

Abstract—Software metrics are prevalent in the software

industry to measure the features of software regarding its size,

design, complexity and performance so that quality software

can be deployed to the customers. In this paper, we’ve

presented a survey of existing software metrics so that

appropriate metrics can be chosen depending upon the need of

the project. The paper first provides the overview of product

attributes which are measured by the metrics. The existing

software metrics have been classified based on software design

and project usage. We’ve gone through fifty research papers to

cover all existing metrics in the aforesaid categories. The motive

of this survey is to reinforce the uses and limitations of these

metrics so that suitability of specific metrics can be defined for

an application purpose.

Index Terms—Object-oriented metric, software complexity,

software development life cycle, software metric.

I. INTRODUCTION

Software engineering is the discipline of engineering

which deals with building the quality software reducing the

software cost and time utilizing the best engineering and

management practices. The software development field faces

abundant challenges and setbacks to survive in the

competitive world of globalization. The software industry is

characterized by standards and technological dynamics with

the emergence of new programming languages, new

development approaches and innovative frameworks. Hence

it becomes quite essential to evaluate the performance of

software before releasing it in the market for widespread use.

Software metric is a standard way to evaluate the quality

related to a software system or software process based on

some property [1]. The metrics are used by all engineering

disciplines to measure the attributes like weight, pressure,

size, density, temperature and wavelength. The measurement

may be in quantitative as well as in qualitative

terms. Software metrics are basically related with the

measurements of software features or properties for example

size, complexity of software and rework in terms of some

numbers to improve all aspects of overall management of that

specific process [2], [3].

For example, size is a product property or attribute which

is generally measured in kilo lines of code (KLOC) [4].

Function Point (FP) metric is also used to estimate or

measure the size of the project. Rework is an attribute of the

process and the effort spent on rework is a measure of the

rework attribute. The measurements can be direct or indirect.

Manuscript received November 29, 2021; revised January 14, 2022.

Shweta Sharma is with Mewar University, Chittorgarh, Rajasthan, India

(e-mail: bhardwaj.shweta28@gmail.com).

S. Srinivasan is with Department of Computer Science and Applications,

PDM University, India (e-mail: dss_dce@yahoo.com).

The direct measurements of software products include the

lines of source code, number of defects detected, execution

speed of software, throughput per hour, response time and

turnaround time etc. The indirect measurements of software

constitute efficiency, portability, comprehensiveness,

simplicity, maintainability, understandability etc.
The metrics are the best way to measure internal and

external properties of software.

A. Internal Properties/Attributes

Internal attributes are specific to the process, resource or

product themselves. They are measured on their own

regardless of the operating environment [5].

B. External Properties/Attributes

Every software product is operated in an environment and

hence it is required to measure how the process, resource or

software product relates to the external environment [5]. The

software metrics answers all questions related to the software

measurements in terms of size, complexity, number of

resources required, bugs detected and so on [6].

Fig. 1. Questions answered by software metrics.

To see what sort of metric, we require, we need to

concentrate on the following questions (Fig. 1):

• How to measure the software Size?

• How much cost will be required to build the software?

• What must be the staff size of a project?

• What is the complexity of a module?

• How many test cases should we apply?

• When can we stop testing?

• When can the software be deployed?

• Which test technique is appropriate for the software?

• What will be the productivity?

The software metrics, if applied properly to all types of

software products, helps in developing a clear blueprint of a

system in context with whether all the features of an expected

software product have been properly integrated in it or not

[7].

A Survey on Software Design Based and Project Based

Metrics

Shweta Sharma and S. Srinivasan

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

54DOI: 10.7763/IJCTE.2022.V14.1310

II. RELATED LITERATURE

There are several properties in the physical world that are

used to measure anything such as mass, length, and time.

Weyuker (1988) has proposed nine attributes for measuring a

software using software metric. Some of these properties

constitute: “monotonicity, interaction, non-coarseness,

nonuniqueness, and permutation”. These attributes are

equally applicable on traditional and object-oriented

approaches. When the software is first being developed, these

measurements provide designers a chance to modify it,

reducing complexity and improving the product's long-term

viability. In order to accurately portray the program that is

being measured, software measures and metrics must be used

[8]. The Fig. 2 below shows the metrics hierarchy according

to our classification.

Fig. 2. Classification of Software Metrics.

The above Fig. 2 has divided the metrics in two basic

categories: Design Based Metrics and Project Based Metrics.

A. Design Based Metrics

The design-based metrics are based on the software

product’s design features. The two main types of

design-based metrics are traditional and object-oriented

metrics explained below.

