

Abstract—With the advances in IT technology and the rapid

adoption of smart devices, users can more easily produce,

distribute and consume data through network access anytime,

anywhere. The data generated by users in response to these

changes has increased dramatically. This has required

companies to collect large amounts of logs, and these companies

are actively researching and developing big data collection

technologies. In this paper, we have studied the big data

collection technology based on Apache Flume for bulk log

collection. The structure for bulk log processing is designed to be

matched with one web server and one Flume agent, and the

Flume agents connected to the web server are connected to the

Flume agent that plays the role of storing in the Hadoop

distributed file system. This makes the collection of big data logs

more efficient.

Index Terms—Big data, big data collection technology,

Apache Flume, Apache Chukwa, hadoop distributed file system.

I. INTRODUCTION

In recent years, the term Big Data has emerged to describe

a new paradigm for data applications. New technologies tend

to emerge with a lot of hype, but it can take some time to tell

what is new and different. While Big Data has been defined in

a myriad of ways, the heart of the Big Data paradigm is that is

too big (volume), arrives too fast (velocity), changes too fast

(variability), contains too much noise (veracity), or is too

diverse (variety) to be processed within a local computing

structure using traditional approaches and techniques. The

technologies being introduced to support this paradigm have a

wide variety of interfaces making it difficult to construct tools

and applications that integrate data from multiple Big Data

sources. This report identifies potential areas for

standardization within the Big Data technology space [1].

Big data collection is a step of collecting information

received from source data. Source data is divided into internal

data and external data according to the source location.

Internal data refers to information stored in a company's

information system, DB and object Internet equipment.

External data is data that is not owned by an organization, and

it means information such as news, blogs, Facebook, Twitter,

etc., as social media data.

As IT technology develops, internal data and external data

are increasing rapidly.

This has required companies to collect large amounts of

Manuscript received March 22, 2018; revised June 8, 2018.

Sooyong Jung and Yongtae Shin are with Dept. of Computer Science

Graduate School, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul,

Korea (06978) (e-mail: kevinhaha777@gmail.com,

sooyong.jung@gmail.com, shin@ssu.ac.kr).

logs, and these companies are actively researching and

developing big data collection technologies. In this paper, we

have studied the big data collection technology based on

Apache Flume for bulk log collection. The composition of

this paper is as follows. In Section 2, we will look at the big

data collection technologies Flume and Chukwa. In Section 3,

we present a structure for mass log processing proposed in

this paper. Finally, Section 4 presents conclusions and future

work.

II. BIG DATA COLLECTION TECHNOLOGY

A. Apache Flum

Flume has a dictionary meaning such as artificial water,

water channel, etc. It is a big data collection technology that

collects the logs that are loaded on a server providing several

services to one log collection server. Flume is based on

stream-oriented data flow, which collects logs from all

specified servers and loads them on central storage, such as

Hadoop's Hadoop distributed file system. Flume is suitable

for building a Hadoop-based Big Data Analysis System [2].

Flume's core objectives are system reliability, scalability,

manageability, and extensibility, designed to meet these four

core objectives. (Table I) provides a description of Flume's

core objectives.

TABLE I: FLUME'S CORE OBJECTIVES

Core Objectives Explanation

System Reliability
Ability to transmit without loss of log in case of

failure

System Scalability Easy-System to add and remove agents.

Manageability Combined structure makes it easy to manage

Feature Extensibility Easily add new features

Based on the core goals above, Flume easily addresses

some of the most challenging issues of large scale distributed

systems, such as physical failure of equipment, network

bandwidth, resource shortage such as memory, software down,

CPU usage overflow etc. , And the log can be continuously

collected even if one of the various components of the system

goes down [2].

Flume's data flow is based on stream-oriented data flow. A

data flow is a method in which one data stream is transferred

from a generation point to a destination point and processed.

The data flow consists of a series of nodes that transmit and

collect events. Fig. 1 shows the data flow of Flume [2].

As shown in Fig. 1 the data flow can be expressed in three

layers as Agent Tier, Collector Tier and Storage Tier as

shown in Fig. 2. Fig. 2 shows the Flume hierarchy [2].

Study of the Big Data Collection Scheme Based Apache

Flume for Log Collection

Sooyong Jung and Yongtae Shin

97

International Journal of Computer Theory and Engineering, Vol. 10, No. 3, June 2018

DOI: 10.7763/IJCTE.2018.V10.1206

Fig. 1. Flume's data flow.

Fig. 2. Flume's data flow.

The agent tier is an area composed of each agent node. In

the agent tier, each agent node is installed in the equipment

where log data to be collected is generated. When there are

several devices that generate data, agent installation installs

agent nodes for each equipment, and these agent nodes form

an agent tier [2].

The collector tier is an area for collecting information

received from the agent node. The data collected by the agent

node is transferred to the collector node. Collector nodes are

usually on different machines and can be configured with

multiple collector nodes. When data is transferred from an

agent node to a collector node, a data flow can be set up such

as which data is to be sent and where to be processed, and the

data is moved and stored in the storage tier according to the

setting [2].

