

Abstract—The problem of tag collision is the main problem

affecting the performance of RFID systems. Probabilistic tag

anti-collision algorithms have tag starvation and cannot

recognize some tags. This paper proposes a deterministic

query-tree algorithm, that is, a single-stack deep query-tree

RFID tag anti-collision algorithm, which successfully

implements tag anti-collision by generating new query code and

tag recognition. The algorithm uses the highest two collision bits

of the collision code to form four new query codes. The query

tree formed by the query code is a depth-first traversal

quad-tree. The algorithm introduces a single-stack storage

mechanism, and the query code uses a depth-first traversal

algorithm. In the entire tag recognition process, the structure of

the query code spanning tree was improved, and the degree of

the branch node was 4. This combination of depth-first

traversal and single-stack mechanism effectively shortened the

recognition time, saved memory space, and reduced the number

of tag collisions. And the algorithm is simple and easy to

implement. When the number of tags increases, the efficiency of

the algorithm will be more clearly reflected.

Index Terms—RFID, anti-collision algorithm, query tree,

single stack.

I. INTRODUCTION

RFID is an easy-to-operate, fast and practical automatic

identification technology [1]. A typical RFID system consists

of a reader and multiple low-cost and small-sized tags and

each tag corresponding to a unique identifier is attached to

the object. The reader realizes the automatic recognition of

the target object by reading the tag information [2]. If there

are multiple tags in the recognition range of the reader, and

these tags transmit information to the reader at the same time,

the reader will detect the conflict, which is called "collision",

which causes the tag recognition to fail. Due to the large

number of tags used in radio frequency identification, the

problem of tag collision has become a bottleneck that limits

the efficiency of RFID systems.

Commonly used RFID tag anti-collision algorithms are

divided into two categories; one is based on Aloha algorithm,

also known as probabilistic algorithm [3]. In the probabilistic

algorithm, because the number of free time slots and collision

time slots cannot be determined, some tags may not be

recognized due to tag starvation. Another algorithm is a

tree-based algorithm, also known as a deterministic

Manuscript received April 15, 2020; revised July 12, 2020.

Yanling Zhou is with College of Artificial Intelligence and Big Data,

HeFei University, HeFei, China (e-mail: zhouyanling1006@163.com).

Linshan Ma is with HeFei University Library, Hefei University, Hefei,

China (e-mail: lsmao@hfuu.edu.cn).

Thomas Clemen is with Deputy Dean of School of Computer Engineering,

Hamburg University of Applied Sciences, Germany (e-mail:

thomas.clemen@haw-hamburg.de).

algorithm [4], which can avoid starvation and ensure that

each label is accurately identified. However, because the

tree-based algorithm polls and traverses according to the

binary combination rule, the delay of reading tags is longer.

When the number of tags is large, the efficiency of the

algorithm will be significantly reduced. Therefore, the

tree-based anti-collision algorithm needs to group the IDs of

tags according to a certain length. When the packet length is 1,

it is a binary tree algorithm. When the packet length is 2, it is

a quad-tree algorithm. When the packet length is 3, it is the

octree algorithm.

Based on the query tree-based anti-collision algorithm, this

paper proposes a single-stack deep-query quad-tree RFID tag

anti-collision algorithm. By introducing a combination of

depth-first traversal and single-stack mechanism, the

identification time is effectively shortened and the memory

space is saved, the number of label collisions is reduced, and

the recognition efficiency is improved.

