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Abstract—In the strive for knowledge discovery in a world of 

ever-growing data collection, it is important that even if a 

dataset is altered to preserve people’s privacy, the information 

in the dataset retains as much quality as possible. In this 

context, “quality” refers to the accuracy or usefulness of the 

information retrievable from a dataset. Defining and measuring 

the loss of information after meeting privacy requirements 

proves difficult however. Techniques have been developed to 

measure the information quality of a dataset for a variety of 

anonymization techniques including Generalization, 

Suppression, and Randomization. Some measures analyze the 

data, while others analyze the outputted data mining results 

from tasks such as Clustering and Classification. This survey 

discusses a collection of information measures, and issues 

surrounding their usage and limitations. 

 
Index Terms—Anonymization, data mining, data quality, 

privacy preserving data mining. 

 

I. INTRODUCTION 

Within the Privacy Preserving Data Publishing (PPDP) 

community, preventing sensitive information about 

individuals from being inferred is a top priority. This is 

known as “anonymization”. One of the key concepts in PPDP 

is the trade-off that is inherently present when 

“anonymizing” data: balancing the increase in security with 

the decrease in information quality. The majority of previous 

work has focused on the difficult problem of defining and 

measuring privacy [1], [2]. This paper explores the other side 

of the trade-off: information quality. A lot of the time, 

simplistic measures are developed to provide an estimate of 

the information quality, or statistical techniques are borrowed 

from the SDC (Statistical Disclosure Control) community. 

While robust, these evaluation techniques often fail to 

capture the nuances that can be present when evaluating 

specific anonymization tasks, such as generalization 1 . 

Information measures that target specific anonymization 

tasks solve this problem; however comparing the results of 

different measures is an ongoing problem. If two datasets2 

are anonymized with two different techniques, and each 

technique requires its own information measure, comparing 

the quality of the datasets can be problematic [1], [3], [4]. 
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1 “Generalization” refers to making a value vaguer, such as changing all 

occurrences of “apple” and “banana” to “fruit”. 
2  A “dataset” is a two dimensional table where rows represent 

independent records (tuples) and columns represent various attributes that 

describe the records and distinguish them from each other. 

In PPDP, the information quality of an anonymized dataset 

is most often evaluated by measuring the similarity between 

the anonymized dataset and the original dataset. If the dataset 

could be used for a variety of reasons and there is no single 

purpose in mind, the dataset is evaluated in a way that applies 

to any scenario – we refer to this as measuring the “dataset 

quality” or “dataset information loss”. These types of 

techniques are discussed in Section II. 

Alternatively, if the purpose of the dataset is specific and 

known, the information quality can be measured in respect to 

that purpose. Privacy Preserving Data Mining (PPDM; a sect 

of PPDP) focuses on this type of data, where the quality of 

the dataset itself is less important than the quality of the 

outputted data mining3 results produced from the dataset. 

Common purposes are classification 4  and clustering 5  [2]. 

Many patterns in the dataset can be lost after anonymization, 

even if the dataset itself appears to retain most of its statistical 

information [6]-[8]. For this reason, information measures 

have been designed that specifically look at the effect of 

anonymization on data mining results, and we discuss these 

in Section III. We call this type of information quality, “data 

mining quality” or “data mining information loss”. 

It should be noted that we make a distinction between 

“information loss” and “information quality” due to the 

implied comparative nature of the word “loss” – this paper 

focuses on measures that compare a dataset before and after 

modification. “Information quality” could refer to this 

before-and-after comparison, but also to the quality of an 

isolated dataset (with no comparison). “Information loss” 

provides more specificity. Measures of information loss are 

also usable in scenarios outside of privacy preservation, such 

as data imputation / data cleaning 6 . In these instances, 

information gain is the goal. 

 

II. DATASET INFORMATION LOSS 

Dataset information loss refers to the loss of useful 

information in the dataset itself. Statistical tests are one way 

of measuring this, but additional insight can be gained 

through more targeted measures. Some measures target the 

quality of the user-defined QID groups (described below in 

 
3 “Data mining” refers to using automated algorithms for finding patterns 

in data. 
4 “Classification” refers to predicting a record's value for an attribute 

based on the other explanatory attributes. Decision trees and neural networks 

are commonly-used method for doing so [5]. 
5  “Clustering” refers to grouping records in such a way that similar 

records are grouped together and dissimilar records are grouped in separate 

clusters [5]. 
6  “Data imputation” and “data cleaning” refer to estimating missing 

values in a dataset and removing misinformation/noise [9]. 
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Section 2.1), while others target data modifications via 

generalization and suppression (Section 2.2).  

