
  

  

Abstract—Active object detection (AOD) aims at getting a 

better image for detection. It moves robot to get a best view of 

the object. This method is more effective than traditional object 

detection when facing following problems: the object in image is 

of tiny scale, the object is blocked by other irrelevant objects, the 

object is partially captured by camera, etc. We consider that the 

past images acquired by the robot are related to the problems 

mentioned above. So different from the state-of-the-art methods 

which mostly generate actions based on current image, a novel 

AOD network based on CNN and LSTM networks is proposed 

to advance detection performance in this paper. The AOD 

network uses current and historical scenes as well as movements 

are learned to explore and generate following robot actions. We 

train the Action Network through reinforcement learning. 

During training, phenomenon that robot stuck and repetitive in 

several specific situations usually occurred, which results in 

invalid training. To solve this, an effective training strategy is 

proposed to skip trapped or repetitive actions. Our proposed 

AOD network was evaluated on Active Vision Dataset and the 

experiment results showed its advantage of both accuracy and 

efficiency on AOD tasks. 

 
Index Terms—Active vision, active object detection, 

reinforcement learning, convolutional network (CNN), long 

short-term memory (LSTM). 

 

I. INTRODUCTION 

Visual object detection aims at finding object in the visual 

scene, which is a core functionality for robots in daily 

environment. In recent years, computer vision has made great 

progress on object detection, especially with deep models, 

such as [1]-[3]. However, object detection task in the field of 

robotics is different from traditional object detection. Robots 

can move around in daily environment and collect a series of 

images. These images are usually taken under ambiguous 

intention and have such problems: the object in image is of 

tiny scale, the object is blocked by other irrelevant objects, 

the object is partially captured by camera, etc. These 

problems often lead to performance degradation in object 

detection task using traditional methods [4]. To solve these 

problems, a bunch of methods propose to use active vision 

which aims at actively moving the robot to get a best view of 

the object. 

The early work of AOD focuses on view selection [5], [6]. 

In recent years, it mainly studies the next best view prediction 

[7]-[9]. For example, [10] uses entropy increasing of the 

current and future images to determine the best position at the 

next moment. This method needs to obtain the possible 

position at the next moment in advance so that it is difficult 
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to implement in unknown scenarios.  

[11] constructs a specific physical model for analysis. 

However, when the surrounding environment is too 

complicated, it is difficult and time-consuming to constructs 

such a model. In order to avoid constructing complex models 

while ensuring the performance of the method in unknown 

scenarios, previous work [12], [13] begun to consider deep 

reinforcement learning and have got better performance. [14] 

and [15] adopt deep reinforcement learning and build an 

action decision model based on ResNet-18 to decide the next 

best view. The model can generate the next action based on 

the current image. 

 

 
Fig. 1. The robot moves in the scene, changes the view, and the classifier's 

score for the object changes. When the object gets high score, it can be well 

detected. 

 

Though recent work of AOD have achieved better 

performance through reinforcement learning, we argue that 

this formulation is not enough. For instance, we observe two 

problems. The first is that these methods didn't take historical 

information into consideration. We consider that the robot's 

movements in the scenes is continuous, and thereby the past 

actions taken by the robot and the past images acquired by the 

robot are related to next best view prediction. And the second 

problem is that the robot would be trapped in one scene or 

repeat the circle in several scenes, which may lead to invalid 

training. To solve the first problem, we propose using Conv-

LSTM [16] to add historical information to the model 

inspired by [14]. For the second problem, we improved the 

training strategy to make the model training more effective. 

In this paper, we build our AOD network which can 

generate a series actions to achieve a best view according to 

historical actions, historical scenes and current scene. We 

train the model and evaluate it on the Active Vision Dataset 

[14], and achieves satisfying results. The main contributions 

of this paper are in three folds: 
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• Focus on AOD, we take historical scenes and 
movements into consideration, and construct an AOD 
network based on reinforcement learning. The 
network will move robot to a proper view to solve the 
bad object detection issues such as tiny scale, 
occlusion, truncation capture, etc. 

• In order to avoid invalid training, we propose an 
effective training strategy to skip trapping situations 
and repetitive actions. 

• We empirically evaluate our method on the Active 
Vision Dataset and it achieves state-of-the-art 
performance. 