Traditional Metrics: There are various metrics that are

applied to conventional functional development [9]. The

SATC (Software Assurance Technology Center) has

acknowledged three such metrics which are appropriate to

object-oriented development: “Complexity, Size, and

Readability”.

CC (Cyclomatic Complexity) (Fig. 3): McCabe’s

Cyclomatic Complexity method is used to assess the

complexity of a technique's algorithm [10]-[12]. It is a

calculation of the number of test cases required to thoroughly

test the procedure.

“The number of edges minus the number of nodes plus 2 is

the formula for calculating cyclomatic complexity” [13], [14].

Only one test case is required for a sequence with only one

path and no choices or options. An IF loop, on the other hand,

offers two options: Test the specific path for which it satisfies

the condition, and test another path if the condition fails [15].

Fig. 3. Cyclomatic Complexity for different types of structures (source: [16]).

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

55

An approach with “a low cyclomatic complexity” is often

superior, as shown in the graph. This could indicate that there

is less testing and more comprehensibility, or the decisions

are postponed by message passing, but it does not suggest

that the approach is simple. The inheritance makes it difficult

to use cyclomatic complexity in estimating the complexity in

a class but if cyclomatic complexity of individual methods is

computed then combined complexity of all such methods

with other measures can determine the complexity of the

class [17]. Although this metric is specifically for assessing

Complexity, it is also related to all the other qualities.

Line of Code Metric: - Estimation based on “Lines of Code

(LOC)” is a legacy method still utilized in many

organizations for sizing commercial applications. Typically,

for technology conversion projects, the LOC technique can

be used for estimation. In this method, all the functions are

estimated for their size (in LOC) and appropriate productivity

factors applied for arriving at realistic estimates [18]. Based

on past experience and relative productivity ratios for various

programming languages and tools, productivity factors are

defined for the same. Adjustments are also made for the

known weaknesses in the method, to arrive at the final

estimates. There are also other factors that can influence the

definition of LOC like programming language, count type

(logical or physical), compiler directives, comments, blank

lines, statement types (executables vs. declarations),

consideration of software reuse, and so on. This method has

several disadvantages [18], [19]. For instance, it usually tends

to reward profligate design and penalize concise design, it

does not have any industry standard (IEEE or otherwise) and

it is very difficult to normalize across the platform, language,

or organization.

Object Oriented Metrics: R. Hudli, C. Hoskins, and A.

Hudli (1993) have suggested Object Oriented Metrics which

are as below: -

Depth of Inheritance Tree (DIT): DIT is a design-based

metric used at class level. It is the measurement of inheritance

at a class level from root to a specific class. The maximum

fault sensitive classes reside in the middle of the inheritance

tree [20], [21]. The reusability is increased in deep trees due

to inheritance. The number of faults is increased in case of

high DIT. The recommendation for DIT number is five or

less [22].

Number of Children: NOC is the count of subclasses

which are directly derived from a class. It is the number of

immediate sub classes which are derived from a class using

inheritance feature. In general, it is used to measure the width

of a class hierarchy. High value of NOC promotes the

reusability and is also an indication of less faults [21], [22].

Coupling between Objects Classes: This metric is used to

calculate the strength of interdependence among classes.

CBO is a count of the total number of classes which are

coupled to a specific class. Coupling between classes is

detected if one class’s methods make use of methods defined

by some other class. Coupling should be minimized

whenever possible as it always increases errors and faults

[20]. If a method is involved in overloading or overriding

then it is considered to be polymorphic and all classes called

by such method’s class are counted in the coupled class [23].

Response for a Class (RFC): This metric is also used at

class level. It is defined as the count of methods executed

within a class in response to the messages sent by other

classes to the object of this class. RFC is the actual number of

available methods in a specific class [24], [25]. The methods

availability of a class is calculated by adding the number of

methods local to this class and other methods called by these

local methods. If the calculated value is high then it is the

indication of requirement of more rigorous testing due to

coupling related problems [21].

Lack of Cohesion (LCOM): LCOM is also a design-based

metric used at class level. It is used to measure the degree of

cohesion inherent in the elements of a class. It is calculated

by counting the local methods which are disjoint in a class.

Disjoint sets of methods imply that they have nothing

common among them [26].

Weighted Methods per Class: WMC is a count of the

number of methods executed in a class. In other words, it is

the addition of complexity of all methods defined within a

class proximity. The effort and time needed to create and

maintain a class can be predicted by calculating the number

of methods and complexity of the concerned methods. Hence

WMC with lower value is desirable as high value is an

indication of greater complexity [27].