A. QID Group Quality 

A QID is a user-defined group of quasi-identifying 

attributes; that is, a collection of attributes7 that allow an 

attacker8 to uniquely identify a record9. To do so, the attacker 

must be able to learn the values of the quasi-identifying 

attributes from outside sources, such as real life contact, 

social engineering 10 , or from other independent datasets. 

Upon learning all these values for an individual, the attacker 

can narrow down the possible records that could represent the 

targeted individual and potentially learn sensitive 

information about them (attributes that describe sensitive 

information are defined by the anonymization expert 11as 

“sensitive attributes”). A QID is sometimes referred to as a 

VID – a “Virtual Identifier” [10]. 

Discernibility Metric (DM) [11], [12] functions by 

penalizing each record for how many other records it is 

indiscernible from in each QID, compared to the original 

dataset. A “QID group” is defined as any collection of 

records that have the same values for all the QID attributes. If 

a record belongs to a QID group with n records, then the 

penalty for that record is n – it is indiscernible from n records 

with respect to the attributes in the QID. This naturally leads 

to considering the penalty per QID group, rather than per 

record: each QID group incurs a penalty of 2n . Interestingly, 

it is the conceptual opposite of k-anonymity [13], [14] – a 

well-known privacy technique that requires a user-defined 

minimum number of indistinguishable records per QID 

group. 

DM is a commonly-used measure [12], [15]–[17] despite 

its inability to consider the data distribution12 of the attribute 

values. As is often the case, the lack of a single robust 

information measure has led many to adopt an ensemble 

approach 13 , with multiple measures each addressing 

something missed by the others [3], [16], [18]. It is worth 

noting that ignoring data distribution is a common 

shortcoming of information measures, and including 

statistical evaluations such as KL-divergence [1], [3], [16], 

chi-square distance [3], [19] and covariance comparisons 

[20] are possible solutions. Statistical tests are also often the 

solution to measuring information loss caused by 

randomization 14  [3], [8], [21]-[24]. In addition to those 

 
7 An “attribute” refers to a column in a dataset describing a particular 

aspect of records in the dataset. 
8 An “attacker” or “intruder” is someone who has gained access to the 

dataset (whether legally or not) and is using it for unintended purposes. We 

will assume they are attempting to target a specific individual in the dataset. 
9 A “record”, or “tuple”, refers to a row in a dataset, consisting of column 

(attribute) values that describe the record. 
10  “Social engineering” refers to deliberately misleading people into 

divulging certain information. 
11  An “anonymization expert” is the person charged with the 

responsibility of anonymizing a dataset. 
12 “Distribution” refers to how frequent each possible value for a set of 

data occurs. Commonly, this takes the shape of a normal distribution, 

otherwise known as a Gaussian distribution. 
13 An “ensemble” is any instance where multiple techniques of a certain 

type are used to find a more robust result. 
14 “Randomization” refers to adding random noise to numerical values 

(e.g. “age=34” becomes “age=37”), or changing categorical values to 

particular other values with a certain probability (e.g. “England” to 

“Australia”). 

mentioned above, common tests include regression analysis, 

mean square error and contingency tables. For further 

information on these tests, we refer the reader to [25], [26].  

B. Generalization and Suppression 

Throughout most information measurement literature, the 

assumption is made that for the purposes of quality 

evaluation, suppression 15  can be considered as 

generalizations that generalize a value to its most vague state 

[1], [4], [13] [14], [18], [27]-[32]. We maintain this 

assumption, and hereafter only refer to generalization.   

Minimal Distortion (MD) [14], [28], [29] (or 

generalization height [1], [4], [33]) is a penalty-based system 

where whenever a value (for one record) is generalized, the 

distortion count is incremented. MD harnesses the taxonomy 

trees of attributes (also called Domain Generalization 

Hierarchies [18]), in which each value of an attribute is a leaf 

in the tree, and the higher nodes represent collective terms for 

their child nodes (and are thus more vague). Fig. 1 is a 

simplified example of a taxonomy tree, with the number in 

each leaf referring to the frequency of the categorical values 

appearing in the dataset. MD treats each level of 

generalization separately – if a value is generalized to the 

parent of its parent node in the attribute's taxonomy tree, 2 

units of distortion are added. 

