shannon entropy.

Skeletal algorithm [1], [2] is a new branch of evolutionary

metaheuristics [3]-[6] concerned on data and process mining.

The crucial observation that leads to skeletal algorithms

bases on Minimum Description Length Principle [7], which

among other things, says that the task of finding “the best

model” describing given data is all about discovering

similarities in the data. Thus, when we start from a model that

fully describes the data (i.e. the skeletal model of the data),

but does not see any similarities, we may obtain a “better

model” by unifying some parts of the model. Unifying parts

of a model means just taking a quotient of that model, or

equally - finding a congruence relation.

Thus, skeletal algorithms search for a solution of a

problem in the set of quotients of a given structure called the

skeleton of the problem. More formally, let S be a set, and

denote by Eq(S) the set of equivalence relations on S. If i is

any element of S and A is an element of Eq(S) then by [i]A we

shall denote the abstraction class of i in A - i.e. the set

 : j S j A i . We shall consider the following skeletal

operations on Eq(S):

1) Splitting

The operation      : 0,1
S

split S Eq S Eq S   takes a

predicate  : 0,1P S  , an element i from S, an equivalence

relation A from Eq(S) and gives the largest equivalence

relation R that is contained in A and satisfies:

     
A

j i
i R j P i p j


   . That is, it splits the equivalence

class [i]A on two classes: one for the elements that satisfy P

and the other of the elements that do not.

2) Summing

The operation    :sum S S Eq S Eq S   takes two

elements i, j from S, an equivalence relation A from Eq(S) and

gives the smallest equivalence relation R satisfying i R j and

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

133

containing A. That is, it merges the equivalence class [i]A with

[j]A.

3) Union

The operation        :union S Eq S Eq S Eq S Eq S   

takes one element i from S, two equivalence relations A, B

from Eq(S) and gives a pair ,R Q , where R is the smallest

equivalence relation satisfying
 

B
j i

i R j


 and containing

A, and dually Q is the smallest equivalence relation satisfying

 
A

j i
i Q j


 and containing B. That is, it merges the

equivalence class corresponding to an element in one

relation, with all elements taken from the equivalence class

corresponding to the same element in the other relation.

4) Intersection

The operation intersection:

       S Eq S Eq S Eq S Eq S    takes one element i from S,

two equivalence relations A, B from Eq(S) and gives a pair

,R Q , where R is the largest equivalence relation

satisfying      ,
 , ,


    

A
x y i B B

x R y x y i x y i and

contained in A, and dually Q is the largest equivalence

relation satisfying
     ,

 , ,
B

x y i A A
x Q y x y i x y i


    

and contained in B. That is, it intersects the equivalence

class corresponding to an element in one relation, with the

equivalence class corresponding to the same element in the

other relation.

Furthermore, we shall assume that there is also a fitness

function  : Eq S  . The general template of skeletal

algorithm is shown on Fig. 2.

Given a finite list K of sample terms over a common

alphabet ∑, we shall construct the skeletal automaton

  , ,sskeleton K Q q  of K, where:

      , : , 1, , ,S i k i n k K i     

       , , ,
k

l start l end l i k K i     , where

the subscript k indicates the k-th element of the sequence

    , ,1 1, , 1,i     

    , , 1, , , , 1 1i K i i k i k    

So the skeleton of a list of data is just an automaton

corresponding to this list enriched with two states --- initial

and final. This automaton describes the situation, where all

actions are different. Given a list of sample data K, our search

space Eq(S) consists of all congruences on S. Skeletal

algorithm will try to glue some actions that give the same

output (shall search for the best fitting automaton in the set of

quotients of the skeletal automaton).

The Markov chain over K is the probabilistic transition

system    : 0,1markov K     , where:

    endstart,
' is alphabet ∑ enriched with two

additional symbols: the starting symbol start and the

terminal symbol end

 if we denote by K' the list of sequences:

   , ,K i start K i end 

then for all ,x y  :

  
 ,

,

the number of substrings x y in K
markov K x y

the number of occurrences of x in K






The Shannon model over K is the probability distribution

     1,0:)(endKshannon given by:

  

n
shannon K end

the total number of symbols in K n




and for all x in ∑:

  

the number of occurrences of x in K
shannon K x

the total number of symbols in K n




Fig. 2. Skeletal algorithm.

III. EXPERIMENTAL RESULTS

We examine three classes of instances mentioned in [15]:

finite state automaton, non-rational probability source, and

some “hardcoded” sequences.

A. Non-Deterministic Automata

Fig. 3. Non-deterministic automaton.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

134

Given a non-deterministic automata like on Fig. 3, we

generate training sample of n=4, 16 words and a testing

sample of 128 words by moving through each arrow with

equal probability. Then we build three models based on the

training sample: the model discovered by skeletal algorithms,

the Markov chain model and the model based on Shannon

entropy. For each of 128 sample words we compute the

probability of generating the word by the true (optimal)

model and each of the described models.