B. Project Based Metrics

Project based metrics are those metrics which are

concerned with the quality of the deliverable product as well

as the process and resources involved in constructing that

product. It deals with the basic quality of the product like

product size, design features, complexity and its performance

[28]. Project base metrics also measure the processes used in

the development of the product for example the product

which is built from scratch will have a different process life

cycle from the one which has been converted into a new

version with some enhancements. As a set of software-related

actions, processes observe and control the status and

development of a system's design and estimate future impacts.

Most processes are associated with a timeframe. When a task

must be completed by a certain date, the timing can be

explicit or implicit. According to the existing literature, the

following examples of process related metrics are suggested

to be collected [24]: -

• Total hours spent on development: - Every process

and sub process have its own amount of time allocated

to it. It requires a lot of effort and time to alter models

from earlier processes, all sorts of modules, such as

“use case specification and object specification, as

well as use case design and block testing” for each

individual object must be collected. The number of

various types of defects detected during reviews.

• Costs associated with quality assurance.

• Costs associated with introducing new development

processes and tools.

• Project schedule involved in the development of the

product.

Metrics for software products are utilized to measure the

quality of the software. Incomplete software products are

analyzed using these metrics just to determine the level of

complexity and anticipate the attributes of the final product.

Anything that comes out of a process is called a product. Not

all products are those that management has promised a client.

Software lifecycle artifacts and documents can be evaluated.

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

56

Many types of product-related metrics have been suggested.

None of these have been shown to be beneficial as a broad

interpreter of overall quality.

Product metrics: When it comes to software development

life cycle metrics, it's all about the work product. As a result

of these measurements, the project's qualities and execution

may be seen [29]. The number of defects per unit size is a

metric which actually does the measurement of software

product’s quality. The turnaround time taken for servicing a

maintenance request can be looked at as a measure of service

quality. There are various dimensions of a product which can

be measured using product metrics such as-

• Size of Product

• Inherent Complexity of product

• Design Features

• Performance

Size estimation is a sophisticated process that requires the

results to be updated with real counts throughout the life

cycle. Source lines of code, function points, and feature

points are all size measures [30], [31]. Complexity is a

function of scale, which has a significant impact on design

flaws and hidden defects, resulting in quality issues, cost

overruns, and schedule slippages.

Complexity must also be evaluated, monitored, and

controlled on a regular basis. Changing requirements is

another issue that contributes to size estimate mistakes, and it,

too, must be baselined and closely monitored.

SLOC (Source Line of Code), FP (Function Point) and CC

(Cyclomatic Complexity) are the basic metrics utilized to

evaluate software size and software product complexity

which have already been discussed in previous section [32].

Design features of a software product can be design

reusability, architecture independence, information hiding,

simplicity, bonding of module’s elements, interdependence

on other modules expandability and maintainability. The

Object Oriented Metrics can also be used to evaluate the

design features such as coupling, cohesion and information

hiding features[33].

The performance of software products can be measured

through many testing and reliability metrics such as MTBF

(Mean Time Between Failure), MTTR (Mean Time To

Repair), Average Turnaround time, Average Response Time,

Throughput and so on [34], [35].

Process metrics: These are the metrics used for evaluating

the effectiveness and quality of software processes, including

maturity of the process, work required in the process and the

efficiency of fault correction during development, among

other things [36]. The process metrics are concerned with the

development cycle of the software from beginning to the end.

The metrics can be used in any phase of the life cycle of a

software product from requirement analysis to

implementation and maintenance. The software product life

cycle can take any of the following forms-

• Software built from scratch (development project)

• Existing software undergoing for some changes

(Conversion/Enhancement project)

• Software with extreme modifications (Maintenance

Project)

The process metrics used in life cycles of the projects of

these above-mentioned categories of projects can vary.

However, there can also be some common set of metrics

which can be used for all types of software projects. The next

section will discuss such categories of software project

metrics existing in current literature.

Development Project Metrics: These are the metrics which

can be used in development phases of software. The Software

Development Life Cycle consists of phases such as

requirements engineering, software design, coding, testing

and implementation and operation and maintenance.

Requirement Coverage metrics: These metrics encompass

the requirement accumulated for the entire project [37], [38].

This can be done by drawing a requirements traceability

matrix. The metrics checks the following parameters: -

• The number of requirements which have test cases.

• The number of requirements which have been tested

so far.

• The number of requirements which have cleared the

design specification criteria.

The requirements are checked for completeness and

correctness. Every requirement must have a single

interpretation and can be checked for backward and forward

traceability with its origin.

Design Metrics: These metrics are used at the design phase

of the development life cycle. The software design can be

checked for its size, complexity, performance and other

significant features such as encapsulation and reliability [39].

The metrics discussed in previous sections can be used to

measure software design phase.

