
  

 

Abstract—The corpus callosum is the largest commissural 

fiber in the cerebral hemisphere that lies at the bottom of the 

cerebral longitudinal fissure. The Agenesis of Corpus Callosum 

(ACC) is a congenital disease in the fetal central nervous system 

malformation, which means the partial or total loss of the corpus 

callosum during the formation and is detrimental to future 

development. Its symptom detection mainly depends on the 

ultrasonic diagnosis, but this method is highly dependent on the 

experience of doctors because different locations of the fetus and 

the resolution of the images bring difficulties to the detection of 

complete callosum. To solve this problem, this paper presents a 

fusing attention mechanism based on the deep learning method 

which takes in the advantages of Transformers and dual 

attention mechanism and realizes accurate semantic 

segmentation of fetal corpus callosum in ultrasonic images. This 

method successfully reached an Intersection over Union (IoU) of 

59.4%. Besides, this paper also presents the comparison between 

the performances of different backbone networks and loss 

functions in order to provide a reference for the application of 

different parameters according to actual circumstances. Our 

work provides a reliable reference to locate corpus callosum, 

thus is promising for the improvement in the diagnosis of ACC 

and the reduction of the burden of medical workers. 

 
Index Terms—Deep learning, fetal corpus callosum, semantic 

segmentation, ultrasonic images.  

 

I. INTRODUCTION 

The corpus callosum is the largest commissural fiber in the 

cerebral hemisphere, lying at the bottom of the cerebral 

longitudinal fissure. The Agenesis of Corpus Callosum (ACC) 

is a congenital disease in the malformation of the fetal central 

nervous system. It is the partial or total loss of the fetal corpus 

callosum during the formation, with an incidence of about 

0.03%~0.07%. There is no obvious symptom for this disease 

during infancy, making it difficult to be detected. However, 

ACC can lead to future problems like visual disturbance, 

epilepsy, and dysnoesia [1], which are detrimental to the 

future development of the fetus and may cast a great burden 

on the family. As a result, the timely diagnosis of the disease 

is required for further preparation and treatment. 
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(a)                   (b) 

Fig. 1. (a) (left) An ultrasonic image with corpus callosum presented 
clearly; (b) (right) A disturbed ultrasonic image with a blurry boundary of 

the corpus callosum. 

 

Prenatal ultrasound is acknowledged as one of the most 

important and useful ways to detect the malformation of the 

fetal central nervous system. It uses the amplitude of the 

ultrasonic waves reflected by the placenta and fetus to display 

the fetus, including the position, size, and shape of its brain. 

This technology enables the timely diagnosis of ACC, whose 

value has been gradually realized through clinical practice [2]. 

A sample ultrasonic image of the fetal corpus callosum is 

presented in Fig. 1(a). On the sagittal section of the median 

part, the normal corpus callosum shows a hook-shaped 

droplet structure; and a backward extension from the top of 

the septum pellucidum at its end. 

The ultrasonic images are a useful basis for diagnosis. 

However, their quality is easily influenced by liquid and fat, 
and the images may have poor spatial resolution consequently. 

Fig. 1(b) is an ultrasonic image whose quality is reduced. 

Besides, it is more difficult to check the callosum when the 

fetus is still growing. These factors make the ACC diagnosis 

a challenging task that greatly relies on the experience of 

medical workers and may consequently be costive. The 

application of deep learning methods to assist the 

segmentation of the fetal corpus callosum can offer a 

reference for doctors, which may bring a reduction in the 

workload of medical workers and an increase in the accuracy 

of ACC diagnosis. 

As shown in Fig. 1(b), the disturbed ultrasonic image 

shows little difference between the corpus callosum and the 

surrounding tissue, making the corpus callosum hard to be 

distinguished. Thus, the segmentation of callosum based on 

ultrasonic images is a challenging task. Many algorithms 

were raised by former researchers to deal with the problem, 

roughly divided into traditional machine learning algorithms 

and deep learning algorithms. Traditional machine learning 

algorithms rely on the analysis of the images to raise certain 

rules for model construction. When the features of the target 

are well analyzed, effective segmentation can be realized. 

However, in most cases, analysis of the data is not capable to  
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(a)                   (b) 

Fig. 2. (a) (left) A test ultrasonic image used by Ciecholewski; 

(b) (right) A disturbed ultrasonic image obtained through clinical practice. 

 

offer enough detailed features to guarantee the model 

performance, whereas for deep learning algorithms the 

features are extracted by the model itself through the learning 

process. With processed input and proper loss function, the 

networks are able to learn the features and strategy of 

segmentation themselves, which is more effective and 

subjective. 

In this paper, we will first analyze the up-to-date research 

progress of traditional machine learning algorithms and deep 

learning algorithms, then focus on the structure and 

development of fetal corpus callosum segmentation network. 