 

II. PROBLEM DEFINITION 

The main idea of AOD is finding a best view from where 

the object is easily to be detected. A robot starts in an initial 

scene 𝐼𝑡 (The subscript t indicates the current time t, and the 

following are the same), receiving an image with a bounding 

box of the object. However, the initial scene 𝐼𝑡 is inadequate 

for detection because of several problems such as the object 

is of tiny scale, the object is blocked and the object is partially 

captured. So the robot needs to choose an action 𝑎𝑡  and 

moves to the next scene 𝐼𝑡+1 and repeats this process until the 

detection task is completed. The next scene 𝐼𝑡+1  is 

determined by the current scene 𝐼𝑡 , and action 𝑎𝑡. So the key 

is to generate an action policy of action 𝑎𝑡. 

In this paper, we use a classifier to decide whether the 

current view is good for object detection or not. We build an 

AOD network to generate action policy. Note that our main 

work is choosing appropriate actions to reach the best view, 

so the bounding boxes of our target objects are already given, 

and the object detector is the same in [14]. 

 

III. AOD NETWORK 

Our AOD network is shown in the Fig. 2. It receives 

historical scenes {𝐼𝑡−1, 𝐼𝑡−2, 𝐼𝑡−3} and corresponding actions 

{𝑎𝑡−1, 𝑎𝑡−2, 𝑎𝑡−3}, current scene {𝐼𝑡}, a bounding box of the 

object {𝑏𝑡}, current action space {𝑠𝑡}, and then outputs scores 

for different actions: forward, backward, left, right, clockwise 

rotation and counter-clockwise rotation. Then the action with 

best score is the 𝑎𝑡 which we need. Here we use 𝜋∗  to 

represent the function mapping of each part of the AOD 

network. Thus, the AOD network consists of five parts {𝜋𝑙𝑠𝑡𝑚, 

𝜋𝑖𝑚𝑔, 𝜋𝑏𝑜𝑥, 𝜋𝑠𝑝𝑎𝑐𝑒, 𝜋𝑎𝑐𝑡}. 𝜋𝑙𝑠𝑡𝑚 is an encoder for historical 

information: 

𝑍𝑡
𝑙𝑠𝑡𝑚 = 𝜋𝑙𝑠𝑡𝑚((𝐼𝑡−3, 𝑎𝑡−3) … (𝐼𝑡−1, 𝑎𝑡−1))          (1) 

It consists of the first nine layers of Resnet-18 and two 

{5x5 Conv, ReLU, 2x2 MaxPool} blocks [17], followed with 

LSTM layer. The input 𝐼𝑡 is passed to 𝜋𝑖𝑚𝑔, which consists 

of the first nine layers of Resnet-18 and two convolution 

modules [14]. And 𝜋𝑖𝑚𝑔 gives 

𝑍𝑡
𝑖𝑚𝑔

= 𝜋𝑖𝑚𝑔(𝐼𝑡)                               (2) 

We also consider the bounding box of object and the 

current action space: 

𝑍𝑡
𝑏𝑜𝑥 = 𝜋𝑏𝑜𝑥(𝑏𝑡)                              (3) 

𝑍𝑡
𝑠𝑝𝑎𝑐𝑒

= 𝜋𝑠𝑝𝑎𝑐𝑒(𝑠𝑡)                            (4) 

Here the bounding box are normalized to have a good 

performance [15]: 

𝑥̅ =
𝑥

𝐼𝑤
, 𝑦̅ =

𝑦

𝐼ℎ
, 𝑤̅ =

𝑤

𝐼𝑤
, ℎ̅ =

ℎ

𝐼ℎ
                     (5) 

where 𝐼𝑤, 𝐼ℎdenote the width and height of image. Finally, we 

use 𝜋𝑎𝑐𝑡 which consists of fully connected layers to generate 

our action: 

𝑎𝑡 = max {𝜋𝑎𝑐𝑡(𝑍𝑡
𝑙𝑠𝑡𝑚, 𝑍𝑡

𝑖𝑚𝑔
, 𝑍𝑡

𝑏𝑜𝑥, 𝑍𝑡
𝑠𝑝𝑎𝑐𝑒

)}          (6) 

 

 
Fig. 2. The AOD network uses historical scenes and actions, current scene, 

bounding box of the object and action space, then outputs scores for different 

actions: forward, left, backward, right, clockwise rotation and counter-

clockwise rotation. 

 

Resnet-18 has shown impressive performance in image 

classification, so we use its pre-trained models in [18]. We  

keep its weights fixed and learn the other weights of {𝜋𝑙𝑠𝑡𝑚, 

𝜋𝑖𝑚𝑔 , 𝜋𝑏𝑜𝑥 , 𝜋𝑠𝑝𝑎𝑐𝑒 , 𝜋𝑎𝑐𝑡} based on reinforcement learning. 