Code Coverage Metrics: Code coverage is a software

testing measure that evaluates the number of lines of code

that are effectively validated throughout a test procedure,

which aids in determining how thoroughly a software is

tested [40]. This metric is used to test the code from angles:

• Statements Coverage

• Loops Coverage

• Conditions Coverage

• Branch Coverage

There are many benefits of using this metric: -

• Saving maintenance efforts: - The software

maintenance phase is a very expensive and

time-consuming phase. If the code is thoroughly

tested and validated, then the maintenance process

takes lesser time and effort.

• Exposure of faulty code: - The unused, dead and bad

code can be easily revealed with continuous

improvements and analysis which ultimately results in

better quality product. Fast development process: The

software development process can be completed early

with increased efficiency if source code is properly

tested and verified.

Test and implementation Metrics: Software metrics are the

“Standards of Measurements” with predefined guidelines,

methods and resources to test the software. The metrics used

in the testing phase can be for quantitative and qualitative

measurement of software. The quantitative measurement

focuses on “extent, amount, dimension, capacity, or size of

some attribute of a product or process”. And qualitative

measurement reinforces the quality attributes such as

efficiency, reusability, maintainability and robustness [41].

The test metrics can be of many types: -

• Percentage of tests executed

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

57

• Percentage of tests not executed

• Number of defects found after testing

• Test cases percentage qualified by software

• Test cases percentage not qualified by software

• Blocked test cases percentage

• Defects Density

• Defects Leakage

As the intention of every test strategy is to break the

software so that all possible bugs can be detected hence the

rigorous test case approach is used.

Operation and Maintenance Metrics: This is generally the

last phase of the development life cycle when the newly built

software comes into an operative environment after

qualifying alpha and beta testing. The maintenance phase

becomes very time consuming and expensive if the bugs are

not traced and rectified earlier in the life cycle [42], [43].

Being the last phase of the cycle, much cannot be done to

amend the product quality at this stage. The existing literature

suggests that the following fixes can be incorporated to

eliminate the errors: -

Fix backlog and backlog management index: - The defect

arrivals rate and the rate at which fixes for reported problems

become available are related to fix backlog [44]. It's a simple

tally of reported issues that haven't been resolved at the end

of each month or week. The BMI is calculated (Fig. 4) as

[45]:

Fig. 4. BMI calculation formula.

If BMI value is greater than 100; it signifies that the

backlog of defects has decreased and value less than 100 is an

indication of increased defects.

Fix response time and fix responsiveness: This is the time

taken to fix the problems encountered. The average time

spent in handling the change request from open to close is

called fixed time. If the response time is short, it gives

satisfaction to the customer [35], [44].

Percent delinquent fixes: If the time taken from opening to

closing a fix exceeds the response time greatly then it is

called as delinquent [35], [44]. The delinquent can be

calculated using the following formula (Fig. 5):

Fig. 5. Percent delinquent calculation formula.

Fix quality: Fixes are used to rectify the problems

encountered during the maintenance phase. But when a fix

becomes another problem by rectifying the original defect

but introducing new defects in the software then that fix is

called a defective fix and needs to be traced. This metric takes

the count of defective fixes in a regular time interval, say

monthly or weekly. A defective fix might be documented in

one of two ways: in the month it was identified or in the

month it was delivered. The former is a measure from the

customer’s viewpoint, while the latter is a measure of the

process. The latent duration of the flawed fix is the difference

between the two dates [36], [44]. Sometimes the software

products require too many amendments in the maintenance

phase of the development life cycle. The reason for

alterations may be changing requirements of customers or

clients, emergence of a new technology, change in the project

team mates or project manager and so on. There are

numerous bugs and faults detected at this phase that either

they cannot be handled or make the maintenance process too

costly and out of budget. Such problems give rise to another

development cycle called a software transition or

maintenance project. The metrics used in such cases are

described in the next subsection.

Resource Based Metrics: “Entities required by a process

activity are known as resources". For our purposes, the

resources include any inputs used in software development.

These are candidates for measurement: individuals, materials,

tools, and techniques using resource-based metrics. Resource

metrics are also very crucial to select and examine as the

entire budget of software is dedicated in organizing and

utilizing the system resources such as manpower, tools and

machinery, money and the last but not the least time. The

metrics used for resource estimation and evaluation are

explained below.

Effort Measurement: Efforts are measured to evaluate the

efficiency of the project team by comparing the actual efforts

with the expected efforts [46]. The project team size is always

pre-determined at the beginning of the project. For example,

how many people will work for how many days or months in

a specific phase of the life cycle? The unit of measurement is

generally Person Days or Person Months. The effort slippage

percentage can be calculated phase wise to know the

deviations from the expected efforts. Finally, a causal

analysis can also be done to know the reasons for deviations.