The comparison between the segmentation accuracy of 

different models will be given as well. Finally, we will 

analyze the challenges faced in this field and propose the 

direction of future research. 
 

II. RELATED WORKS 

A. Traditional Machine Learning Algorithms 

Machine learning methods applied for medical image 

segmentation are mainly active-contour-based segmentation 

methods [3] and region-based segmentation methods [4]. 

In 2018, Ciecholewski et al. [5] proposed a semi-automatic 

segmentation method for corpus callosum based on the 

active-contour-based segmentation method. They compared 

the performance of three active-contour- based methods on 

the corpus callosum segmentation, namely: an edge-based 

active contour model using an inflation/deflation force with a 

damping coefficient (EM), the Selective Binary and Gaussian 

Filtering Regularized Level Set (SBGFRLS) method and the 

Distance Regularized Level Set Evolution (DRLSE) method. 

However, the above three are all based on traditional 

semantic segmentation algorithms, which have strict 

requirements on the setting of initial points and noise. In Fig. 

2(a), a corpus callosum image used by Ciecholewski is 

presented. The resolution of the image is very high, and there 

is almost no noise. But as shown in Fig. 2(b), an actual 

ultrasound image of the corpus callosum, low resolution and 

high noise are challenging factors which make it difficult for 

the active-contour- based methods to achieve fully automatic 

segmentation. 

In 2021, Qifeng Wang [6] proposed a corpus callosum 

segmentation method based on a sliding window search 

algorithm, which used medical prior knowledge to determine 

the approximate position of the corpus callosum, and then 

searched the image area through a sliding window to 

precisely locate the position of the corpus callosum. After 

determining the position of the corpus callosum, the 

histogram and bilateral filtering algorithms were used to 

make the corpus callosum more obvious out of the 

background, and then the average template map of the corpus 

callosum was used to finetune the result to obtain the final 

segmented image. Compared with the work of Ciecholewski, 

this method can suppress noise to a greater extent and obtain 

better performance. However, due to the introduction of the 

sliding window search algorithm and the fitting iterative 

algorithm, this method is highly time-costing, and is 

consequently difficult to be applied to the actual production 

environment. 

In summary, the traditional algorithm is very dependent on 

the setting of the initial value, with weak ability to resist noise. 

It is also very dependent on the experience of scientific 

researchers. The models have low accuracy and low model 

generalization. Therefore, in this paper we choose to use deep 

learning-based segmentation method as the main solution. 

B. Deep Learning Algorithms 

Currently, deep learning methods applied for medical 

image segmentation are mainly divided into 2 categories. One 

is the Encoder-Decoder structure, and a typical network is the 

Unet [7]. Another is the backbone network structure, and a 

typical network is the DeepLab [8]. 

The Unet has been widely used in Biomedical Data Science 

ever since its release in 2015. Its popularity can be attributed 

to its characteristics: the Encoder-Decoder structure and the 

jump-connection. The encoder of the network down-samples 

the input image 4 times, reducing the resolution to one-

sixteenth of its original size; accordingly, the decoder up-

samples the high-level semantic feature map 4 times, 

recovering the resolution to the initial. Compared with Fully 

Convolutional Network (FCN) and other networks applied 

for semantic segmentation, Unet innovatively operates jump-

connection in each layer, fusing the features of different 

scales. This method enables a more accurate segmentation. 

DeepLab was first released by Liang-Chieh Chen, George 

Papandreow, Florian Schroff, and Hartwig Adam. Then 

adapted versions, DeepLabV2 and V3 were raised [9], [10]. 

DeepLab embeds context information of different scales to 

improve the consistency between the net and the spatial 

pyramid pooling module. The early versions of DeepLab did 

not take the jump connection, which resulted in the loss in 

detail information. Therefore, DeepLabV3+ [11] referred to 

Unet to solve this problem by involving jump connection. 

Transformers [12] was first proposed by Google for 

machine translation, which had very good results for Natural 

Language Processing (NLP). Later, researchers found that 

modified Transformers can also be used for vision tasks. 

TransUNet [13] proposed by Jieneng Chen et al. in 2021 is 

the first network frame for medical image segmentation that 

takes advantage of Transformers. On the one hand, the feature 

blocks output by the feature extraction network are encoded 

as the input sequence of Transformer for features. On the 

other hand, it realizes semantic segmentation of medical 

images by referring to the structure of Unet: the decoder up-

samples the encoded features and fuses them with the high-

resolution feature maps. 

In conclusion, U-shaped structure and jumping connection 

are both applied in DeeplabV3 and TransUnet, with different 

designs to obtain more reception field and multi-scale 

information. The performance of different networks on 

corpus callosum segmentation will be compared, and another 

updated method will also be presented in this paper. 
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Fig. 3. The structure of the proposed network. 

