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Abstract—The major aim of the Frequency Allocation 

Problem in mobile radio networks is to allocate a limited 
number of frequencies to all radio cells in a network while 
minimizing electromagnetic interference due to the re-use of 
frequencies. This problem is identified as NP-hard, and of huge 
significance in practice since enhanced solutions will permit a 
telecommunications operator to administer bigger cellular 
networks. This paper presents and implements two algorithms 
tabu search and simulated annealing. The algorithms are 
tested on realistic and large problem instances and compared. 
Results of comparison show that the tabu search is less efficient 
than simulated annealing algorithm. 
 

Index Terms— Frequency Allocation Problem, Tabu Search, 
Simulated Annealing  
 

I. INTRODUCTION 
  The Frequency Allocation Problem (FAP) is one of the 
important applications in mobile radio networks engineering. 
Though diverse versions of the FAP can be defined, the key 
function is to allocate a restricted number of available 
frequencies to every cell in a mobile radio network whereas 
minimizing electromagnetic interference due to the reuse of 
frequencies. The complexity of this application comes from 
the fact that an adequate solution of the FAP should fulfill a 
set of multiple constraints, which impose contradictory 
objectives. The harshest constraint concerns a very restricted 
radio spectrum consisting of a little number of frequencies. 
Telecommunications operators must handle frequencies for 
their networks, whatsoever the traffic quantity to be covered, 
and this, in agreement with national international policy. 
This constraint imposes a very high degree of frequency 
reuse, which in turn increases the possibility of frequency 
interference. Apart from this constraint, there are other 
frequency interference constraints which state that 
frequencies allocated to various cells must satisfy a 
prearranged separation distance in the frequency domain. 

The basic FAP is NP-hard in its easiest form because it is 
reduced to the graph coloring problem (Hale (1980)). More 
commonly, the problem is equal to the “set T-coloring 
problem” (Roberts (1991)). Hence, it is not likely to find any 
efficient algorithm for this problem. Many heuristic methods 
have been proposed so far, to deal with the FAP in cellular 
networks, including graph coloring algorithms (GCA) [5], 
constraint programming (CP)[2], artificial neural networks 
 

 

[6] [4], and evolutionary algorithms (EAs) [3]. In the setting 
of military application related techniques have been created 
and experimented on a closely related problem called 
“radio-link frequency assignment” (CALMAR [1]). 

The paper is organized as follows. In Section 2, the FAP is 
modeled as an optimization problem. In Section 3, TS and 
SA are briefly reviewed. In Section 4, experimental results 
are presented and compared. Conclusions are given in the 
last section. 

II. THE FREQUENCY ALLOCATION PROBLEM 
A cellular network is expressed by a set {C1, C2….… CN} 

of N cells, each cell Ci needs Ti frequencies. The amount Ti, 
called the traffic of Ci , is ascertained by an evaluation of the 
maximum possible number of communications which can 
concurrently occur within a cell. 

The necessary FAP consists of allocating to each cell Ci of 
the network Ti frequencies taken from a set of vacant 
frequencies while abiding a set of frequency interference 
constraints. Since the number of vacant frequencies is very 
less and generally much lesser than the sum of the entire 
traffics of the network, frequencies should be reused by 
diverse cells in an assignment. This frequency reusing may 
result to frequency interference. 

Interference occurs when two frequencies allocated to a 
same or two neighboring cells are not adequately separated. 
Therefore, the frequency interference constraints on a 
network are divided into Co-channel, Adjacent channel, and 
Co-site constraints: 

• Co-channel constraints: A pair of transmitters 
situated at different sites must not be allocated the 
same frequency in case they are not sufficiently, 
geographically separated. If fi and fj are the 
frequencies assigned to transmitters i and j 
respectively, then this constraint is expressed: fi ≠ fj. 

• Adjacent channel constraints: Even if the above 
constraint is fulfilled (that is if fi ≠ fj) interference 
may still occur. 

• Co-site frequency separation: Any pair of 
frequencies at a site must be separated by a certain, 
fixed amount. 