II. TAG ANTI-COLLISION ALGORITHM BASED ON

MULTI-FORK TREE

The first application in the RFID system is the binary tree

anti-collision algorithm. Its basic principle is: the reader

sends a one-bit query code Q (0 or 1 two kinds of tags, which

are equivalent to forming two subtrees, querying 0 subtree

first, and then querying 1 subtree). Each tag within the

response range of the reader judges whether its ID starts with

Q, and if so, transmits its ID to the reader. At this time, there

may be three situations: recognition (only one label starts

with Q), collision (two or more labels start with Q), and idle

(five labels start with Q) [5]. If a collision occurs, add 0 and 1

respectively to the previous query code to form two new

query codes (equivalent to splitting into left and right

subtrees). First the reader sends a new query code with 0 at

the end to the label and queries the left subtree; then sends a

new query code with 1 at the end to the label and query the

right subtree. If a collision occurs again during the query, the

above operation is repeated until all tags are successfully

identified [6]. In the tree-based RFID anti-collision algorithm,

in addition to the binary tree anti-collision algorithm, there is

also the quad-tree anti-collision algorithm. In the quad-tree

anti-collision algorithm, the label packet length is 2, and there

are four combinations of node codes. A tree with a branch of

4 is formed during the query process.

Currently, the query tree algorithm is the most commonly

used algorithm in deterministic algorithms. And based on the

query tree algorithm, there are many improved algorithms.

Literature [7] proposed a method to use Manchester coding to

find the specific collision position of the returned information

of the tag, and then change the prefix code of the query

Single-Stack Deep-Query Quad-Tree RFID Tag

Anti-collision Algorithm

Yanling Zhou, Linshan Ma, and Thomas Clemen

International Journal of Computer Theory and Engineering, Vol. 12, No. 6, December 2020

140DOI: 10.7763/IJCTE.2020.V12.1279

through the obtained collision position. The query speed of

this algorithm is relatively slow when the label is identified.

When the number is large or the length of the tag ID is

relatively long, the query efficiency of the algorithm

decreases rapidly. Literature [8] proposed a quad-tree query

tree algorithm, which can effectively reduce the number of

label collisions at the beginning of the query, but as the

number of labels in the branch decreases, a lot of idle time

will be generated during the query process. Search efficiency

has not been really improved. Literature [9] proposes a

pre-detection query tree anti-collision algorithm, in which the

tags to be identified are pre-processed, and the dynamic

binary algorithm is used to query the tags. The memory usage

also increases with the number of tags. As a result, queries

have increased, and the complexity of the algorithm is large,

so it is not used in actual scenarios. Reference [10] proposes a

hybrid query tree algorithm. Removing the prefix from each

matching prefix tag in the original query queue in the

algorithm, the delay time is determined by the number of 1 in

upper three bits and decides to respond to the reader. In some

cases, the algorithm can significantly increase the number of

tag collisions, thereby making the algorithm less feasible.

Literature [11] proposes an effective time-based

anti-collision algorithm, which uses a double query prefix

matching method; the purpose is to eliminate the idle time

slot in the traditional query tree algorithm. The query speed

increases due to the extension of the matching time of the

matching code. As the number of tags increases, the

complexity increases. Reference [12] proposes a hybrid

query tree anti-collision algorithm HQT, which combines the

advantages of dynamic binary query tree and quad query tree,

and dynamically selects the binary query tree and quad query

tree according to the label information returned by the tag. As

the number of tags increases, the memory usage also

increases significantly, and the complexity also increases

significantly.

The comparison between the quadtree anti-collision

algorithm and the binary tree anti-collision algorithm can be

found that in these two types of algorithms, the initial node

and the identification node are the same, but the difference is

the number of the collision node and the idle node. In the

quadtree anti-collision algorithm, there are fewer collision

nodes than the binary tree collision algorithm, but there are

more idle nodes. If the coding algorithm of the query code of

the quadtree can be improved to reduce the number of free

nodes, the recognition efficiency will be greatly improved. It

has proved that the quad-tree anti-collision algorithm works

best. Therefore, in order to optimize the algorithm and

improve the recognition efficiency, in addition to reducing

the number of collision nodes and idle nodes, it is also

necessary to consider the amount of memory space occupied

during the entire tag query process and the time used in the

query process. On the basis of comprehensively considering

the above problems, this paper proposes a new anti-collision

algorithm for RFID tags, namely: single-stack deep-query

quad-tree RFID tag anti-collision algorithm.

