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Abstract—The Bias and Raising Threshold (BRT) algorithm 

is one of the methods for the best-of-n problem (BSTn) that 

allows a group of robots to find out the appropriate collective 

option among a set of n alternatives. This paper improves the 

BRT algorithm by using multiple voting for shortening the 

search time. Concretely, each robot is considered that might be 

able to vote multiple times in a selection. The experimental 

results revealed that the search time was only dramatically 

reduced but also the search accuracy was improved, especially 

in difficult problems where there are a large number of options 

(   ). 

 
Index Terms—BRT algorithm, multiple voting, the best-of-n 

problem, complex systems, collective intelligence, group 

decision-making.  

 

I. INTRODUCTION 

The best-of-n problem (BSTn) is an important issue for 

several robotics scenario focuses on the question of how a 

group of robots achieves the optimal choice from among a set 

of n options without a leader [1]. While BSTn problem has 

been studied for almost two decades, nearly all previous 

works focused on the best-of-2 problems, such as 

prey-hunting [2], double-bridge scenario [3], [4] or binary 

aggregation scenario [5]-[7]. These methods might be 

sufficient for determining the direction of robots at 

Gridworld but not able for the decision-making in a complex 

environment, such as drones flying in three-dimensional 

space. To tackle this problem, the research on how can deal 

with a large number of options (   ) has been extensively 

studied in recent years. For example, in works inspired by the 

nest-site selection of honeybees [8]-[10], robots can make an 

agreement with correct option among multiple options. 

However, the number of options that can be dealt with is 

limited and there are cases where the proportion of the correct 

choices is only about 70%. Hence, it is difficult to increase 

the number of options using exiting methods. 

To this problem, we have proposed Bias and Raising 

Threshold (BRT) algorithm that enables robots to deal with a 

large number of options in a trial and error manner by 

introducing a threshold term, that its value increases by the 

time elapsed, into individual’ decision-making process [11]. 

Each robot changes its option by monitoring the number of 

supporters of its recurrent option. Robots keep voting until all 

members make an agreement with the appropriate option. 

Therefore, the BRT algorithm is potentially effective in 
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maintaining the homeostasis of groups and finding out the 

appropriate option with very high accuracy. However, the 

experimental results showed that it sometimes takes a large 

amount of time to find out the best option. This is inefficient 

in the cases where the search time is limited or a short time is 

desirable. 

In this paper, we propose an extension of BRT algorithm to 

solve this problem by using multiple voting instead of a 

single vote in the original BRT algorithm. The multiple 

voting (which is also known as plural voting) is the practice 

whereby one person might be able to vote multiple times in 

an election. And it is recommended that the multiple voting 

produces better political consequences than “one person, one 

vote” democracy in [12] by J. S. Mill. 

Inspired by voting systems (electoral systems), various 

works have been studied in the context of robotics and 

opinion dynamics. One of the simplest mechanisms is voter 

model that leads to particularly accurate collective decisions 

but has long decision times [13]. Majority rule is also a 

popular model that allows a group of robots to reach 

consensus faster than the voter model but also less accurate 

[14], [15]. Recently, the  -unanimity rule has been proposed 

by Scheidler et al. [4] and its performance is a compromise 

between that of the voter model and that of the majority rules 

[16]. In the present paper, we provide a decision-making 

algorithm that enables a group of robots to find very quickly 

the best option with very high accuracy. 

The rest of the present paper is organized as follows. In 

Section II, we will present Iwanaga and Namatame model, 

which inspired this work, and original BRT algorithm. In 

Section III, we will describe our proposed method and then, 

in Section IV, we will present our experimental results. 

Finally, in Section V, we will present the conclusions. 

 

II. RELATED WORKS 

A. Iwanaga and Namatame Model [17] 

 

 
Fig. 1. The role of social skin in individual decision-making [17].  

 

BRT algorithm is inspired by Iwanaga and Namatame 

model [17] in which a group of agents rapidly becomes 

bipolar: Agree or Disagree. Firstly, we explain Iwanaga and 
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Namatame model. 