As an example, take Fig. 1: if all instances of value F were 

generalized to A (a user-defined term that collectively 

describes B and C), then 50 records have moved up two 

levels, resulting in 100 units of distortion. Additionally, 

however, most algorithms [10], [27], [28], [32]-[34] do not 

allow multiple levels of generalization for an attribute to 

co-exist in a dataset (e.g. a record cannot have a value of 

“apple” if another record has a value of “fruit” for the same 

attribute), as this would cause problems with data mining 

algorithms. Therefore if F is generalized to A, so too are G 

and H, bringing the total distortion up to 

60030015010050  . If they were only generalized 

to C, 30015010050 MD .  

Along with MD, Iyengar's loss metric (LM) [32] marked 

the first work in specifically targeting the information loss 

caused by generalization. LM is defined as the number of 

nodes a record's value has been made indistinguishable from 

(via generalization) compared to the total number of original 

leaf nodes in the taxonomy tree. This is repeated for each 

record for the attribute in question, and each attribute's loss is 

the average over all records. 

 

 
Fig. 1. A generalization taxonomy tree of an attribute. 

 
15  “Suppression” refers to a data value (or record) being completely 

hidden or deleted. 
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For example in Fig. 1, generalizing the 50 records in F to C 

(which collectively describes F, G and H) would result in the 

value of 50 records (for one attribute) being indistinguishable 

from 2 other values (nodes). With 5 leaves in the taxonomy 

tree, 
5

2LM  for those 50 records in regards to the attribute 

shown in Fig. 1. 

For numerical attributes16, if a value (for example, “5”) is 

generalized (e.g. “3-7”), LM compares the size of the 

generalized domain17 (e.g. 437  ) to the total domain 

size of the attribute (e.g. if the domain is [1, 10], then the 

domain size is 9), giving a final result of 
9

4  in this example. 

The LM result for each attribute is averaged over all records. 

The loss of each attribute is then summed together, giving a 

final LM result. Unfortunately, LM does not take the 

distribution of the data into consideration [1]. 

While both MD and LM take into account how many 

records are affected by a value being generalized, a major 

downside is that they treat each generalization as equally 

damaging [16]. When considering categorical values and 

collective terms for categorical values, it is unlikely that a 

user (even an expert) could design each generalization in the 

taxonomy to have a real-world equivalence to each other. For 

example, something like countrystate  could have a far 

bigger impact on a dataset than monthbirth_  

yearbirth_ , and even with modification it could still 

never truly be equivalent. Defining and measuring 

differences in generalizations is an open question. Perhaps 

weighting 18  each generalization based on changes in the 

information gain (using whatever measure fits the needs of 

the anonymization expert) of the dataset is a possibility. 

ILoss [35] takes the same approach as LM when 

measuring the information lost to generalizations. It 

measures the fraction of domain values lost for an attribute by 

each generalization, just as LM does, and gives the same 

results for each generalized value as LM would. It 

differentiates itself by allowing each attribute to also possess 

a weighting, allowing for the major disadvantage of MD and 

LM discussed above to be partially solved. While each 

generalization isn't treated differently, at least each attribute 

is treated differently based on their user-defined importance. 

The ILoss values of each record (taking into account the 

attribute weightings) are then averaged across the whole 

dataset, resulting in a final ILoss result. 

MD, LM and ILoss all place a reliance on the validity of 

the user-created taxonomy trees, and this is not considered an 

unreasonable assumption by most [1], [4], [14], [28]-[30], 

[32], [33], [36]. The assumption is not unanimous however, 

and solutions exist for automating the creation of taxonomy 

trees for numerical attributes [36]-[38] and categorical 

attributes [18]. 

Generalizations for numerical attributes can be found by 

finding the optimal binary split for the domain that 

 
16 A “numerical” or “continuous” attribute refers to an attribute with 

natural ordering, where each value can be described relative to the values on 

either side of it in the ordering. 
17 The “domain” of an attribute is the set of possible values that the 

attribute can have. 
18 “Weighting” refers to scaling certain parts of an equation by different 

constants, based on their importance. 

maximizes the information gain (here, “information gain” is 

measured using algorithms commonly found in decision 

trees19 – see Section 3.2) [37]. Splitting the domain can be 

repeated until the desired number of generalization levels is 

achieved, for example a domain [1, 10] might be split into [1, 

6] and [7, 10], with [1, 6] being further split into [1, 3] and [4, 

6]. Thus a value of “2” would now be “1-3” and a value of 

“7” would now be “7-10”. Alternatively numerical attributes 

can be generalized using clustering techniques such as 

iK-Means, where adjacent values with high frequency are 

grouped together [40]. 