III. SINGLE-STACK DEEP-QUERY QUAD-TREE RFID TAG

ANTI-COLLISION ALGORITHM

The single-stack deep-query tree anti-collision algorithm

mainly uses a single stack to store the query code, and uses

the highest two collision bits of the collision code to form a

new query code, so that each time a collision code is

generated, four new query codes can be formed. Push the

query codes generated each time into the stack, and then pop

up a query code from the top of the stack as a new query code

to identify the tags in the RFID range. The query tree formed

by the query codes is a depth-first traversal quadtree. The

algorithm introduces a single-stack storage mechanism. The

query code uses a depth-first traversal mechanism. During

the entire tag recognition process, the structure of the query

code spanning tree is improved. The degree of the branch

node is 4. This combination of depth-first traversal and

single-stack mechanism can effectively shorten the

recognition time, save memory space and reduce the number

of label collisions. At the same time, the algorithm is simple,

easy to implement. In the case of an increase in the number of

labels, the efficiency of the algorithm will be more clearly

reflected by the query code. The algorithm is mainly divided

into two parts of the generation and label recognition.

A. Query Code Generation

There are many electronic tags to be identified in the RFID

identification area. The RFID reader needs to send an inquiry

code at a certain moment to inquire whether the electronic

tags within the identification range are responding. When two

or more electronic tags meet the condition of the query code

at the same time, a response signal will be sent to the RFID

reader at the same time, which will cause a collision.

According to the principle of Manchester encoding, when

multiple electronic tags send a response signal, the response

signal received by the RFID reader is a fuzzy response signal.

At this time, this fuzzy response signal is a collision code. Fig.

1 is an example of the collision code and the generated new

query code set. The code position represented by X in the

collision code is a fuzzy code position, which means that

when the RFID card reader receives the response signal, the

signal at this position is uncertain, that is, two cases of 0 and 1

occur at the same time. Six collision bits appear in the CC1

collision code in Fig. 1. At this time, RFID needs to send a

new query code. In this algorithm, the principle of generating

a new query code is to encode the highest two bits of the

collision bit, and all other collision bits are set to 1.

According to this principle, the new query codes generated

by the CC1 collision code at this time are four query codes

10001111, 10101111, 11001111, and 11101111. Similarly,

for the collision codes CC2 and CC3, the same principle is

used to generate a new query code. In the 10001111 query

code, 1000 is the matching code, and 1111 is the range code;

also in the query code 10100011 formed by the CC2 collision

code, 101000 is the matching code, and 11 is the range code.

Every time the RFID reader queries the tags within the

recognition range. In the query process, a certain query code

generates a collision code. At this time, the newly generated

collision code generates four new query codes again and the

new query codes are pressed onto the stack at the same time.

And then the top element of the stack is popped as the next

query code, and RFID reader continues to query the tags

within the RFID range. The following Fig. 2 is the

corresponding stack diagram after the collision code is

generated. In the query process of the RFID reader, three

International Journal of Computer Theory and Engineering, Vol. 12, No. 6, December 2020

141

collisions have been generated; each collision code generates

four new query codes that are pushed onto the stack, where

the contents of stack S vary with the collision code.

Fig. 1. Collision codes and the generated new query code set.

Fig. 2. The corresponding stack diagram after the collision code is generated.

B. Label Recognition

In this algorithm, the query code is mainly generated by

the highest two collision bits of the collision code, and the

newly generated query codes are pushed onto the stack.

When inquiring, at first it needs to judge whether the stack is

empty, if it is not empty, pop an element from the top of the

stack as a new query code to identify the label within the

recognition range. Fig. 3 is the change chart of the stack

during a certain RFID tag identification process. The seven

tags identified are T1, T2, T3, T4, T5, T6, and T7, and their

IDs are 10100011, 11001100, 10101001, 10101100,

10001101, 11001001, and 11101001, respectively.

Fig. 3. Changes in the stack during the entire recognition process.

It can be found from Fig. 3 that the maximum size of the

stack memory space used for identifying 7 electronic tags is 6

memory space sizes. With the increase of electronic tags in

the RFID identification range, the number of collisions also

increases, and the size of the used memory space also

increases, but no matter how the number of electronic tags

increases, the size of the stack memory space used in this

algorithm will always be less than the number of electronic

tags. Therefore, compared with other query tree algorithms,

this algorithm obviously saves memory space and improves

resource utilization in terms of saving memory space.