We use the classifier in section II to evaluate whether we 

choose the good actions to achieve an effective view. Thus, 

similar to [14], our reward is formulated as: 

𝐽(𝜃) = 𝐸𝜋((𝜙(𝐼𝑡−3),𝑎𝑡−3)…(𝜙(𝐼𝑡−1),𝑎𝑡−1),𝜙(𝐼𝑡),𝑏𝑡,𝑠𝑡)[𝑅]     (7) 

where Φ(𝐼𝑡−1) is the output of Resnet-18. And we assume the 

policy distribution to be independent at each time step. When 

we need to give the AOD network a positive reward signal, R 

is the score of the classifier, otherwise R = 0. To learn the 

policy, we use gradient with reinforcement learning 

approximate to [19], [20]. 

However, there remains an initialization problem. For the 

AOD network, we always consider historical scenes and 

actions in the last three time steps. Unfortunately, we do not 

have historical information at the beginning of the task, which 

leads to input dimension mismatch for LSTM layer. The 

common method for this is using zero to fill the blank in the 

input sequence. In this paper, we use another method: when 

there is a lack of historical information, we always use the 

information of closest time step to fill it. 
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IV. EXPERIMENTS 

We perform our method on active vision dataset [14], and 

then compare our method with several previous methods. The 

specific experimental detail is presented in this section. 

A. Active Vision Dataset 

Active vision dataset simulates the movement of a robot in 

indoor environments with real imagery. The dataset contains 

9 independent indoor scenes. For example, you can find 

kitchen, living room, dining room, etc. in a single scene. It 

includes 20,000 + RGB-D images and 50,000 + 2D bounding 

boxes of object instances. The dataset is well organized and 

can be used to develop and benchmark active vision [14]. A 

typical robotic movement in the indoor environment 

simulated by the dataset is shown as Fig. 1. 

B. Training 

We use the idea of reinforcement learning to train our AOD 

network, and generate action at each time step.  

In the training process, we take 5 steps as a set of 

movements, thus we set number of total movements T to 5. 

In each step, we use the classifier to grade the object in the 

scene. If the object gets a score more than 0.8, we believe that 

the robot has moved to a good view and the actions generated 

by the AOD network is effective. Then we will give the 

network a positive reward signal to encourage it to adopt 

similar strategies and end the training of this instance. 

Otherwise, we give the AOD network historical scenes and 

actions in previous 3 steps and scene, bounding box of the 

object, action space in current step. And then we generate the 

action from the AOD network and move the robot to the next 

position. This process will continue until the object gets more 

than 0.9 or the time step meets T. If the scores of objects 

within T time steps are all less than 0.9, and the final score is 

higher than the initial score, we also give the network a 

positive reward signal. 

In the training process, we find that when the robot is in a 

position where the action space is limited, the AOD network 

will generate improper actions. For example, if robot is 

sandwiched between obstacles, left and right are improper 

actions. These actions will not change the view, thus the 

information would not be updated. According to [14], when 

the robot receives an improper action at time step t, it will 

stand still. In that case, the robot will use the information of 

time step t as the information of the next time step t+1. 

However, this makes robot trapped and induces invalid 

training. Considering such situation, we evaluate whether the 

action is legal or not then only perform the legal action. If the 

action is improper, one of the remaining actions which belong 

to {forward, left, right, backward, clockwise rotation, 

counter-clockwise rotation}is selected. This process will 

continue until the action is legal. And the forward is always 

the default selection. 

Reaching duplicate positions in the scene is inefficient and 

should be avoided. Therefore, we will record historical scenes 

during the training process. At any step within T = 5, if the 

robot reaches the same scene, the strategy is considered not 

efficient enough and the training of the current instance 

would be terminated. 

We build three splits for training and testing and perform 

experiments on the training and testing sets in each split. 

C. Experimental Results and Analysis 

In order to evaluate the effectiveness of our method, we 

compare it with the method in [14] and two baselines. We 

also explore the impact of different filling methods on the 

performance of the AOD network. Experiments are set as 

follows: 

• Forward: The robot takes forward action at each time 
step. 

• Random: The robot randomly takes an action from 
{forward, left, right, backward, clockwise rotation, 
counter-clockwise rotation} at each time step. 

• RM [14]: The policy is provided by the authors of the 
active vision dataset. 

• Ours1(A-Net1): It uses the AOD network in Fig. 2, 
but using zero to fill the blank in the input sequence 
when there is a lack of historical information. 