Categorical attributes prove much more difficult to 

automatically generalize due to the lack of a natural ordering. 

A possible solution is to dynamically combine “appropriate” 

categorical values together – for example, “apple” and 

“banana” could be generalized to a value called 

“apple_or_banana” [18]. “Appropriateness” can be defined 

using any similarity measure at the discretion of the 

anonymization expert. 

Not only is user input vulnerable to human error, but even 

a perfectly reasonable taxonomy is a commitment that 

removes all other interpretations. It may seem intuitive to 

generalize “apple” and “banana” to “fruit”, but what if more 

information (or relevancy to a specific task) could be retained 

by sorting by sugar content or price or color? User-defined 

taxonomies create or strengthen certain semantic meanings, 

while destroying or weakening others [18]. This can result in 

the anonymization expert making a drastic data mining 

decision, which is usually outside their job description.  

Parallel to these measures of quality is an important 

concept that should be considered when debating the 

differences between generalization and randomization: 

“faithfulness” [1]. Faithfulness, or truthfulness, refers to how 

confident a data miner can be about the quality of the 

anonymized data at the record level. Trottini called this 

“perceived data utility” [41], [42] and warned of the dangers 

of false confidence – what if a doctor or federal security 

agency acts on an anonymized record that they falsely believe 

to be accurate? Generalization offers an advantage over 

randomization in this case: it can guarantee that each record 

is still as accurate as it was in the original dataset – it's simply 

vaguer. 

 

III. DATA MINING INFORMATION LOSS 

“Data mining information loss” involves comparing the 

data mining results of an original dataset to the results of an 

anonymized version. Since the output of various data mining 

techniques differs greatly, targeted information measures are 

required. Guo et al. described this phenomenon: “utility of 

any dataset, whether randomized or not, is innately 

dependent on the tasks that one may perform on it. Without a 

workload context, it is difficult to say whether a dataset is 

useful or not” [3]. Data mining quality and dataset quality are 

not mutually exclusive – often both are tested for, and the 

 
19 A “decision tree” is a method of classifying records in a dataset based 

on qualities that provide the most useful information to a data miner. Records 

are filtered into stronger and more specific patterns the further the tree 

extends [39]. See Fig. 3. 
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empirical results support the differentiation between dataset 

quality and data mining quality [18], [20], [32]. The most 

common data mining techniques are clustering and 

classification, and these will be addressed below in turn.  

A. Clustering 

Thus far, the quality of clustering results has proven 

difficult to robustly capture due to the absence of a strict 

definition of clustering and a reference point for evaluating 

the results. The usefulness of a clustering result can easily 

vary depending on the purpose of clustering. Fung et al. 

described the problem succinctly: “the anonymity problem 

for cluster analysis does not have class labels to guide the 

generalization. It is not even clear what 'information for 

cluster analysis' means and how to evaluate the quality of 

generalized data in terms of cluster analysis” [36].  

This impacts cluster analysis in two ways. Firstly, it makes 

ensemble approaches even more vital due to each technique 

measuring a different aspect of the data mining results [43]. 

Secondly, it makes it difficult to identify a direct loss of 

information when going from an original clustering to an 

anonymized clustering (i.e. the clustering result from the 

anonymized data). Therefore, “cluster information loss” is 

often defined as the difference in results from clustering 

evaluations when applied to the original clustering, and then 

separately applied to the anonymized clustering. 

 

 
Fig. 2. A Venn diagram of possible outcomes when filtering records — True 

positives, false positives, true negatives, and false negatives. 

 

Common metrics20 used and included in ensembles are: 

Rand index [44], F-measure [45], Fowlkes-Mallows index 

[46], Davies-Bouldin index [47], and Silhouette [48]. Many 

of them rely on the concepts described by Fig. 2 – type I 

errors (false positives) and type II errors (false negatives). 