RFID reader identification of tags, first, the RFID reader

sends the query code. If the RFID reader receives the

response signal, it means that there is exactly one tag in the

recognition range that meets the query code condition, which

means that the tag recognition is successful. After the

recognition is successful, the tag enters the sleep state, and no

longer participates in the label recognition in this range. If the

received response signal is a fuzzy signal, it means that a tag

collision has occurred in this query, so a new collision code is

generated, and then the system generates four query codes

according to the upper two fuzzy bits of the collision code

and pushes the query codes onto the stack. Send the query

code and identification response signal again. The following

Fig. 4 is the Quad-query code tree.

Fig. 4. Quad-query code tree.

In the process of tag identification, electronic tags may be

in three states, namely active state, waiting state, and sleep

state.

C. Specific Identification Process

Assuming that there are 7 tags T1, T2, T3, T4, T5, T6, T7

to be identified within the response range of the reader, their

IDs are 10100011, 11001100, 10101001, 10101100,

10001101, 11001001, 11101001, defining the left side of the

ID is high. The identification process is shown in Table I

below.

TABLE I: LABEL IDENTIFICATION PROCESS DIAGRAM

After the identification of the seven tags within the RFID

identification range, 12 query codes have been generated

successively.

International Journal of Computer Theory and Engineering, Vol. 12, No. 6, December 2020

142

IV. PERFORMANCE ANALYSIS

In Fig. 4, the query code tree includes two types of nodes:

branch nodes and leaf nodes, where the branch nodes are the

query-code nodes when generating tag collisions during the

query process. Leaf nodes include two types of nodes: one is

a query code node that successfully identifies a tag in the

RFID range, and the other is a query code node that is empty

for query.

n4=n40+n44 (1)

Because the branch node and the leaf node have the

following relationship:

n40=4  n44-(n44-1)=3  n44+1 (2)

So:

n44=(n40-1)/3 (3)

Here n40 includes the sum of the number of successfully

queried nodes and the number of empty query nodes. The

number of collisions during the RFID querying process is

n44.

In a binary query tree, n20 represents the number of leaf

nodes, that is, the number of nodes with a degree of 0, n22

represents the number of branch nodes, that is, the number of

nodes with a degree of 2, and n2 represents the total number

of nodes in the query tree Quantity, then there is the

following relationship:

n2=n20+n22 (4)

n22=n20-1 (5)

Therefore, the number of branch nodes is basically equal to

the number of leaf nodes. The branch nodes represent the

number of generating collisions during the RFID query

process. Therefore, in the binary query tree, the number of

generating collisions during the RFID querying process is

n22.

In the traditional binary query tree and quadruple query

tree, there is the same problem, that is, there are many empty

queries. In a traditional quad query tree, the number of empty

queries is almost greater than the number of query nodes.

Therefore, the number of tags identified in the RFID range is

n0. In the quad-query tree algorithm, the number of leaf

nodes is greater than 2  n0. Therefore, the number of branch

nodes n2 + n4 is approximately n0 / 2.

In the hybrid query tree algorithm, the query tree includes

two types of nodes: branch nodes and leaf nodes, where the

branch nodes are query code nodes that generate tag

collisions during the query process. The branch nodes include

two types: the degree of one node is 2, the degree of another

node is 4; leaf nodes also include two types of nodes: one is a

query code node that successfully identifies a tag within the

RFID range, and the other is a query code node that has an

empty query type. Suppose that in the hybrid query tree, n0

represents the number of leaf nodes, n02 is the number of leaf

nodes generated by the node with branch 2, and n04 is the

number of leaf nodes generated with the node with branch 4.

n02 + n04 is the total number of leaf nodes with degree 0, n2

represents the number of branch nodes with degree 2, n4

represents the number of branch nodes with degree 4, n

represents the total number of nodes in the query tree, and

thus exists the following relationship:

n4=(n04-1)/3 (6)

n2=n02-1 (7)

n2+n4=(n04+3  n02-4)/3 (8)

In the hybrid tree algorithm, the number of nodes with

degree 2 is basically the same as the number of nodes with

degree 4, so formula (8) can be approximated as:

n2+n4=(2  n0-4)/3 (9)

In the hybrid tree query algorithm, the number of branch

nodes represents the number of collisions generated during

the RFID query process, so in the hybrid tree query algorithm,

the number of collisions generated during the RFID query

process is n2 + n4.