Schedule Measurement: Schedule is a timeline for a

project consisting of milestones and deadlines for activities

and tasks to be performed during the lifetime of the project

[47]. Time is the most critical and significant factor for any

software development industry. Software teams have to

undergo a lot of pressure to complete each milestone in a

predetermined time frame. Time and Budget are two very

important criteria to evaluate success of a project. Hence

following a proper schedule is essential in project

management. But if there is any kind of slippage from the

schedule then that slippage must be detected and reasons for

slippages must be investigated.

Schedule Slippage metric can also be used to evaluate the

performance of software testers and testing teams [48]. This

is an important service metric used to measure the schedule

adherence and the quality of the process. It is computed by

comparing the actual time spent and the expected time that

must be spent on an activity. After calculating schedule

slippage, schedule variance can also be computed. Schedule

variance is used to measure the deviation in overall

completion of the software project [49]. It is calculated as the

percentage of difference between the expected completion

date and actual completion date of the project.

Cost Estimation: Cost is one of the most important factors

to measure in a project environment. Cost of every project is

estimated at initial phases of development [50], [51].

Sometimes, past experience is used as a guide for cost

estimation, but one project may be different from the other,

so only past experience is not adequate to measure. Cost

estimation models such as COCOMO (Constructive Cost

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

58

Model) can be used for cost prediction which has pre-defined

set of formulas for cost estimation [52], [53].

Productivity measurement: Productivity is also a project

measurement which is the measure of line of code produced

per person/month (year) [54], [55]. Hence if project size and

effort are known in advance then productivity can be

calculated as-

Productivity (P) = Project Size / Efforts in Person Month

Unit.

III. ANALYSIS AND INTERPRETATION OF SURVEY

After doing an in-depth study of existing design based and

project-based metrics, the limitations are analyzed. And it is

observed that because the software does not need to be

executed, static measurements are easier to collect. These

metrics are generally available since they may be gathered at

an early stage of program development. The static metric

LOC was introduced to measure the program productivity but

later on it was declined as there is no standard definition of

LOC for example, the comments in a program should be

counted as line of code or should be ignored. Later, the

Cyclomatic Complexity metric given by McCabe came into

picture which used flow graphs and mathematical equations

to compute software complexity.

When it comes to measuring quantity attributes such as

size and complexity, static metrics work well, but when it

comes to quality attributes such as testability and reliability,

static metrics fall short because they can only be evaluated

through a static inspection of the software artifacts

themselves.

Based on the data accumulated during the execution of the

actual system, dynamic metrics are calculated, reinforcing

quality attributes such as defect probability and performance.

We can observe that dynamic metrics are comparatively

more accurate than static metrics when considering the

constraints of static metrics.

In contrast to static metrics, the calculating method for

dynamic metrics is far more challenging. Further research is

needed in areas such as dynamic coupling and cohesion

measures. So, we may infer that a hybrid method of static and

dynamic measures can prove to be advantageous for avoiding

computational efforts and for qualitative measurements.

Similarly project based metrics too have their own drawbacks

for example improper estimation of technical expertise of

project team members may lead to inaccurate estimation of

software schedule, cost and productivity. The pros and cons

of every metric discussed in this study have been pointed out

in the Table I below.

TABLE I: PROS AND CONS OF METRICS

 Metric Name Type Use Limitations

LOC Traditional Product

Metric

To measure size of Program Code Highly dependent on programming style. Not a

standardized measuring technique.

CC Traditional Product

Metric

To measure complexity of program Only measures control complexity not data complexity,

does not support object-oriented features

NOC Object Oriented Metric To count number of classes directly

derived from the base class in a class

hierarchy

Very difficult to modify since it affects all its children

because of having a heavy dependence on the base class.

More testing is required.

CBO Object Oriented Metric To count number of coupled classes to a

class

Only variable references and method calls are considered.

Other references like utilizing used defined types, API

calls, use of constants, handling of events and object

instantiations are neglected.

WMC Object Oriented Metric To calculate the total complexity of a

class by adding all methods’

complexities of that class.

Only considers complexities arising because of

inheritance ignoring encapsulation and polymorphism

features

LCOM Object Oriented Metric To calculate the amount of cohesiveness

in the methods of a class

Not appropriate for the classes which access their data

internally using their attributes

DIT Object Oriented Metric To measure the inheritance factor among

super and sub classes

Ambiguous results in case of multiple inheritance

RFC Object Oriented Metric The count of available methods in a class Considers the first level of calls outside of the class

instead of calling the entire call tree

Design Metric Product Metrics To measure product design such as

reusability, architecture independence,

information hiding and so on

Higher Level of Language Paradox

Performance

Metric

Product Metrics To measure software performance such

as reliability, response time and

throughput

Highly dependent on accuracy of documents for example

SRS, SDD for correct results

Maintenance

Metric

Process Metrics To measure impact of changes

introduced during maintenance phase of

software.