When executing a query21 or filtering records based on a 

logic rule22, false positives (FP) refer to records that were 

retrieved but shouldn't have been. False negatives (FN) refer 

to records that were not retrieved, but should have been. True 

 
20 A “metric” is a stricter variation of a measure. It acts as a distance 

function and satisfies four conditions: non-negativity, the identity of 

indiscernibles, symmetry, and the triangle inequality. Measures that satisfy 

these conditions can therefore be subject to more rigorous mathematical 

manipulation. 
21 A “query” is a list of requirements that records must meet in order to be 

retrieved, thus filtering out unnecessary data. 
22 A “logic rule” is a formal description of a pattern found in data. It takes 

the same form as a query, but is usually the result of following a chain of 

splitting points from a root to a leaf in a decision tree. 

positives (TP) and true negatives (TN) are the opposite: the 

records that were appropriately handled.  

In order to apply these principles to a clustering scenario, a 

reference point is required that validates the obtained results 

(i.e. retrieved data) as either relevant or irrelevant. Here, 

“retrieved” is defined as “the records present in the cluster 

being assessed” and “relevant” is defined as “the records 

correctly belonging to that cluster”. A class attribute can 

serve as a reference point to evaluate the clustering results. 

Typically, the class attribute is removed from the dataset 

prior to the application of a clustering algorithm. Once the 

clustering is complete, the class values are reassigned to the 

records. The most common class value in a cluster is used to 

define records as either relevant or irrelevant: if a record has 

any class value other than the majority value, it is irrelevant 

[39], [43]. A reference point is known as “external 

information”, since in real life scenarios a clustering 

algorithm is typically applied to datasets that do not have a 

natural class attribute. Therefore, clustering information 

metrics that use external information are known as external 

metrics [5]. 

One such external metric is the Rand index (RI) [44]. It 

simply measures the fraction of correctly clustered records: 

 

.
TNFNFPTP

TNTP
RI




                        (1) 

 

Unfortunately it treats false positives and false negatives as 

being equally undesirable, which is sometimes not the case. 

For example, a security agency would much rather deal with 

the inconvenience of a false positive than the security breach 

caused by a false negative.  

F-measure [45] provides an easy solution to the weakness 

in RI, and is one of the most common clustering evaluation 

tool used by the PPDP and PPDM communities [36], [43]. It 

uses two expansions of the concepts described in Fig. 2: 

precision and recall. Precision measures the fraction of 

retrieved results that are relevant compared to irrelevant: 

 

.
FPTP

TP
P


                                 (2) 

 

Recall measures the fraction of relevant results that were 

successfully retrieved: 

 

.
FNTP

TP
R


                                  (3) 

 

Using these concepts, F-measure can be defined as: 

 

RP

RP
F






2                                   (4) 

 

and thus it acts as a weighted average (harmonic mean) of the 

precision and recall. When treating false positives and false 

negatives differently, an expansion of the formula is used: 

 

RPw

RPw
Fw





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)1(
2

2

                            (5) 
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where 10 w . When 0w , PF 0
, and recall has no 

impact on the F-measure result. F-measure is sometimes 

called “F1 score”, referring to the common case of 1w . 

When P and R are expanded, the formula can be written as: 

 

.
)1(

)1(
22

2

FPFNwTPw

TPw
Fw




                 (6) 

 

Thus 0w equates to false negatives holding no weight. 

An alternative to F-measure is the Fowlkes-Mallows 

index (FMI) [46]. While F-measure is the harmonic mean of 

precision and recall, FMI is the geometric mean and is 

defined as: 

 

.RPFMI                                  (7) 

 

There also exist a number of internal metrics that evaluate 

cluster quality without requiring a reference point. These 

metrics generally evaluate the results based on how compact 

each cluster is and how separated the clusters are from each 

other. One such metric is the Davies-Bouldin index (DBI) 

[47]. It defines a good clustering result as having low 

intra-cluster distances (i.e. high compactness) and high 

inter-cluster distances (i.e. high separation): 

 

),(
max

1

1 ji

ji
n

i
ji ccD

dd

n
DBI


 




                           (8) 

 

where 
iC  and 

jC  are two different clusters out of n  

clusters, 
xc  is the centroid of cluster 

xC , 
xd  is the average 

distance of records iCr xi  ;  to 
xc , and ),( yx ccD  is the 

distance between 
xc  and 

yc . 