These interference constraints are suitably explained by a 
symmetric compatibility matrix M[N, N], whereas N is the 
number of cells in the network and each element of M is a 
nonnegative integer. Let fi;k represent the value of the kth 
frequency (k є {1 …. Ti}) of Ci and let {1 …. NF} denote the 
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set of NF available frequency values, then the interference 
constraints are formulated as follows: 
 

• M[i; i] (i ∈  {1….N}) is the minimum frequency 
separation necessary to satisfy the co-cell 
constraints for the cell Ci .  
∀ m; n ∈ {1….Ti}, m ≠  n, | fi,m – fi,n| ≥ M[i, i]: 

• M[i; j] (i, j ∈  { 1… N}, i ≠  j ) represents the 
minimum frequency separation required to satisfy 
the adjacent-cell constraints between two cells Ci 
and Cj . M[i, j ] = 0 means there is no constraint 
between the cells Ci and Cj .  
∀ m ∈  {1….. Ti}, ∀ n ∈  {1….. Tj}, | fi ,m – fi,n|  ≥  
M[i; j]. 

III. CHANNEL ALLOCATION ALGORITHMS 
Various algorithms implemented in this paper are as 

follows: 

A. Tabu Search 
Tabu Search is a meta-heuristic created for tackling hard 

and large combinatorial optimization problems. Opposite to 
randomizing approaches such as Simulated Annealing 
where randomness is widely used, TS is based on the 
principle that intelligent search must embrace more efficient 
and systematic forms of direction such as memorizing and 
learning. 

TS can be represented as a type of neighborhood search 
with a set of significant and complementary components. For 
a specified instance of an optimization problem 
characterized by a cost function f and a search space S, a 
function N : S → 2S is first presented to find out a 
neighborhood. A typical TS algorithm starts with an initial 
configuration s in S and then continues iteratively to visit a 
sequence of locally best configurations following the 
neighborhood function. At every iteration, a best neighbor s’ 
∈  N(s) is required to put back the present configuration even 
if s’ does not progress the current configuration in terms of 
the cost function. To stay away from the problem of possible 
cycling and to permit the search to go past local optima, TS 
introduces the concept of Tabu list, one of the most vital 
components of the method. 

A tabu list is a unique short-term memory with the purpose 
of maintaining a selective history H, composed of earlier 
encountered solutions or more normally pertinent attributes 
of such solutions. A simple TS approach based on this 
short-term memory H consists in forbiding solutions of H 
from being considered again for next k iterations (k, called 
tabu tenure). At each iteration, TS looks for a finest neighbor 
from this dynamically modified neighborhood N(H, s), 
instead of N(s) itself. Such strategy forbid tabu from being 
confined in short-term cycling and allows the search process 
to go beyond local optima. 

When attributes of solutions are registered in tabu list, 
some unvisited, yet exciting solutions may be prohibited from 
being considered. Aspiration criteria might be used to 
conquer this problem. One commonly used aspiration 

criterion consists of removing a tabu classification from a 
move when the move leads to a solution superior than the 
best obtained so far. 

TS utilize an aggressive search strategy to take advantage 
of its neighborhood. So, it is important to have special 
techniques and data structures which permit a quick 
updating of move evaluations, and lessen the effort of finding 
best moves. Furthermore, candidate list strategies can be 
used to restrict the neighbors to be considered at every 
iteration to a subset of the whole neighborhood. A typical 
strategy consists of determining subsets of prominent moves, 
such as those considered promising to direct to enhanced 
solutions. A superior candidate list strategy shared with an 
efficient technique for move evaluations is essential for high 
solution speed and good quality. 