They got inspiration from Schelling's critical mass 

research [18]. As shown in Fig. 1, they stated that individual 

decision-making does not only depend on personal 

philosophy and personal preferences, but also on the 

atmosphere of the whole group ( ( )). Each individual shall 

take the position of agreeing or disagreeing with an opinion 

and has a personal attribute bias value (Fig. 1A), which is 

used in this decision-making process (Fig. 1C). Each 

individual observes the ratio of agreed members to the 

opinion  ( ) (Fig. 1B). 

 

( ) :

( ) :

i

i

p t Agree

p t Opposite










 
 

(1) 

 

As shown in (1), an individual   agrees with an option if 

the percentage of agents who agree with this option  ( ) (the 

agreement ratio) is higher than the bias value    at time  . 
After all individuals made their decisions, the agreement ratio 

 (   ) at time (   ) changes (Fig. 1D), so the individual 

makes its decision again (Fig. 1C). 

 

 
Fig. 2. An example of bias distribution [17]. 

 

 
Fig. 3. Cumulative distribution function and Equilibrium point of collective 

consensus decision 

(      are stable points,    is unstable point [17]). 

 

Iwanaga and Namatame proposed a method to analyze the 

dynamics of the agreement ratio  ( ) in this decision-making 

process. If the distribution of   is determined as shown in Fig. 

2, the cumulative distribution function  ( )  forms an 

S-shaped curve as shown in Fig. 3. If the agent makes a 

decision according to (1), the ratio  ( ) at the time   follows 

the following equation: 

 

( ) ( )
i

iF n
 

 


  (2) 

 

    1p t F p t   (3) 

 

 * *p F p  (4) 

 

The solutions of the above equation are called fixed points. 

There are two types of fixed points: a stable point and 2 

unstable points. If the bias value    is distributed in a bell 

shape as shown in Fig. 2, one unstable point (  ) and two 

stable points (       ) are generated in the cumulative 

distribution function, and all members smoothly move their 

opinions to ultimately agree or disagree (Fig. 3). 

 

B. BRT Algorithm [11] 

We have extended Iwanaga and Namatame model to the 

best-of-n case with    . To avoid confusion, the number of 

options is written as   instead of   in following.  

We assumed that there is a group of   agents   *     

     +. They have to find out the best option       among a 

set of   options   *          + (       ) but they 

don’t know that whether their current options are the best one 

until they archive agreement state where all members choice 

the same option. Here, we assumed that there is only one the 

best option.   ( )    is the option of agent    at time  . 

 (  ) represents the number of agents selecting option   . 

The agent    has a bias    represent his personal preference 

(      ). 

The agent    decides his next time option   (   )  at 

time   as follows. If 

 

  
   ,

i

i i i last

n A t
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N
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(5) 

 

is satisfied, he will keep selecting the current option, i.e. 

  (   )    ( ). Otherwise, he will stochastically select 

another option, i.e.   (   )      ( ). Here, we define   is 

a constant representing the prediction rate of the increase in 

number of supporters. In addition,         is the time at which 

the agent    last changed its option, and (         ) is the 

time span that the same option continues to be selected.  
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(6) 

 

  ( ) is a function that is equal to 0 or 1 depending on the 

follows: 
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(7) 

 

If the ratio of agents who select the same option as theirs is 

lower than        ( )  (         ) , the agent 

stochastically selects another option. The second term on the 

right side of (5) is a term with increasing value by the time 

elapsed. 
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III. THE PROPOSED METHOD 

A. BRT Algorithm Using Multiple Voting 

Here, we extend BRT algorithm by using multiple voting 

instead of single vote. We call this BRT algorithm  -BRT 

with   is the number of votes that each agent uses to vote at 

each time step (     ).  

We assume that agent    has   votes for   options and 

votes   times at each time step. In original BRT algorithm, 

since each agent only has a single vote, we adopted only one 

bias for each agent's decision-making. In the proposed 

method, since each agent votes to different   options in each 

time step, different biases should be used for different options. 

Concretely, the agent    has   biases    *           

     +  (               ) for   options. At       

voting,    ( )    is the option voted by agent    and the 

bias related to    ( ):    ( )     at time step   (       ). 

The agent    decides his next time      -option    (   ) 
as follows. If 

 

  
   ,

il

il il il last
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N
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(8) 

 

is satisfied, he will keep selecting the current      -option, i.e. 