 

III. METHOD 

A. Model Design 

The function of our network is to output an accurate 

segmentation map of the input ultrasonic image. The input, 

ultrasonic images of the fetal head, have the resolution of 

𝐻 × 𝑊 and channels of 𝐶, which is marked as 𝑥 ∈ 𝑅𝐻×𝑊×𝐶. 

The output of the network is a map with the resolution of 

𝐻 × 𝑊. 

Our network combines Transformers and Convolutional 

Neural Network (CNN) to extract features. It is an idea 

inspired by TransUnet. The CNN extractor is followed by 12 

layers of Transformers to balance the local information and 

global information. Considering the images are greatly 

disturbed by noise, we took ResNet101 [14] as the CNN 

feature extractor since its deeper structure enables stronger 

ability as an extractor. Inspired by dual attention mechanism 

[15], the decoder takes the output features of the transformers 

as the key values of the dual attention to fuse spatial features 

and channel features. This fusion brings great improvements 

to the network performance. Besides the segmentation of the 

corpus callosum, we also take the transparent compartment, 
 

 
Fig. 4. The structure of the dual attention block. 

 

a tissue next to the callosum, as another target because it is 

also an important basis for the diagnosis of ACC. The 

complete structure of the network is shown in Fig. 3.  

For the first 3 layers of ResNet, convolution kernels with a 

stride of 2 and a size of 3 × 3 are used to achieve down-

sampling and extract high-level features. Inspired by dilated 

convolution [16], at the last layer of ResNet, dilated kernels 

of 3 × 3 size and stride of 1 are applied to enlarge the 

reception field, which is conducive to the extraction of more 

information. As illustrated in Fig. 3, the dual attention block 

takes 𝐹4 and 𝑘𝑒𝑦 as the input, and output 𝐷 channels of 

feature maps with the same resolution. The 𝑘𝑒𝑦  is 

convolved and resized before being taken as the weight 

values of spatial attention and channel attention, then 

multiply with the preprocessed input features. The final 

output results of the two channels are concatenated and 

processed by a CNN network. The detailed process is shown 

in Fig. 4. 

B. Loss Function 

The loss function is a critical strategy that influences the 

performance of network training. For our task, the 

segmentation of fetal corpus callosum, the quantity of the 

background and target pixels are greatly imbalanced, so the 

flexible adjustment to the weight of False Positive (FP) and 

False Negative (FN) predictions is needed. As a result, 

Tversky Loss [17] is taken as the loss function. Its expression 

is presented in (1). 

 

𝑇(𝐴, 𝐵) =  
𝐴 ∩ 𝐵

𝐴 ∩ 𝐵 + 𝛼|𝐴 − 𝐵| + 𝛽|𝐵 − 𝐴|
 (1) 

where 𝐴 and 𝐵 stands for the prediction and ground truth 

respectively; |𝐴 − 𝐵| is the false positive and |𝐵 − 𝐴| is 

the false negative. By finetuning 𝛼 and 𝛽, we can adjust the 

penalties of FP and FN to the training loss, which affects the 

final performance. In our experiment, 𝛼 is set as 0.6 while 

𝛽 is set as 0.4.  
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Fig. 5. The input images (left), ground truths (middle), and predictions 

(right). 

The callosum is marked in red and the transparent compartment is marked 

in green. 

 

IV. EXPERIMENT AND DISCUSSION 

A. Dataset and Experiment Setup 

The dataset is obtained from People’s Hospital of Deyang 

City and has 443 samples in total. The ultrasonic images were 

manually labeled, with the fetal brain, corpus callosum, and 

transparent compartment being marked. The ultrasonic 

images were firstly cropped into input imageswith the 

resolution of 512 × 512. Due to the limited data, image 

augmentation was applied, including random sharpening, 

histogram equalization, flipping, and rotation. The network 

was trained on a GTX TITAN X, optimized by SGD 

optimizer. The learning rate and batch size were set as 0.004 

and 4 respectively, and the network was trained for 200 

epochs. 

B. Experiments and Discussion 

Sample outputs of our model is shown in Fig. 5. The input 

ultrasonic images are on the left; the ground truth labels are 

in the middle and the predictions (the output of our network) 

are on the right. It can be demonstrated that our model can 

realize the segmentation of fetal corpus callosum very well. 

Further observation of the result illustrates that the 

predicted corpus callosum area is slightly larger than the 

ground truth. This is caused by the greater shape sensitivity 

than boundary sensitivity in this task because of the fine-

tuned parameters in the loss function. The reason behind the 

greater shape sensitivity is that we need to prevent the 

segmentation from being discontinuous due to the thinness of 

the corpus callosum, which is corresponding to the expected 

results. The adjustment on parameters applied to the Tversky 

Loss was to balance the penalty of FP and FN to make the 

model more inclined to ensure the correctness of the predicted 

shape. 