Here follows the pseudo code for TS. The variable BEST 
stores the best configuration that TS generated and TABU is 
the memory that the algorithm uses in order to mark the 
forbidden moves. The STOP variable controls the number of 
iterations of the algorithm. When this parameter is changed 
to TRUE the program is terminated. The neighborhood 
generation strategy is given in the following sections. 
Step 1: 
Generate a random or compute a valid initial configuration A 
TABU ←  A 
STOP ←  false 
BEST ←  A 
 
Step 2: 
Chose the best feasible solution B ∈ 
{ NEIGHBOURHOOD(A) – TABU } 
if ( cost(B) ≤  cost(A) ) then 
BEST ←  B 
update TABU 
update STOP 
A ←  B 
 
Step 3: 
if (STOP = true) then 

output BEST 
else 

goto Step 3 
 
 

B. Simulated Annealing 
Simulated annealing (SA) is a stochastic computational 

technique evolved from statistical mechanics for discovering 
near globally-minimum-cost solutions to big optimization 
problems. In several instances, determining the global 
minimum value of an objective function with various degrees 
of freedom subject to inconsistent constraints is an 
NP-complete problem, since the objective function will tend 
to have several local minima. A procedure for solving this 
type of optimization problems must sample the search space 
in such a way so that it has a high probability of finding the 
optimal or a near-optimal solution in a reasonable amount of 
time. In the last decade or so, simulated annealing has shown 
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itself to be a technique which fulfills these criteria for a wide 
variety of problems. 

SA method itself has a direct similarity with 
thermodynamics, particularly with the manner that liquids 
freeze and crystallize, or metals cool and anneal. The 
molecules of a liquid move freely at high temperatures with 
respect to one another. If the liquid cools down slowly, 
thermal mobility is controlled. The atoms are able to line 
themselves up and create a pure crystal that is absolutely 
regular. For the system this crystal is the state of minimum 
energy, which would correspond to the optimal solution in a 
mathematical optimization problem. However, if a liquid 
metal cool down quickly, it fails reach a minimum energy 
state but rather higher energy state, in the mathematical 
sense, to a sub-optimal solution created by iterative 
improvement or hill-climbing. 

Given a sequence of moves (i.e. neighbouring 
configurations), a simulated annealing thermodynamical 
system was assumed to change its arrangement from energy 
Eold to energy Enew with probability 
 
prob = e(-(Enew-Eold) /Bt) 
 
where t and B are known as the Boltzmann constant. If Enew < 
Eold then the new configuration has a lower energy state than 
the old one and the system always accepts this move. If Enew > 
Eold then this new configuration can be accepted with 
probability prob (0 < prob < 1) and therefore, help the system 
to come out of a local minimum. This method, of constantly 
taking downward steps while at times taking upward steps is 
known as the Metropolis Algorithm. 
 
Initialise t 
Generate random configuration Xold 
WHILE t > tmin DO 
FOR i = 1 to NUMloop DO 
generate new configuration, Xnew, from Xold 
calculate new energy, Enew 
calculate ∆ E = Enew - Eold 
IF ∆ E < 0 or random < prob = e - ∆ E / t THEN 
Xold ←Xnew 
Eold ← Enew 
END IF 
END FOR 
reduce t (e.g. t = 0:9t) 
END WHILE 

IV. COMPARISON 
The algorithms were implemented in C++ and tested on 

several instances. Small samples of these tests are presented 
here. 
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Fig. 1 Comparison of Algorithms for 15 vertices 
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Fig. 2 Comparison of Algorithms for 20 vertices 

 
The x-axis of the comparison chart represents the 

algorithms used and y-axis represents the number of 
channels used by each algorithm. The two algorithms 
(simulated annealing and tabu search) are tested on two 
instances having 15 and 20 nodes, and results are also 
compared with the Sequential B algorithm. The results of the 
comparison have shown that simulated annealing method 
performs better than tabu search. 

V. CONCLUSION 
We have presented two original parallel algorithms for 

solving the frequency assignment problem. Tabu search is 
less efficient than Simulated Annealing. The big advantage 
of SA is its capability to move to states of higher energy. On 
the other hand the version of TS we implemented does not 
support this feature. This is why TS cannot run away from 
likely topic minima and normally results inferior 
configurations. Tabu memory is not a mechanism to 
overcome topic minima but a method to evade cycling that is 
to create a larger amount of possible configurations in fewer 
iterations. From this conclusion discovers the need for a 
hybrid method that will provide TS with the capability to 
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allow moves to configurations of higher interference. 
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