
  

 

Abstract—In this work a new method for identifying 

subspace Hammerstein systems based on Support vector 

machine regression is presented. It has been developed by 

modifying a least-square support vector machine based 

approach presented earlier. The new algorithm exploits the 

properties of generic SVM which LS-SVM based algorithm 

lacks. These properties are robustness in the presence of 

outliers and sparseness of solution. The proposed algorithm is 

reduced to include the least number of quadratic programming 

problems needed to estimate the system matrices and 

nonlinearity which in turn will reduce the computation 

complexity of the algorithm. 

 
Index Terms—Hammerstein models, subspace identification, 

support vector machines.  

 

I. INTRODUCTION 

For researchers and practitioners, modeling is an essential 

instrument to realize and improve system dynamics [1]. In 

physical modeling, similarity is used to simulate the real 

system. For example, an analog computer may be used to 

build something that behaves almost like the original system. 

However, to model a complicated engineering system, one 

must use different method, such as pure mathematical 

representation, as an analog computer representation would 

be huge and complicated [2]. Such mathematical 

representations can be found from fundamental principles, 

for instance: Newton’s laws, Kirchhoff’s laws, conservation 

laws, etc. However, this approach is inappropriate for 

complicated systems [3]. System identification, which is the 

science of deriving mathematical procedures that form a 

suitable mathematical model of a system from available input 

and output data, is good modeling candidate for complex 

systems. It has caught the attention of researchers and 

practitioners for many years [4], [5]. In the last two decades, 

subspace identification theory [6], [7] has attracted 

researchers’ interest because of its efficiency in identifying 

state-space models for high order, multiple input, multiple 
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output, linear time-invariant systems. CVA (Canonical 

Variate Analysis, [8]), MOESP (Multivariable Output Error 

State space, [6]), and N4SID (Numerical Subspace 

State-Space System Identification, [7]) are the most 

significant methods. The main theme in these methods is to 

find an estimate of the state variables or the extended 

observability matrix using the available record of input and 

output data. 

All these algorithms are designed for linear models which 

may yield exact estimates of a systems behavior, especially, 

if it is limited to operate within a short region. Nevertheless, 

If the model is needed to represent a wider operating region, 

then a nonlinear model may be needed. One further step 

toward accuracy is to consider block structured models, 

sequence of static nonlinearities and dynamic linear systems. 

Common structures include the Hammerstein (nonlinearity, 

N, followed by a linear subsystem, L), the Wiener (LN), the 

Wiener-Hammerstein (LNL), and the Hammerstein-Wiener 

(NLN) systems. These structures will give a substantial 

progress compared to the linear estimate if the real system 

structure similar to this class. Some of the subspace 

identification methods have been extended to some block 

structured nonlinear models identifications. Verhaegen and 

Westwick [9] considered the extension of the MOESP family 

of subspace model identification schemes to the 

Hammerstein-type of nonlinear system where they assumed 

polynomial representation of the static nonlinearity. The 

main drawback of this approach is that the nonlinearity was 

parameterized with a polynomial because it is easily 

calculated by computing a linear regression problem. Yet, 

this regression problem can be ill-conditioned, particularly 

with high order polynomials, yielding biased coefficient 

estimates. Another drawback is the doubtful extrapolation of 

polynomials approximation of hard nonlinearities (dead 

zone, saturation, rectification) specifically outside the 

boundaries, and even close to the boundaries of the training 

data [10]. Some of these drawbacks can be solved if the 

nonlinearity is estimated by spline function. Nevertheless, 

spline function is composed of a series of knot points which 

must either be selected beforehand, or considered as model 

parameters and involved in the (non-convex) optimization. 

Neural networks are another method to estimate nonlinear 

functions. Their excellent estimation makes them attractive. 