• Ours2(A-Net2): It uses the AOD network in Fig. 2 
with another filling method: We assume that a series 
of fictional actions make the robot be at current state. 
And these actions and corresponding scenes are used 
as the missing historical information. When we 
consider these series of actions here, we also prefer 
forward action. 

• Ours3: The method we declare in section III. 

 
(a)known scenes 

 
(b)unknown scenes 

Fig. 3. Success rate curves of different methods in known scenes and 

unknown scenes. It can be observed that success rate improves much more 

as the number of actions increases using our method, especially in unknown 

scenes. 

 

We use success rate (SR) and applied path length (APL) 

[15] to evaluate the efficiency of different methods: 

𝑆𝑅 =
|𝑁𝑠|

|𝑁|
                                      (8) 

where 𝑁𝑠 is a collection of successful detection task and N is 

a collection of all detection task. 
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𝐴𝑃𝐿 =
∑ 𝐿𝑖𝑖∈𝑁

|𝑁|
                                   (8) 

where 𝐿𝑖 denotes the path length of each detection task. In our 

experiment, we regard the detection task to be success when 

the classifier gets more than 0.8. And we set a limitation to 

time step T. If the robot does not finish the detection task 

within time step T, we set its applied path length to T. 

We evaluate each method on the test set, as shown in Table 

I. It can be seen that our method achieves a higher success 

rate, which is about 10% higher than the RM method. For 

three different filling methods, our method performs well on 

Home_003_1, Home_003_2, Home_014_1, and 

Home_014_2, and the average success rate is the best. 
 

TABLE I: SUCCESS RATE OF DIFFERENT METHODS IN TEST SCANS WHEN TIME STEP T=16 

T=16  Random Forward RM Ours1 Ours2 Ours3 

Split1 

Home_001_1 0.242 0.169 0.323 0.406 0.375 0.384 

Home_001_2 0.259 0.145 0.463 0.695 0.545 0.628 

Home_008_1 0.289 0.239 0.540 0.688 0.666 0.667 

Split2 

Home_003_1 0.284 0.178 0.379 0.475 0.477 0.489 

Home_003_2 0.267 0.163 0.403 0.446 0.459 0.520 

Office_001_1 0.249 0.174 0.332 0.332 0.339 0.334 

Split3 

Home_002_1 0.314 0.285 0.563 0.776 0.789 0.728 

Home_014_1 0.331 0.207 0.306 0.417 0.449 0.538 

Home_014_2 0.444 0.267 0.653 0.665 0.613 0.672 

avg  0.298 0.203 0.440 0.544 0.526 0.551 

 
TABLE II: THE AVERAGE APL AND AVERAGE SCORE OF DIFFERENT 

METHODS IN TRAINING AND TESTING SCANS WHEN TIME STEP T=10 

T=10 Known Scenes Unknown Scenes 

 APL Score APL Score 

Random 8.262 0.9278 8.333 0.9302 

Forward 8.135 0.9295 8.531 0.9306 

RM 6.252 0.9289 7.220 0.9319 

Ours1 5.847 0.9322 6.575 0.9294 

Ours2 5.826 0.9300 6.828 0.9339 

Ours3 5.810 0.9317 6.828 0.9350 

 

We also observe the change of success rate of each method 

as the number of actions increases. As is shown in Fig. 3(a) 

and Fig. 3(b), it can be observed that success rate improves 

much more as the number of actions increases using our 

method. Regardless of whether it is in a known scene or an 

unknown scene, the SR grows very fast in the first 8 time 

steps of AOD network. And it can finally reach a high value. 

For three different filling methods, AOD network1 performs 

better in known scenes, while our method performs better in 

unknown scenes. 

In order to evaluate the efficiency and quality of our 

method, we also observed the APL and score of each method. 

As shown in Table II, Our method (Ours3) can complete the 

AOD task with fewer steps while ensuring a high score of the 

classifier. 

Through all the above experiments, we can see that our 

model and method can achieve better success rate and higher 

efficiency on AOD tasks. 

 

V. CONCLUSION 

In this paper, we use historical information to improve the 

accuracy and efficiency of AOD task. We construct our AOD 

network based on CNN and LSTM. The AOD network can 

generate series of actions to achieve a best view according to 

historical actions, historical scenes and current scene. We 

also propose an effective training strategy to avoid trapping 

situations and repetitive actions. We evaluate AOD network 

on the Active Vision Dataset, the experiment results show 

that our method surpasses state-of-the-art methods in both 

accuracy and efficiency on AOD tasks. 
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