Too expensive to use as cost sometimes exceeds the

development cost, extensive amount of time is required to

understand the code and implement the metric

Development Process Metrics To measure the development phases of

SDLC such as requirements, design,

coding and testing

Heavily dependent on technical staff and working

environment which are difficult to predict and measure

Effort Project Resource

Metrics

To measure efficiency of Project Team Technical skills of individual cannot be measured which

are directly related to productivity

Schedule Project Resource

Metrics

To measure the schedule adherence

when development process is running

Improper estimation of technical complexities and

unplanned dependencies on tools and people leads to

wrong results

Cost Project Resource Metric To measure the cost of software

development

Attributes values in estimation model are dependent on

historical and empirical data making cost estimation

difficult

Productivity Project Resource Metric To measure efforts required according to

size of the project

Efforts are directly proportional to technical expertise of

employees which is difficult to measure

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

59

IV. CONCLUSION

This paper has presented a survey on the existing set of

metrics classified according to their design and project-based

needs. We observed that a lot of metrics have been proposed

to measure software quality attributes such as size, design,

complexity and efficiency but every metric suffers from

some limitations. From this in-depth study of existing

traditional, design based and object-oriented metrics, we can

conclude that as object-oriented metrics are totally distinct

from other existing software metrics so it is unfortunate that

no side-by-side comparisons can be drawn between

object-oriented projects and other traditional procedural

projects by means of object-oriented metrics available

currently.

These metrics are lacking many features for example

existing object-oriented metrics are not as efficiently

applicable on software maintenance and conversion projects

as they are applied for software development projects. These

metrics do not consider studies outside of the OO paradigm

and not supported by software estimating tools.

The Research study has focused on the basic fact that

despite presence of many metrics related to software metrics,

there should be proper categorization of specific metrics that

should be used on specific types of projects. Since it is not

necessary that all metrics are suitable for all types of projects,

the metrics should be properly studied and must be applied

for proper software project.

CONFLICT OF INTEREST

The submitted work was carried out with no conflict of

interest. Hence, the authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Ms. Shweta Sharma collected and analyzed the data from

different research articles and wrote the paper. Dr. S.

Srinivasan provided guidance in the preparation of the paper

and has checked for plagiarism and grammar.

REFERENCES

[1] E. E. Mills, “Software metrics,” Carnegie-Mellon Univ Pittsburgh PA

Software Engineering Inst., 1988.

[2] H. K. Stephen, Metrics and Models in Software, Boston: Addison

Wesley, 2002.

[3] G. Keshavarz, N. Modiri, and M. Pedram, “Metric for early

measurement of software complexity,” Interfaces, vol. 5, no. 10, p. 15,

2011.

[4] N. E. Fenton and M. Neil, “Software metrics: Successes, failures and

new directions,” J. Syst. Softw., vol. 47, no. 2–3, pp. 149–157, 1999.

[5] N. Fenton, “Software measurement: A necessary scientific basis,”

IEEE Trans. Softw. Eng., vol. 20, no. 3, pp. 199–206, 1994.

[6] M. Scotto, A. Sillitti, G. Succi, and T. Vernazza, “A relational

approach to software metrics,” in Proc. the 2004 ACM Symposium on

Applied Computing, 2004, pp. 1536–1540.

[7] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of

object-oriented metrics on open source software for fault prediction,”

IEEE Trans. Softw. Eng., vol. 31, no. 10, pp. 897–910, 2005.

[8] E. J. Weyuker, “Evaluating software complexity measures,” IEEE

Trans. Softw. Eng., vol. 14, no. 9, pp. 1357–1365, 1988.

[9] D. P. Tegarden, S. D. Sheetz, and D. E. Monarchi, “Effectiveness of

traditional software metrics for object-oriented systems,” in Proc. the

Twenty-Fifth Hawaii International Conference on System Sciences,

1992, vol. 4, pp. 359–368.

[10] C. Ebert, J. Cain, G. Antoniol, S. Counsell, and P. Laplante,

“Cyclomatic complexity,” IEEE Softw., vol. 33, no. 6, pp. 27–29, 2016.

[11] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity density and

software maintenance productivity,” IEEE Trans. Softw. Eng., vol. 17,

no. 12, p. 1284, 1991.