Fig. 4 shows the complexities in natural bits corresponding

to the probabilities for n=4. Only 11 out of 128 words have

finite complexities (i.e. non-zero probabilities) according to

the model discovered by skeletal algorithms, and 80 out of

128 words have finite complexities according to the Markov

chain model. Only Shannon model classifies correctly every

word from our testing sample. Fig. 5 shows relative distances

to the optimal complexity generated by the true model.

Observe that all 11 cases of finite complexities discovered by

skeletal algorithms, are lower than the optimal. Moreover, the

total complexity of the training sample shown on Fig. 13:

according to the skeletal models, was about four times lower

than the optimal complexity. Clearly, the training sample was

too short to learn reasonable models, and models overfit the

data.

Fig. 4. Complexities of testing words for n=4. Average: optimal=3.17, skeletal=∞, markov=∞, shannon=7.33.

Fig. 5. Relative distances to the optimal complexity for n=4.

Fig. 6 shows the complexities in natural bits for n=16. All

testing words have finite complexities in every model (Fig.

6). The model discovered by skeletal algorithms is close to

the optimal (average 3.17 natural bits vs. 3.22 natural bits).

As shown on Fig. 7, 76 words from our testing sample have

higher complexity, and 52 words have lower complexity

according to the skeletal model. Markov model cannot take

advantage of the knowledge that every word starts from three

consecutive zeros and, thus, uses about one natural bit more

information to describe samples. The total complexity of the

training sample (see Fig. 13) in the skeletal model is still a bit

lower than the optimal one, which means that the model is

still slightly overfitted.

B. Prime Numbers

In this example we show how one can learn from a

probabilistic source p that does not correspond to any

finite-state model. We define p to be non-zero only on prime

numbers, and such that the probability for the k-th prime

number is proportional to the number of bits in binary

representation of k.

We generate training sample of n=64, 1024 prime

numbers and a testing sample of 128 prime numbers. Then

we build three models based on the training sample: the

model discovered by skeletal algorithms, the Markov chain

model and the model based on Shannon entropy. For each of

128 sample prime numbers we compute the probability of

generating the number by p (times the probability of

generating a number at all; we call the probability

distribution obtained in such a way “the natural model”) and

the probability in each of the described models. For n=64 the

average natural complexity is 1.33 natural bits, 1.37

according to the skeletal model, 2.22 according to the

Markov chain model and 3.51 natural bits according to the

Shannon model (see Fig. 8 and Fig. 9). Detailed data for

n=1024 are shown on Fig. 10 and Fig. 11. Although there is

no model corresponding to p that can be discovered by

skeletal algorithms (i.e. the language of prime numbers is not

regular), the skeletal complexity is almost indistinguishable

form the natural complexity induced by probability

distribution p.

C. Sequences

In this example we use samples from [15], [26]:

 L1 = A, B, C, A, B, C, B, A, C, B, A, C, A, B, C, B, A, C,

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

135

B, A, C, A, B, C, B, A, C, A, B, C, A, B, C, B, A, C, B, A

 L2 = A, B, C, D, C, E, F, G, H, G, I, J, G, I, K, L, M, N,

O, P, R, F, G, I, K, L, M, N, O, P, Q, S

Fig. 12 shows the total complexities of sequences L1 and

L2 according to the models discovered by skeletal

algorithms, the Markov model and the model based on

Shannon entropy. The exact values are shown on Fig. 13. The

complexities of L2 are pretty low in both skeletal and Markov

models - almost the whole information about the sequence is

encoded in the models themselves.

Fig. 6. Complexities of testing words for n=16. Average: optimal=3.17, skeletal=3.22, markov=4.53, shannon=6.88.

Fig. 7. Relative distances to the optimal complexity for n=16.

Fig. 8. Complexities of primary numbers, n = 64. Average: natural=1.33, skeletal=1.37, markov=2.22, shannon=3.51.

Fig. 9. Relative distances to the natural complexity for primary numbers, n = 64.

Fig. 10. Complexities of primary numbers, n = 64. Average: natural=1.33, skeletal=1.35, markov=2.37, shannon=3.4.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

136

Fig. 11. Relative distances to the natural complexity for primary numbers, n = 1024.

Fig. 12. Total complexities of L1 and L2 according to the models.

Fig. 13. Complexities of training samples according to the models.

IV. CONCLUSION

This paper compares performance of three algorithms for

sequential pattern mining: the skeletal algorithm as

described, Bayesian inference method to build a Markov

chain, and arithmetic coding based on Shannon entropy. Our

benchmark instances include: finite state automaton,

non-rational probability source (prime numbers) and some

hardcoded sequences. We generated random samples from

the instances and divided them on two classes: the training

samples and the testing samples. We used training samples to

rediscover models, and then tried to find complexities of

testing samples (or tried to “compress” testing samples)

according to the models (i.e. the shorter description is, more

the model knows about the sample). In each case skeletal

algorithms outperformed Markov chains followed by

Shannon models - on condition that the training samples were

of a reasonable size. Moreover, when “a priori” distribution

was given, skeletal algorithms built the model close to the

real one.

In future work we will be interested in performance of

skeletal algorithms applied to non-sequential pattern

recognition.