As the number of tags in the RFID identification range

increases, the number of n0 also increases. With the increase

of identification tags, the number of empty queries generated

by the three algorithms of the binary tree query algorithm, the

binary tree algorithm is the fastest increase. The quadtree and

hybrid tree query tree algorithms is relatively slow, so the

number of n0 in the quadtree query tree algorithm and the

hybrid tree query algorithm are relatively consistent.

Fig. 5 is a relationship diagram between the number of

identification tags and the number of collisions, where C2

represents the number of collisions generated by the

traditional binary query tree algorithm, C2 + 4 represents the

number of collisions generated by the traditional quad query

tree algorithm, and C4 represents the number of collisions

generated by the single-stack deep query tree anti-collision

algorithm, C24 represents the number of collisions generated

by the hybrid tree query algorithm. In the case of the same

number of identified tags, the value of C4 is the smallest, the

value of C2 is the largest, C24 is smaller than C2, and the

number of collisions generated by C2 + 4 and C24 is

equivalent, which is larger than C4. Therefore, the algorithm

in this paper can reduce the number of collisions compared

with traditional algorithms. At the same time, the size of the

stack memory space used in this algorithm is always smaller

than the number of RFID identification tags. Therefore,

compared with other query tree algorithms, the number of

collisions is significantly reduced. In terms of saving memory

space, this algorithm significantly saves memory space and

improves resource utilization.

Fig. 5. Relation between tags number and collision number.

V. CONCLUSION

In the single-stack deep-query tree anti-collision algorithm,

International Journal of Computer Theory and Engineering, Vol. 12, No. 6, December 2020

143

the occupation of memory space is mainly affected by the

number of query codes, and the number of query codes is

affected by the number of collisions. The more the number of

collisions, the greater the number of query codes generated. It

can be seen from the analysis that the number of collisions of

the traditional binary query tree is twice that of the traditional

quadrature query tree. However, the traditional binary query

tree generates two query codes during a collision, while the

traditional quad query tree generates four query codes during

a collision. Therefore, there is no obvious improvement in the

size of the memory space occupied. The single-stack deep

query tree anti-collision algorithm proposed in this paper, by

encoding the highest two bits of the collision code to form

four new query codes, all other collision bits are

complemented by 1, so that the number of the query code

formed by each collision is four. Through simulation analysis,

the algorithm can be compared with the traditional binary

query tree, quad query tree, and hybrid query tree algorithm,

which greatly reduces the number of collisions. Therefore,

the use of the memory space is also significantly reduced. At

the same time, the algorithm proposed in this paper is simple

and easy to implement. With the increase in the number of

electronic tags in the RFID range, the advantages of the

algorithm proposed in this paper can be more clearly

reflected.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Yanling Zhou and Prof. Thomas Clemen conducted the

research; Linshan Ma analyzed the data; Yanling Zhou wrote

the paper; all authors had approved the final version.

ACKNOWLEDGMENT

This paper is supported by the Excellent Talents Training

Funded Project of Universities of Anhui Province (No.

gxgwfx2019065), Teaching Research Project of Hefei

University (No. 2018hfjyxm52), Provincial Humanities and

Social Science Research Project of Anhui Colleges

(No.SK2018A0605) and Provincial Large-Scale Online

Open Course (MOOC) Demonstration Project

(No.2019mooc270).

REFERENCES

[1] J. F. Shan, M. Chen, and J. B. Xie, “Study on RFID anti-collision

technology based on ALOHA algorithm,” Journal of Nanjing

University of Posts and Telecommunications: Natural Science Edition,

vol. 33, pp. 56-61, 2013.