To have a better demonstration of the performance of our 

model on the dataset, we cast experiments on the same dataset 

using 3 typical networks which were once the state-of-the-art 

(SOTA) models: DeepLabV3, Unet, and TransUnet. We will 

also compare the different model performances when 

ResNet50 and Dice Loss are applied. 

As shown in Table I, the feature extractor and the loss 

function of DeepLabV3, TransUnet, and our model are all 

ResNet101 and Tversky Loss. The Intersection over Union 

(IoU) index is used to measure the performance of the models.  

TABLE I: PERFORMANCES OF DIFFERENT NETWORKS ON THE DATASET 

(CC STANDS FOR CORPUS CALLOSUM AND TC STANDS FOR TRANSPARENT 

COMPARTMENT) 

Network Mean IoU IoU of TC IoU of CC 

DeepLabV3 63.7% 69.3% 58.1% 

Unet 56.1% 61.9% 50.3% 

TransUnet 63.5% 69.4% 57.6% 

Our Model 64.5% 69.5% 59.4% 

 

TABLE II: DIFFERENT PERFORMANCES OF FEATURE EXTRACTORS 

Network Mean IoU IoU of TC IoU of CC 

DeepLabV3+ResNet50 61.7% 67.6% 55.8% 

DeepLabV3+ResNet101 63.7% 69.3% 58.1% 

Our Model+ResNet50 62.6% 66.7% 59.0% 

Our Model+ResNet101 64.5% 69.5% 59.4% 

 

TABLE III: DIFFERENT PERFORMANCES OF LOSS FUNCTIONS 

Network Mean IoU IoU of TC IoU of CC 

DeepLabV3+Dice Loss 59.9% 66.7% 53.1% 

DeepLabV3+Tversky 

Loss 
63.7% 69.3% 58.1% 

Our Model+Dice Loss 61.7% 67.4% 55.9% 

Our Model+Tversky Loss 64.5% 69.5% 59.4% 

 

It is shown in the results that our model has the best 

performance. It does not bring great improvement in the 

segmentation of transparent compartment compared with 

DeepLabV3 and TransUnet. However, it enjoys an increase 

of 1%~2% approximately in the segmentation of the corpus 

callosum and about 1% in the mean Intersection over Union 

(mIoU) index. 

In Table II, we present the results of using different feature 

extractors (ResNet50 and ResNet 101) for DeepLabV3 and 

our network, while the loss functions are all Tversky Loss. 

The results show that compared with ResNet50, ResNet101 

brings an increase of about 2%~3% in the segmentation of 

transparent compartment, and of about 2% in the 

segmentation of the corpus callosum. Concluded from Table 

II, ResNet101 can improve the performance by about 2% 

compared with ResNet 50. 

In Table III, ResNet101 is fixed as the feature extractor for 

DeepLabV3 and our model, to compare the different 

performance of Dice Loss (𝛼 = 0.5, 𝛽 = 0.5) and Tversky 

Loss (𝛼 = 0.6, 𝛽 = 0.4). From the table, Tversky Loss has 

an obvious advantage over the Dice Loss, with a 2%~3% 

improvement for transparent compartment segmentation and 

a 4%~5% improvement for corpus callosum segmentation. 

The better performance of Tversky Loss can be attributed to 

its resistance to imbalanced samples brought by fine-tuned 

parameters.  

So far as we have analyzed, we can conclude that for the 

corpus callosum segmentation task, our network outperforms 

DeeplabV3 and TransUnet by 1.3% and 1.6% in corpus 

callosum detection respectively. We can also conclude that 

the Tversky Loss outperforms the Dice Loss, and Resnet101 

outperforms Resnet50. However, ResNet101 has more 

parameters. Taking this into account, feature extractors 

should be chosen according to actual needs. 
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V. CONCLUSION 

This paper proposed a segmentation algorithm for fetal 

corpus callosum based on deep learning, which combines the 

advantages of Transformer and dual attention mechanism to 

improve the performance of the network. Our model reached 

59.4% of IOU on the corpus callosum segmentation task, 

which is promising for future application. The results of 

ultrasound segmentation of the fetal corpus callosum can 

provide doctors with a valuable reference, which is conducive 

to reducing the workload of doctors and improving the 

accuracy of the diagnosis of ACC. 

To realize the end-to-end diagnosis in the assistance of the 

work in this paper, two directions of future work are given: 1. 

Improve the performance of the model by making full use of 

the unlabeled dataset based on self-supervised learning; 2. On 

the basis of the results of automatic segmentation of corpus 

callosum, raise criteria for the diagnosis of ACC using 

statistical method. Meanwhile, we will also make efforts to 

collect more data in order to introduce more automation in the 

detection of ACC. 
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