The storage tier consists of a master node that manages

settings for agent nodes and collector nodes, and a Hadoop

distributed file system where data is stored. The main role of

the master node sets up this data flow. In other words, the

master node can set each logical node through the program,

and this role is one of the great advantages of Flume. The

Flume can be freely changed through the master node even

when each node is running. This means that you can

dynamically keep track of where you want to get log data, how

to process it, and where to store it [2].

A node can be divided into a physical node and a logical

node. The Physical Node is a Java process running in the Java

virtual machine environment installed on the machine. A

physical node operates the same as a logical node, but a

plurality of logical nodes can be created on a physical node.

Therefore, you can create various Logical Nodes to configure

the data flow according to the required application. Each

Logical Node (including agent nodes and collector nodes)

follows a fairly flexible abstraction model.

Flume consists of an architecture in which the reliability of

the system is maintained or increased even if additional nodes

are installed. In this case, if the data flows are horizontally

extended, the load increases for each layer due to the

increased number of nodes, which may cause a problem in the

overall throughput. However, Flume can add additional

equipment to the system itself, which can be adjusted so that

the overall performance is not compromised by distributing

the load for each layer. [2].

Therefore, Flume guarantees reliability not only for

horizontal extension but also for data transmission. Flume

ensures End-to-End reliability, Store on Failure reliability and

Best-Effort reliability. End-to-End reliability means that

when the Flume receives an event, it ensures data processing

to the end point. Store on failure reliability refers to

architectural support that allows data to be stored and

retransmitted on the local disk in the event of a failure, or to

wait until another collector node is selected before

resubmitting. Best-Effort reliability indicates that reliability

may be reduced due to lost data in the sense that the data being

processed may be lost when it fails [2].

Depending on the characteristics and hierarchical structure

of the flume, the flume can be implemented by various

architectural models by the user. Typical architecture of

Flume is Hadoop distributed file system direct link structure,

single plum agent linkage structure, multi-flume agent linkage

structure, and bulk log processing structure [2].

1) Hadoop distributed file system direct link structure

The Hadoop distributed file system direct link structure is a

structure that connects directly to the Hadoop distributed file

system to collect logs of web servers. Hadoop Distributed File

System Directly linked structure requires complex code usage

and continuous management for each server to work with

Hadoop distributed file system. Therefore, Hadoop

distributed file system direct linkage structure is not suitable

in terms of maintenance cost or scalability. Fig. 3 represents

the Hadoop distributed file system direct linkage structure.

[2].

Fig. 3. Hadoop distributed file system direct linkage structure.

Fig. 4. Single flume agent linkage structure.

2) Single flume agent linkage structure

A single Flume Agent linkage structure delegates the log

collection authority to one Flume Agent (Flume Agent) so

98

International Journal of Computer Theory and Engineering, Vol. 10, No. 3, June 2018

that each Web Server can provide faster service to its

customers. One Flume agent collects logs from a web server,

and if a Flume agent fails, it cannot collect logs from all web

servers. Also, since all log transfers are concentrated in Flume

agents, they are not suitable for large-scale systems. Fig. 4

shows the structure of the single flume agent linkage. [2].

3) Multi-flume agent linkage structure

Multi-flume agent linkage structure is similar to linkage

structure of single Flume agent. The difference is that log

collection is performed using multiple Flume agents.

Therefore, the multi-flume agent linkage structure can

guarantee availability with minimum investment cost in case

of failure. Even if the Flume agent is stopped due to a fault,

the multi-Flume agent linkage structure can continue log

collection through other Flume agent, thus ensuring service

continuity. Multi-Flume Agent linkage structure can be

applied according to situation such as fail over for failure

response and load balancing function for distributing log

event information. Fig. 5 shows the multi-Flume agent linkage

structure [2].

Fig. 5. Multi flume agent linkage structure.

B. Apache Chukwa

Apache Chukwa is an open source data collection system

for managing large distributed systems. Apache Chukwa is

built on top of the Hadoop Distributed File System (HDFS)

and Map/Reduce framework and inherits Hadoop’s

scalability and robustness. Chukwa also includes powerful

toolkit for displaying, monitoring and analyzing results to

make the best use of the collected data.

Apache Chukwa is a system that collects various logs such

as system monitoring logs, application logs, Hadoop logs, etc.

of distributed nodes and moves them to the Hadoop

distributed file system and processes them. Chukwa was also

developed to monitor terabytes of data from thousands of

hosts every day. Fig. 6 shows the system configuration of

Chukwa.

Fig. 6. The system configuration of Chukwa.

III. MATH BIG DATA DISTRIBUTED FILE SYSTEM

A. Hadoop Distribute File System

The HDFS (Hadoop Distributed File System) is a

distributed file system designed to run on commodity

hardware. It has many similarities with existing distributed

file systems. However, the differences from other distributed

file systems are significant. HDFS is highly fault-tolerant and

is designed to be deployed on low-cost hardware. HDFS

provides high throughput access to application data and is

suitable for applications that have large data sets. HDFS

relaxes a few POSIX requirements to enable streaming access

to file system data. HDFS was originally built as

infrastructure for the Apache Nutch web search engine project.