[2] R. Want, “An introduction to RFID technology,” IEEE Pervasive

Computing, vol. 5, pp. 25-33, 2006.

[3] L. Duan, X. Zhang, Z. Wang, and F. Duan, “A feasible

segment-by-segment aloha algorithm for RFID systems,” Wireless

Personal Communications, vol. 96, pp. 2633-2649, 2017.

[4] J. Su, G. Wen, and D. Hong, “A new RFID anti-collision algorithm

based on the Q-ary search scheme,” Chinese Journal of Electronics,

vol. 24, pp.679-683, 2015.

[5] J. D. Shin and S. S. Yeo, “Hybrid tag anti-collision algorithms in RFID

systems,” in Proc. ICCS 2007, China: Beijing, 2007, pp. 693-700.

[6] K. H. Yeh and N. W. Lo, “An efficient tree-based tag identification

protocol for RFID systems,” in Proc. 22nd International Conference

on Advanced Information Networking and Applications, Japan:

Okijawa, 2008, pp. 966-970.

[7] J. X. Wu, A. Jiang, and Q. Y. Huang, “Improvement of the

binary-searching-based anti-collision algorithm of RFID systems,”

Journal of Hunan University: Natural Science Edition, vol. 37, pp.

82-86, 2010.

[8] R, Jayadi, Y. C. Lai, and C. C. Lin, “Efficient time-oriented

anti-collision protocol for RFID tag identification,” Computer

Communication, vol. 112, pp. 141-153, 2017.

[9] L. H. Zhu, H. Li, and L. Y. Chen, “Improved pre-detection query tree

anti-collision algorithm in RFID system,” Computer Engineering and

Design, vol. 35, pp. 4040-4043, 2014.

[10] Q. Zhou and M. Cai, “Improved binary query tree algorithm for

anti-collision of RFID tags,” Computer Engineering and Design, vol.

33, pp. 209-213, 2012.

[11] C. H. Li, J. Sun, K. X. Liu, Y. Han, and H. J. Li, “Performance analysis

and research of anti-collision algorithm based on query tree,” Acta

Electronica Sinica, vol. 46, pp. 2671-2678, 2018.

[12] W. Jiang, H. X. Yang, and J. Zhang, “An improved binary query tree

algorithm for tags anti-collision in RFID,” Computer Technology and

Development, vol. 25, pp. 86-89, 2015.

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Yanling Zhou received the B.S. degree in computer

application technology from Liaocheng University,

Liaocheng, China, in 2002, the M.S. degree in

computer application technology from Northeast

Dianli University, Jilin, China, in 2005 and the Ph.D.

degree in control theory and control engineering from

Donghua University, Shanghai, China, in 2010.

From 2010 to now, she is an associate professor of

artificial intelligence and big data at Hefei University.

She mainly engaged in research on the Internet of

Things and big data processing. In recent years, she has guided students to

achieve excellent results in the Internet of Things competition. And she has

published nearly ten papers on the Internet of Things and big data

processing.

Linshan Ma received the B.S. degree in information

management from Lanzhou University, Lanzhou

China, in 1998 and the M.S. degree in science and

technology intelligence software engineering from the

School of Software, University of Science and

Technology, Hefei, China, in 2008. From 1998 to now,

he has been working at Hefei College. He is mainly

engaged in research on computer technology in library

applications, web-based information services, reader

information literacy development, and data analysis

and visualization. And he has published nearly ten papers on the Internet of

Things and big data processing.

Thomas Clemen holds a position as a full professor at

the University of Applied Sciences in Hamburg,

Germany. His teaching activities predominantly cover

topics within information management and data

science, whereas he is focusing on modeling and

simulation of dynamic, complex and self-organizing

systems in his interdisciplinary research.

Author’s formal

photo

Author’s formal

photo

Author’s formal

photo

International Journal of Computer Theory and Engineering, Vol. 12, No. 6, December 2020

144

https://creativecommons.org/licenses/by/4.0/

	1279-T0005