However, the necessity to state the neural network topology 

in terms of the number of nodes and layers, and the necessity 

to compute non-convex optimization make its 

implementation difficult. Lately, support vector machines 

(SVMs) and least squares support vector machines 

(LS-SVMs) have revealed excellent abilities in estimating 
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linear and nonlinear functions ([11], [12]).Goethals et al. [13] 

considered the extension of the N4SID family of subspace 

model identification schemes to the Hammerstein-type of 

nonlinear system. However, they used a least square support 

vector machine to model the nonlinear part of the 

Hammerstein system. Recently, Bako et al. [14] extended 

Goethals work to time-varying systems by using LS-SVM to 

recursively estimate the non-linear part of the system and 

ordinary least squares for recovering the linear part in state 

space form. The LS-SVM solution proposed in [13] lacks 

sparseness. Also, because the LS-SVM regression uses the 

least squares loss function, the existence of non-Gaussian 

noise or outliers may decrease the accuracy of its 

approximation. To solve these issues, an identification 

algorithm based on SVM regression was presented in [15]. 

Instead of the least squares cost function optimized in a 

LS-SVM, as used in [13], we will employ the Vapnik [11] 

ε−insensitive cost function, which allocates zero cost to a 

tube of radius ε about the solution, to improve sparseness. 

Due to the ε -tube, only the support vectors effect the cost 

function and result in non-zero Lagrange multipliers. 

Moreover, this permits the usage of the L-1, which is robust 

to non- Gaussian noise and outliers. The main drawback of 

the approach given in [15] is that six successive SVM 

problems must be computed to identify the model: the first 

four estimate the oblique projections which are used to 

compute the extended observability matrices i and 1i  

and estimates of the state, while the fifth and sixth 

optimization problems are used to estimate the system 

matrices A, B, C and D. This approach is computationally 

heavy. The goal of this contribution is to reduce the number 

of optimization problem to three which in turn will reduce the 

computation load by half. 

 

II. PROBLEM DEFINITION  

The state space version of the Hammerstein model can be 

written as  
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white Gaussian noise vector sequences, statistically 

independent of the input ukwith covariance matrix: 

 

 























T

q

T

q

p

p
uv

u

v
E = 









RS

SQ
T

       if qp   

= 0                      if qp                 (2) 

 

Before proceeding, we need to define input and output 

block Hankel matrices which are 
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With i and j user defined indices such that. 

 

III. THE N4SID ALGORITHM FOR SUBSPACE IDENTIFICATION 

OF HAMMERSTEIN SYSTEMS 

In this section, the subspace algorithm developed by Ivan 

Goethals et al [13] will be extended to the case where a 

ε-insensitive loss function is used as cost function. This cost 

function is a L-1 cost function, rather than L-2, which in 

consequence improves the robustness in the presence of 

outliers and missing data. Moreover, the value of εis not 

necessarily restricted to be zero which results in sparse 

solution. We will follow the development in Goethals et al. 

[13], up until the point where the LS- SVM optimization is 

introduced (where we use a SVM). The first step in any 

N4SID algorithm is to calculate the oblique projections 

(Projection of the future outputs onto the past inputs and 

outputs along the future inputs). These projections can be 

calculated as  

    pypfi,.:ui YLULO  1             (3) 

    



  pypfi,.:ui YLULO 

111            (4) 

where f is a nonlinear function defined on mR and f is 

defined as an operator on a block Hankel matrix such that  
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One can find estimates for the matrices 
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From (6) we have 
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for il,....,,s 21  and t = 1,2,…..,j. It is clear from (6), (7), (8) 

that Lu and fk appear cross multiplied which makes the 

optimization problem non convex. To overcome this 

problem, we apply over parameterization. 

Let   
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Now, to formulate the SVM regression algorithm, let  
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Substituting (11) in (10) gives 
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As shown in [13], one should put in mind that expanding a 

nonlinear function as the sum of a set of nonlinear functions 

is not unique, for example 
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for all R . Such problem can be prevented by including 

Centering constraints of the form 
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However, to apply centering constraints (14) new 

parameter y should be added to (12) to get [13] 
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where denotes the matrix Kronecker product. The SVM 

primal problem will be 
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where        yiyyi :,sLssd  