REFERENCES

[1] S. W. M. P. van der Aalst, Process Mining: Discovery, Conformance

And Enhancement of Business Processes, Springer Verlag, 2011.

[2] L. G. Valiant, “A theory of the learnable,” Communications of the

ACM, vol. 27, 1984.

[3] A. J. M. M. Weijters and W. M. P. van der Aalst, “Process mining:

Discovering workflow models from event-based data,” in Proc. the

13th Belgium-Netherlands Conference on Artificial Intelligence,

Maastricht, 2001.

[4] A. K. A de Medeiros, B. F. van Dongen, W. M. P. van der Aalst, and A.

J. M. M. Weijters, “Process mining: Extending the alpha-algorithm to

mine short loops,” BETA Working Paper Series, Eindhoven,

Eindhoven University of Technology, 2004.

[5] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A.

P. Barros, “Workflow patterns,” BPM Center Report, 2000.

[6] N. R. Mabroukeh and C. I. Ezeife, “A taxonomy of sequential pattern

mining algorithms,” ACM Computing Surveys, vol. 43, issue 1, 2010.

[7] C. H. Mooney and J. F. Roddick, “Sequential pattern mining -

Approaches and algorithms,” Computing Surveys, vol. 45, issue 2,

2013.

[8] M. T. Wynn, D. Edmond, W. M. P. van der Aalst, and A. H. M. ter

Hofstede, “Achieving a general, formal and decidable approach to the

or-join in workflow using reset nets,” BPM Center Report BPM-04-05,

2004.

[9] W. M. P. van der Aalst, A. K. Alves de Medeiros, and A. J. M. M.

Weijters, “Process equivalence in the context of genetic mining,” BPM

Center Report BPM-06-15, 2006.

[10] W. M. P. van der Aalst and M. S. M. Pesic, “Beyond process mining:

From the past to present and future,” BPM Center Report BPM-09-18,

2009.

[11] A. George and D. Binu, “An approach to products placement in

supermarkets using prefixspan algorithm,” Journal of King Saud

University-Computer and Information Sciences, vol. 25, issue 1, 2013.

[12] W. M. P. van der Aalst and B. van Dongen, “Discovering workflow

performance models from timed logs,” Engineering and Deployment of

Cooperative Information Systems, pp. 45-63, 2002.

[13] L. Wen, J. Wang, and J. Sun, “Detecting implicit dependencies

between tasks from event logs,” Lecture Notes in Computer Science,

vol. 3841, 2006.

[14] C. R. Ren, L. J. Wen, J. Dong, H. W. Ding, W. Wang, and M. M. Qiu,

“A novel approach for process mining based on event types,” in Proc.

IEEE International Conference on Service Computing, 2007, pp.

721-722.

[15] M. R. Przybylek, “Skeletal algorithms in process mining,” Studies in

Computational Intelligence, vol. 465, 2013.

[16] E. M. Gold, “Language identification in the limit,” Information and

Control, vol. 10, 1967.

[17] D. Angluin, “Inductive inference of formal languages from positive

data,” Information and Control, vol. 42, 1980.

[18] M. R. Przybylek, “Tree automata mining,” Studies in Computational

Intelligence, Springer-Verlag, 2014.

[19] M. R. Przybylek, “Dynamic data discovery,” Advances in Intelligent

Systems and Computing, Springer-Verlag, 2014.

[20] M. R. Przybylek, “Algebraic pattern recognition,” in Proc. 5th

International Conference on Graphic and Image Processing, Hong

Kong, 2013.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

137

[21] H. J. Bremermann, “Optimization through evolution and

recombination,” Self-Organizing Systems, Washington, Spartan Books,

1962.

[22] R. M. Friedberg, “A learning machines part I,” IBM Journal of

Research and Development, vol. 2, 1956.

[23] R. M. Friedberg, B. Dunham, and J. H. North, “A learning machines

part II,” IBM Journal of Research and Development, vol. 3, 1959.

[24] J. H. Holland, Adaption in Natural and Artificial Systems, The

University of Michigan Press, Ann Arbor, 1975.

[25] P. D. Grunwald and J. Rissanen, The Minimum Description Length

Principle, Adaptive Computation and Machine Learning Series, The

MIT Press, 2007.

[26] J. E. Cook and A. L. Woolf, “Discovering models of software

processes from event-based data,” ACM Transactions on Software

Engineering and Methodology, vol.7, issue 3, 1998.

Michal R. Przybylek was born on 22 April, 1983 in

Bydgoszcz, Poland. He is a PhD student in computer

science at University of Warsaw. He graduated from

University of Warsaw in 2008 with a master's degree in

computer science. He also holds a diploma of electronics

from Technical School of Electronics in Bydgoszcz. His

major field of study is multicriteria optimization, but is

also interested in categorical logic and type theory.

From 2008 to 2012 he worked for a military resort - designed and

co-developed systems to allow for communication on a battlefield; the

systems are currently used by Polish soldiers in missions abroad. Since 2013

he is a researcher in Polish-Japanese Institute of Information Technology and

the leader of a research group aimed at multicriteria optimisation.

International Journal of Computer Theory and Engineering, Vol. 7, No. 2, April 2015

138