Silhouette [48] measures how much more appropriate a 

record's cluster is compared to its second-most appropriate 

cluster: 

 

)}(),(max{

)()(
)(

ibia

iaib
is


                             (9) 

 

n

is
S




)(
                                    (10) 

 

where )(ia  is the average dissimilarity (usually measured 

via Euclidean distance23) of record 
ir  from each other record 

in the same cluster 
xC , and )(ib  is the lowest average 

dissimilarity of 
ir  from all the records of one other cluster 

xyCy ; . Therefore )(is represents the “appropriateness” 

of record 
ir 's chosen cluster, and S is how appropriately all 

the records have been clustered. )(is  ranges from -1 to 1, 

with 0 meaning that record i is on the border of two clusters, 

and a negative value meaning that i might be better off in its 

neighboring cluster. By comparing the result of these 

 
23 “Euclidean distance” is the “ordinary” distance between two points in 

multi-dimensional space, as defined by the Pythagorean formula. 

techniques before and after anonymization, one can make a 

more informed judgment on whether the clustering 

information has been preserved. An advantage of RI, 

F-measure and FMI is that they are simply reinterpretations 

of the same analysis, and so no extra computational time 

would be required if all three were to be calculated. DBI and 

Silhouette are clearly more computationally complex, but are 

arguably more explanatory and do not require reference 

points. 

B. Classification 

One of the main purposes of classification is to predict the 

value of a certain attribute for future records, where the 

values are not known. This is usually done with a decision 

tree, where each node in the tree filters the records it receives 

into two or more distinct (mutually exclusive) partitions24 

based on their value for an attribute. These partitions can then 

be split into more partitions until a termination requirement is 

met. In order to select a node's attribute, each attribute is 

tested to see how well it can filter records into distinct 

partitions, with each partition being as pure25 as possible in 

respect to the attribute being predicted [49]-[51]. When 

dealing with decision trees, the filtering process is known as 

splitting, and a variety of algorithms exist for calculating the 

optimal “splitting point”, known as splitting criteria. 

Examples include Information Gain [51], Gini Index [52] and 

Gain Ratio [53]. An example decision tree is provided in Fig. 

3. 

The most common technique for measuring the 

information quality of a classifier is prediction accuracy [7], 

[8], [10], [18], [20], [37], [38], [54], which measures the rate 

at which future records have their class values correctly 

predicted by a classifier. This is done by hiding the class 

value of some records not used when building the classifier, 

and seeing if the class values are correctly predicted. 

 

 
Fig. 3. A decision tree for a class attribute, “Status”. 

 

One way of presenting the results is to invert the accuracy 

so it represents prediction error, and compare this to the 

baseline error [10], [38], [54]. Baseline error is the prediction 

error of the classifier when no anonymization has occurred. 

Another type of error is also sometimes used: worst error [10] 

or removal error [54]. This error can be defined in any way 

which represents a relevant worst-case scenario. For 

example, when every attribute in the QID is suppressed (or 

generalized to the root of the taxonomy tree, e.g. “anything”) 

 
24 A “partition” is a subset of records in a dataset. 
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[10]; or when every sensitive attribute26 is removed from the 

dataset before a classification algorithm is applied [54]. 

These additional measures allow for further knowledge to 

be gained about the data mining information quality. As an 

example: the difference between the baseline error and worst 

(removal) error provides insight into the importance of the 

QID (sensitive) attributes in the classifier. A small difference 

would imply that the attributes don't influence the ability of 

the dataset to predict future cases. Perhaps some of the 

attributes can even be completely removed before publication 

if their utility (usefulness) doesn't warrant the privacy risk. 

Unfortunately, prediction accuracy has some weaknesses. 

By simply measuring the percentage of records that have 

their class value correctly predicted, it fails to take into 

account any changes to the logic rules (patterns) or structure 

of a decision tree [7]. Sometimes an anonymized dataset can 

differ from the original dataset enough to result in significant 

structural differences between the trees obtained from the 

datasets, even if both trees have similar prediction accuracies 

[6], [7]. If the original patterns discovered through 

classification are weakened or destroyed by the 

anonymization process, but other – potentially misleading or 

artificial [4] – patterns are discovered, it's easily possible for 

the prediction accuracy to stay high, or even surpass the 

accuracy of the original classifier.  

Some argue prediction accuracy is all that matters for a 

classifier, and if anonymization causes new patterns to be 

discovered and increases prediction accuracy then so much 

the better [2], [37], [38], [54]. However this represents a data 

mining decision made by the anonymization expert, and 

prevents data miners from exploring that possibility after the 

anonymized dataset is published. This is especially 

dangerous when considering that the alternate patterns may 

be artificial (fake), and not discovered in the original data 

because they do not exist [4]. 