11               

The optimization just described is the primal problem for 

regression. To formulate the corresponding dual problem, we 

have to write the Lagrangian function L. Then, minimize L 

with respect to the weight vector , Ly, and slack variables ξ 

and ξ∗ and maximize with respect to the Lagrange 

multipliers. By carrying out this optimization we can write 

  and Ly in terms of the Lagrange multipliers. Finally, we 

can substitute the value of w, Ly and use the so-called “kernel 

trick” [11], to replace the inner products with the kernel 

function, and simplify to get the following dual problem 
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Then Ly is given by  
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Recalling (4) 
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The same approach can be followed to calculate 1iO  
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Then 
yL  is given by  
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Similar to the linear N4SID algorithm, one should 

determine the extended observability matrices i and 1i to 

estimate the state sequences 
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Recall that the system order can be determined by 

inspecting the singular values of Oi. Now, estimates for the 

state sequences can be computed from 
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IV. EXTRACTION OF THE SYSTEM MATRICES AND THE 

NONLINEARITY 

Extraction of the System Matrices and the Nonlinearity 
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In what follows, a SVM regression problem will be 

formulated to identify (38). Representing 
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Now, The SVM primal problem is 
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By defining the Lagrangian, eliminating the primal 

variables    t,s,s,s, ACs  21  and  t,s*  using the 

kernel trick and, simplification, the dual problem can be 

shown to be 
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then AC is given by  
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To extract B and D in BD  and the nonlinearity f, we use 

the solution presented in [13], which involves using the SVD 

of a m by n matrix. Then, using the training input data 

 Nuu 1 and the estimated values of the nonlinearity 

responses, a SVM can be trained to approximate the 

nonlinear part of the Hammerstein system. 

 

V. ALGORITHM 

The algorithm for Hammerstein N4SID subspace 

identification can be summarized as follows. 

1) Obtain estimates for α, α∗, ρ by solving (18), (19). 

2) Compute Ly, 


d and δy using (20) and (24). 

3) Find estimates for the oblique projection Oi from (27). 

4) Obtain estimates for α−, α∗−, ρ− by solving (28), (29). 

5) Compute, 


yL using (30). 

6) Find estimates for the oblique projection Oi+1 from (32). 

7) Calculate the SVD of Oi, and determine the order by 

inspecting the singular values and partition the SVD 

accordingly to obtain U1 and S1. 

8) Compute the extended observability matrices Γi and Γi−1 

from (33). 

9) Find estimates for the state using (35). 
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10) Obtain estimates for α, α∗ by solving (41), (42). 

11) Obtain estimates for AC using (43). 

12) Obtain estimates for Band D and the nonlinearity f from a 

rank-m approximation presented in [13].  

13) Use the input sequence  121 nu,u,u  and the 

estimates of response of the nonlinearity to this input 

      121 nuf,uf,uf  to train a SVM to 

approximate the nonlinear function f. 

 

VI. ILLUSTRATIVE EXAMPLE 

 

 
Fig. 1. True nonlinearity, and mean of the SVM, with ε=0.001 estimate with 

statistics estimated from a hundred trial Monte-Carlo simulation. 

 
TABLE I: COMPARISON BETWEEN COMPUTATION SPEED OF ALGORITHM 

WITH 5 QUADRATIC PROGRAMS AND ALGORITHM WITH 3 QUADRATIC 

PROGRAMS 

Algorithm Computation time 

5 quadratic programs 107.8 

3 quadratic programs 43.8 

 

To compare performance of the proposed algorithm to the 

algorithm presented in [15], the following system which 

belongs to the Hammerstein class of models is considered: 
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such that be the static nonlinearity. 1000 points white 

Gaussian noise with zero mean and variance 2 was generated 

and fed into this system. The output noise sequence   1

0





N

ttv  

was a zero mean Gaussian white noise with signal to noise 

ratio equals to 10. The hyper-parameters were chosen to be 

1010001  BD,,  It is obvious from Fig. 1 that the 

nonlinearity was  estimated very well. Table I shows that the 

suggested algorithmis faster than the algorithm presented in 

[15] by almost 60% which reflects the effect of reducing the 

number of quadratic programs needed to identify the system 

from 5 to 3.  

 

VII. CONCLUSION 

In this paper, the subspace algorithm developed in 

previous paper has been improved. It is clear from the 

simulation that the computation time has been reduced by 

reducing the number of quadratic programming problems 

used to identify the system. For future work one might apply 

the algorithm to real data. 
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