   (   )     ( ). Otherwise, he will stochastically select 

another option, i.e.    (   )       ( ) . Similar to the 

original BRT algorithm,   is a constant representing the 

prediction rate of the increase in number of supporters.          

is the time at which the agent    last changed his      -option, 

and (          )  is the time span that the same option 

continues to be selected. 
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(9) 

 

   ( ) is a function that is equal to 0 or 1 depending on the 

follows: 
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(10) 

 

In other words, in any of  -voting, if all members vote to 

      then    ( ) becomes 0 and the decision-making process 

finishes successfully. 

B. Distribution of Bias 

In this paper, we adopt the bias generating method using a 

quadratic function proposed in [19]. Concretely, the bias     

is sampled from the following distribution: 
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(11) 

 

 

where   is the number of agents,  (   )  represents the 

number of agents taking    ,       is the expectation of 

the distribution, and   
   

 
 is a normalization term. Thus, 

we derive following equation: 

 

 
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(12) 

 

 
Fig. 4. Examples of distributions of bias [19]. 

 

Fig. 4 illustrates some examples of the distributions of bias 

determined by (11). As can be seen, the shape of the bias 

distribution is a peak determined by the number of options   

only. 

C. Dynamics of the Decision-Making Process 

Here, by the computer simulations, we show an example of 

the dynamics of the best option searching process. The 

parameters were set as follows:                 
                  . At the initial time, assume that all 

agents randomly select 2 options and vote for them. 

Fig. 5 and Fig. 6 show the transition of the number agent 

voting for each option in     and     voting process, 

respectively. The horizontal axis represents time and the 

vertical axis represents the number of agents selecting each 

option. As can be seen, in both voting processes, all agents 

rapidly reach the agreement state and change the collective 

option if it is not the best option. At time step round 1050, 

while the best option has not been found out in   voting, in   all 

agents collectively select the best option after 5 agreement 

times. This result shows that a group of agents can rapidly 

make the collective decision and find out the best option 

using the proposed method. By emerging a trial and error 

process at the macro level, our proposed method is not only 

efficient in the case of difficult problems where there are a 

large number of options but also in the case of dynamic 

environment where the environment and tasks frequently 

change. 

 

 
Fig. 5. The transition of number agents selecting each option in      voting. 
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Fig. 6. The transition of number agents selecting each option in      voting. 

                                

 

D. Analytical Model 

In the following, we analytically study the dynamics of the 

proposed model. 

 
TABLE I: PROBABILITY TO FIND OUT THE BEST OPTION AT AN AGREEMENT 

STATE 

Number of 

agreements 
Original BRT algorithm k-BRT algorithm 
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While in the original BRT algorithm, at the first agreement, 

the probability of finding the best option       is  ( )  

   , in the proposed method, this probability is  ( )  
   (   ) 

  
. Table I shows the probability to find out the best 

option at an agreement state. Therefore, the probability at the  

    agreement generally is 
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Thus,  
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So, we obtain 
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(15) 

 

Fig. 7 shows the distribution of the number of agreements 

required to find out the best option. As can be seen, since 

these distributions are exponential distributions, small 

number of agreements has a higher probability to find out the 

best option than the large one. In addition, the bigger   is, the 

smaller the variance and expected value of the distribution 

becomes. In other words, by using multiple voting, it can be 

expected to dramatically reduce the time required to find out 

the best option and improve the performance of the 

decision-making process. 

 

 
Fig. 7. The distribution of the number of agreements required to find out the 

best option. 

 

Next, in order to quantitatively evaluate the advantages of 

the proposed method, we estimate the average times required   

to find out the best option. As can be seen in Fig. 5 and Fig. 6, 

the estimating equation must be as follows: 

 

DT E T   (16) 

 

where  ̅ is the average times of agreement required and    is 

the time required for one agreement. 

Firstly, we obtain the average times of agreement  ̅  as 

follows: 
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As known that 
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So, we obtain 
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Secondly, in [19], the time required for one agreement    

has been estimated as follows: 
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Therefore, the average times required  ̅ to find out the best 

option will be 
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Fig. 8. Estimation of the average time required to find out the best option 

based on (22) in the case of         . 

 

Fig. 8 shows an estimation of the average time required to 

find out the best option based on (2) in the case of        . 