Empirically this is supported by other measures sometimes 

disagreeing with the results of prediction accuracy [6]-[8], 

[18]. One of the strongest advantages of classification trees is 

that they provide humanly-readable patterns that can then be 

acted on or investigated. In other words, the logic rules 

themselves are valuable to a data miner, not just the 

predictive power of the classifier as a whole. Relying on 

prediction accuracy alone unnecessarily narrows the utility of 

the classifier. Unfortunately many do solely rely on 

prediction accuracy when measuring data mining 

information loss [10], [37], [38], [54]. More research is 

required to resolve these issues. 

Another classification quality measure is 

information-gain-to-privacy-loss ratio (IGPL) [37], [38], 

[54]. This measure differs from previous measures in that it is 

considered a trade-off measure, or a search measure. A 

search measure is actively used during the anonymization 

process to guide it in sacrificing as little information as 

possible while gaining as much privacy/security as possible 

[2], [55]. 

In this instance of a search measure, IGPL is used as the 

 
25 The “purity” of a collection of records refers to the percentage of 

records that agree (have the same value) about the class attribute. 
26 A “sensitive attribute” is one deemed to be a risk to individuals' privacy. 

filtering algorithm during decision tree construction, 

replacing the usual measures such as Gain Ratio. Unlike an 

ordinary decision tree, the authors [37] propose generalizing 

all attributes to their most vague state, and then using the 

decision tree to choose which attributes to make more 

specific (in other words, specialized – the opposite of 

generalization). The concept is surprisingly simple and 

effective: rather than defining a node split by the best 

information gain (IG), it can be defined by the best trade-off 

between information gain and privacy loss (
PL

IG ). Here, IG 

and PL can be defined as any information measure and any 

privacy measure that the anonymization expert feels 

appropriate. If an attribute is calculated to provide a large 

increase in IG and a low increase in PL, it is likely to be 

chosen as the filter for a node, and thus specialized. For 

example in Fig. 3, if “Marriage” was not chosen as a splitting 

point at any point in a tree made using IGPL, all records 

would simply have “Unknown” as their “Marriage” value. 

A possible extension that remains unanswered is for IGPL 

to handle several different attributes being used as class 

attributes in order to maintain additional logic rules [1], [4]. 

We suggest an exploration into decision forests27, using good 

alternate IGPL trade-offs in each tree, and perhaps weighting 

attributes. 

 

IV. CONCLUSIONS 

In the pursuit of quality, it is important that we can define 

and measure what “quality” really is. Due to anonymization 

requirements, measures have been developed over the years 

to measure changes in the quality of a dataset. It has been 

shown that different scenarios require different approaches to 

information quality evaluation, and it is important that an 

anonymization expert is confident in selecting the most 

applicable measures. Here, we have discussed a variety of 

methods for quality analysis, and the scenarios they are best 

suited for. Ensemble approaches are also important to keep in 

mind: in many cases, a single measure cannot robustly 

evaluate the utility of a dataset in all scenarios.  

Another possibility is for information measures to be used 

as search measures. By guiding the anonymization process 

towards the optimal solution (as defined by the measure), it 

removes the need for iterative testing with estimated 

parameters. This can be useful for anonymization techniques 

or information measures with high computational cost, where 

heavy testing might be infeasible. Some algorithms are more 

computationally complex than others; but in many cases this 

should not be considered a deciding factor. Often the goal is 

to create one anonymized version of a dataset for a single 

release, and this is rarely time-sensitive. Here, maximizing 

data quality is far more important than computational cost. 

Comparing the effect of different types of anonymization 

techniques is still an open question. Perhaps the only solution 

is to judge the techniques based on their principles, rather 

than their empirical results. For example, the faithfulness of 

 
27 A “decision forest” is a collection of unique decision trees, where the 

predictions of each tree are combined to create a weighted average when 

predicting the class attribute. 
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generalization might outweigh the benefits of randomization, 

such as not relying on user-defined attribute taxonomies. 

The common trade-off in PPDP and PPDM is privacy vs. 

quality, and measuring quality has received much less 

attention. Further research would prove beneficial for not 

only identifying effective anonymization techniques, but also 

for better understanding the factors that affect dataset quality 

and data mining quality. 
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