[12] M. M. S. Sarwar, S. Shahzad, and I. Ahmad, “Cyclomatic complexity:

The nesting problem,” in Proc. Eighth International Conference on

Digital Information Management (ICDIM 2013), 2013, pp. 274–279.

[13] A. Madi, O. K. Zein, and S. Kadry, “On the improvement of

cyclomatic complexity metric,” Int. J. Softw. Eng. Its Appl., vol. 7, no.

2, pp. 67–82, 2013.

[14] T. Mccabe, “Cyclomatic complexity and the year 2000,” IEEE Softw.,

vol. 13, no. 3, pp. 115–117, 1996.

[15] C. Ikerionwu, “Cyclomatic complexity as a software metric.,” Int. J.

Acad. Res., vol. 2, no. 3, 2010.

[16] L. Rosenberg, Applying and Interpreting Object Oriented Metrics,

1998.

[17] G. Seront, M. Lopez, V. Paulus, and N. Habra, “On the relationship

between cyclomatic complexity and the degree of object orientation,”

in Proc. of QAOOSE Workshop, ECOOP, Glasgow, 2005, pp.

109–117.

[18] K. Bhatt, V. Tarey, P. Patel, K. B. Mits, and D. Ujjain, “Analysis of

source lines of code (SLOC) metric,” Int. J. Emerg. Technol. Adv. Eng.,

vol. 2, no. 5, pp. 150–154, 2012.

[19] S. Yu and S. Zhou, “A survey on metric of software complexity,” in

Proc. 2010 2nd IEEE International Conference on Information

Management and Engineering, 2010, pp. 352–356.

[20] K. K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Empirical study

of object-oriented metrics.,” J. Object Technol., vol. 5, no. 8, pp.

149–173, 2006.

[21] N. I. Churcher, M. J. Shepperd, S. Chidamber, and C. F. Kemerer,

“Comments on A metrics suite for object oriented design,” IEEE Trans.

Softw. Eng., vol. 21, no. 3, pp. 263–265, 1995.

[22] M. Bruntink and A. V. Deursen, “Predicting class testability using

object-oriented metrics,” in Proc. Fourth IEEE International

Workshop on Source Code Analysis and Manipulation, 2004, pp.

136–145.

[23] G. Alkadi and D. L. Carver, “Application of metrics to object-oriented

designs,” in Proc. 1998 IEEE Aerospace Conference (Cat. No.

98TH8339), 1998, vol. 4, pp. 159–163.

[24] F. B. Abreu and R. Carapuça, “Candidate metrics for object-oriented

software within a taxonomy framework,” J. Syst. Softw., vol. 26, no. 1,

pp. 87–96, 1994.

[25] I. Brooks, Object-Oriented Metrics Collection and Evaluation with a

Software Process, 1993.

[26] B. Újházi, R. Ferenc, D. Poshyvanyk, and T. Gyimóthy, “New

conceptual coupling and cohesion metrics for object-oriented

systems,” in Proc. 2010 10th IEEE Working Conference on Source

Code Analysis and Manipulation, 2010, pp. 33–42.

[27] C. G. Desai, “Object oriented design metrics, frameworks and quality

models,” Inf. Sci. Technol., vol. 3, no. 2, p. 66, 2014.

[28] P. Pocatilu, “IT Project management metrics,” Inform. Econ. J., no. 4,

p. 44, 2007.

[29] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software Engineering

Metrics and Models, Benjamin-Cummings Publishing Co., Inc., 1986.

[30] L. A. Laranjeira, “Software size estimation of object-oriented

systems,” IEEE Trans. Softw. Eng., vol. 16, no. 5, pp. 510–522, 1990.

[31] A. B. Nassif, L. F. Capretz, and D. Ho, “Software estimation in the

early stages of the software life cycle,” in Proc. International

Conference on Emerging Trends in Computer Science,

Communication and Information Technology, 2010, pp. 5–13.

[32] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig, “Software

complexity and maintenance costs,” Commun. ACM, vol. 36, no. 11, pp.

81–95, 1993.

[33] V. Gupta, “Object-oriented static and dynamic software metrics for

design and complexity,” PhD dissertation, University of Kurukshetra,

India, 2010.

[34] G. Kaur and K. Bahl, “Software reliability, metrics, reliability

improvement using agile process,” Int. J. Innov. Sci. Eng. Technol., vol.

1, no. 3, pp. 143–147, 2014.

[35] M.-C. Lee and T. Chang, “Software measurement and software metrics

in software quality,” Int. J. Softw. Eng. Its Appl., vol. 7, no. 4, pp.

15–34, 2013.

[36] A. Tarhan and O. Demirors, “Assessment of software process and

metrics to support quantitative understanding,” in Software Process

and Product Measurement, Springer, 2007, pp. 102–113.