HDFS is now an Apache Hadoop subproject. Fig. 7 shows the

HDFS Architecture [3].

Fig. 7. The HDFS architecture.

B. GlusterFS

GlusterFS (Gluster File System) is an open source,

clustered file system capable of scaling to several petabytes

and handling thousands of clients. GlusterFS can be flexibly

combined with commodity physical, virtual, and cloud

resources to deliver highly available and performant

enterprise storage at a fraction of the cost of traditional

solutions [4].

GlusterFS clusters together storage building blocks over

Infiniband RDMA and/or TCP/IP interconnect, aggregating

disk and memory resources and managing data in a single

global namespace. GlusterFS is based on a stackable user

space design, delivering exceptional performance for diverse

workloads [4].

Fig. 8. The gluster FS architecture.

GlusterFS is designed for today's high-performance,

virtualized cloud environments. Unlike traditional data

centers, cloud environments require multi-tenancy along with

99

International Journal of Computer Theory and Engineering, Vol. 10, No. 3, June 2018

the ability to grow or shrink resources on demand. Enterprises

can scale capacity, performance, and availability on demand,

with no vendor lock-in, across on-premise, public cloud, and

hybrid environments. Fig. 8 shows the GlusterFS architecture

[4].

C. GlusterFS

The CFS (Cassandra File System) was designed by

DataStax Corporation to easily run analytics on Cassandra

data. Now implemented as part of DataStax Enterprise, which

combines Apache Cassandra, and Solr™ together into a

unified big data platform, CFS provides the storage

foundation that makes running Hadoop-styled analytics on

Cassandra data hassle-free [5].

In contrast to a master-slave architecture like HDFS, CFS is

based on Cassandra, so the implementation is peer-to-peer

and “masterless.” A user is able to create a cluster that

seamlessly stores real-time data in Cassandra, performs

analytic operations on that same data, and also handles

enterprise search operations. Cassandra’s built-in replication

transparently takes care of replicating the data among all

realtime, analytic, and search nodes. A user may configure

any type of cluster they desire. Fig. 9 shows the Simple

DataStax Enterprise Cluster [6].

Fig. 9. The simple DataStax enterprise cluster.

Fig. 10. The structure for bulk log processing.

IV. PROPOSED BIG DATA COLLECTION SCHEME

The structure for bulk log processing is designed to be

matched with one web server and one Flume agent, and the

Flume agents connected to the web server are configured to be

connected to the Flume agent which plays a role of storing in

the Hadoop distributed file system. The Flume agent the

structure for bulk log processing is composed of an Avro

source for generating events, an Avro sink for consuming

events, and a channel for connecting Avro source and Avro

Sink, and collects and processes logs from a web server. The

structure for bulk log processing is important for the number

of agents and the composition ratio of each tier. Basically,

Flume has a reliable design that lowers the load factor of the

system. However, as the number of nodes increases, the

performance of the flume can be improved by designing and

proceeding the entire system proportionally. Fig. 10 shows

the structure for bulk log processing.

V. CONCLUSION

In this paper, we have studied a large data collection

technology based on Apache Flume for bulk log collection.

The structure for bulk log processing is designed to be

matched with one web server and one Flume agent, and the

Flume agents connected to the web server are connected to the

Flume agent that plays the role of storing in the Hadoop

distributed file system. This makes the collection of big data

logs more efficient.

REFERENCES

[1] ISO/IEC/JTC. Study Group on Big Data (SGBD). [Online]. Available:

http://jtc1bigdatasg.nist.gov

[2] Apache flume. Flume 1.6.0 user guide. [Online]. Available:

https://flume.apache.org/releases/content/1.6.0/FlumeUserGuide.html

[3] D. Borthakur. (2008). HDFS architecture guide. Hadoop Apache

Project. [Online]. Available: http://hadoop. apache.

org/common/docs/current/hdfs design. pdf

[4] GlusterFS Developers: Gluster File System 3.3.0 Administration Guide.

[Online].

[5] Datastax Corporation, Comparing the Hadoop Distributed File System

(HDFS) with the Cassandra File System (CFS), white paper, August

2013.

[6] D. Borthakur, “The hadoop distributed file system: Architecture and

design,” Hadoop Project Website, vol. 11, no. 11, pp. 1-10, 2007.

Sooyong Jung received the master’s degree from

School of Information Sciences, Soongsil in Aug. 2007.

He is working as a sales consultant in Openbase Group

since April. 2004. His research interests include cloud

computing, bigdata, information security, IoT, IT

service science.

Yongtae Shin received his bachelor’s degree from

Department of Industrial Engineering, Hanyang

University in Feb. 1985 and master’s degree and Ph.D

from Univ. of Iowa, Computer Science in Dec. 1990 and

May 1994. He is now serving as a Prof. in School of

Computer Science and Engineering, Soongsil Univ.

from Mar. 1995. His research most interests in multicast,

IoT, information security, content security, mobile

internet, next generation internet.

100

International Journal of Computer Theory and Engineering, Vol. 10, No. 3, June 2018