As can be seen, the required average time increases according 

to a linear function of the number of options   in both of 

original BRT algorithm and the proposed method. Moreover, 

the slope of the linear function in the proposed method is 

smaller than it is in original BRT algorithm, i.e. the average 

time required to find out the best option will be reduced by 

using the proposed method dramatically. 

 

IV. EXPERIMENTAL RESULTS 

In order to highlight the effectiveness of the proposed 

method, we will show the results of simulations in search 

accuracy and search time.  

In all simulations, we assume that all agents randomly 

select their   options in initial time and finish the simulation 

if all agents collectively find out the best option in any voting. 

 

A. Improvement of Search Accuracy 

Firstly, we set that                    and do 

1000 runs for each following case: original BRT algorithm, 

the proposed method with     (2-BRT) and     

(3-BRT). We count the number of simulations where the best 

option (          ) was found out and measure the time 

elapsed. Success ratio    is the proportion of          in 

1000 runs: 

 

1000

successn
SR    

(23) 

 

Fig. 9 shows the cumulative distribution of success ratio of 

the discovery. The horizontal axis represents the time elapsed, 

the vertical axis represents the cumulative distributions of the 

success ratio. We can see that, when the time is sufficient 

(more than 30000 steps), all models show very high success 

ratios. However, although the original BRT shows very high 

accuracy in long time run, the proposed method shows much 

higher accuracy than the original BRT does in short time run. 

For example, within 5000 steps, while with the original BRT 

algorithm there is only 50  simulations where all agents can 

find out the best option, with the proposed method the 

success ratios are about 74  (2-BRT) and 83  (3-BRT). 

 

 
Fig. 9. Cumulative distribution of success ratio of the discovery in 1000 runs. 

                  . 

 

From the above, we observe that using the proposed 

method a group of agents can collectively find out the best 

option among multiple alternatives in very high accuracy 

even when there is a little time. 

B. Improvement of Search Time 

 

 
Fig. 10. Distributions of the time required to find out the best option in (a) 

original BRT model, the proposed method with (b)     and (c)     over 

1000 runs.                   . 
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Here, we focus on clarifying the improvement of search 

time in the proposed method. 

Firstly, in Fig. 10, we show the distributions of the time 

required to find out the best option over 1000 runs in the 

cases of the original BRT algorithm, the proposed method: 

2-BRT and 3-BRT. The horizontal axis represents the time 

step and the vertical axis represents its frequency. The 

experimental result is represented by blue bar, the estimated 

value using (15) is represented by red line. 

From Fig. 10 we can see that, the estimation of (15) fits 

well in all of 3 cases: the distribution of the time required to 

find out the best option is an exponential distribution. While 

the distribution in the case of the original BRT algorithm (Fig. 

10(a)) is highly right-skewed and it takes over 40000 steps 

for a few runs, in the case of the proposed method, the 

distribution is more highly right-skewed without over 40000 

step-run (Fig. 10(b) and (c)). Overall, compared with the 

results of the original BRT algorithm, the variation of time 

required to find out the best option using the proposed 

method 2-BRT is smaller and the smallest is 3-BRT. 

 

 
Fig. 11. Average time required to find out the best option in 1000 runs across 

different number of options  .              . 

 

Next, we do the same simulation as above with different 

the number of options   and investigate time required to find 

out the best option with each value of  . The result is shown 

in Fig. 11. The horizontal axis represents the number of 

options  , the vertical axis represents the average time and 

dotted line represents the estimated value using (22). The 

estimation of (22) fits well in all of 3 cases: the average time 

required to find out the best option is nearly proportional to 

the number of options. Overall, compared with the original 

BRT algorithm, it is about 2 and 3 times faster with 2-BRT 

and 3-BRT in any value of  . 

Finally, we observe that the proposed method does not 

only allow a group of agents to find out the best option among 

a large number of options faster than the original BRT 

algorithm but also dramatically reduce the variation of the 

time required. 

 

V. CONCLUSION 

To improve the search capability of BRT algorithm, this 

paper proposed the additional improvement for the BRT 

algorithm using multiple votes that each agent votes in each 

time step. The experimental results show that the proposed 

method allows a group of agents to solve the best-of-n 

problem faster with higher accuracy than the original BRT 

could do. This does not only improve the search capability 

but also the applicability in the case of time-limited dynamic 

environments. 
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