[37] S. W. Ali, Q. A. Ahmed, and I. Shafi, “Process to enhance the quality

of software requirement specification document,” in Proc. 2018

International Conference on Engineering and Emerging Technologies

(ICEET), 2018, pp. 1–7.

[38] J. Cleland-Huang, C. K. Chang, H. Kim, and A. Balakrishnan,

“Requirements-based dynamic metrics in object-oriented systems,” in

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

60

Proc. Fifth IEEE International Symposium on Requirements

Engineering, 2001, pp. 212–219.

[39] L. Briand, S. Morasca, and V. R. Basili, “Defining and validating

high-level design metrics,” 1994.

[40] S. K. Singh and A. Singh, Software Testing, Vandana Publications,

2012.

[41] A. Rainer and T. Hall, “A quantitative and qualitative analysis of

factors affecting software processes,” J. Syst. Softw., vol. 66, no. 1, pp.

7–21, 2003.

[42] N. F. Schneidewind, “The state of software maintenance,” IEEE Trans.

Softw. Eng., no. 3, pp. 303–310, 1987.

[43] R. Hall and S. Lineham, “Using metrics to improve software

maintenance,” BT Technol. J., vol. 15, no. 3, pp. 123–129, 1997.

[44] E. A. Rajavat, “An impact-based analysis of software reengineering

risk in quality perspective of legacy system,” Int. J. Comput. Appl., vol.

975, p. 8887, 2011.

[45] A. Desantis, A. Pleskus, and G. D. Howell, Maintenance, 2015.

[46] R. Solingen and P. Stalenhoef, Effort Measurement of Support to

Software Products, 1997.

[47] T. K. Abdel-Hamid and S. E. Madnick, Impact of Schedule Estimation

on Software Project Behavior, 1985.

[48] M. Aikhatib and S. Altarazi, “A customized root cause analysis

approach for cost overruns and schedule slippage in

paper-machine-building projects,” Manag. Prod. Eng. Rev., vol. 10, pp.

83–92, 2019.

[49] R. I. Carr, “Cost, schedule, and time variances and integration,” J.

Constr. Eng. Manag., vol. 119, no. 2, pp. 245–265, 1993.

[50] F. J. Heemstra, “Software cost estimation,” Inf. Softw. Technol., vol. 34,

no. 10, pp. 627–639, 1992.

[51] H. Leung and Z. Fan, “Software cost estimation,” in Handbook of

Software Engineering and Knowledge Engineering: Volume II:

Emerging Technologies, World Scientific, 2002, pp. 307–324.

[52] C. F. Kemerer, “An empirical validation of software cost estimation

models,” Commun. ACM, vol. 30, no. 5, pp. 416–429, 1987.

[53] M. Jorgensen and M. Shepperd, “A systematic review of software

development cost estimation studies,” IEEE Trans. Softw. Eng., vol. 33,

no. 1, pp. 33–53, 2006.

[54] B. Kitchenham and E. Mendes, “Software productivity measurement

using multiple size measures,” IEEE Trans. Softw. Eng., vol. 30, no. 12,

pp. 1023–1035, 2004.

[55] J. S. Collofello, S. N. Woodfield, and N. E. Gibbs, “Software

productivity measurement,” in Proc. the May 16-19, 1983, National

Computer Conference, 1983, pp. 757–762.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Shweta Sharma is working as an assistant

professor in Computer Science Department in

Government College for Girls, Sector-14,

Gurugram. She has 13 years of teaching experience.

She is pursuing the Ph.D (computer science) from

Mewar University, Rajasthan. She did BCA from

University College Kurukshetra (KUK) and MCA

from Department of Computer Science and App

Applications from Maharshi Dayanand University,

Rohtak.

She has also done the MPhil (computer science) from Ch. Devilal

University, Sirsa. She has also done the B.Ed in computer science and

English from Maharshi Dayanand University. Her areas of research are

software engineering, data base management system, computer networks

and cybersecurity.

S. Srinivasan is currently working as a head of the

Department of Computer Science and Application in

PDM University, Bahadurgarh. He has a vast

experience of nearly 40 years including 22 years in

teaching and 18 years in Industry. He presented

research papers in various National and International

conferences. He was a research advisor of

Bharathidasan University, Trichy, Tamilnadu. He

has produced twelve Ph.Ds and guiding six research

students.

His current research field is the area of artificial intelligent especially in

multi-agent system technology and its applications.

International Journal of Computer Theory and Engineering, Vol. 14, No. 2, May 2022

61

https://creativecommons.org/licenses/by/4.0/

	1310-G2180

