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Abstract—Spectral element method  (SEM), which is  known 

of its high accuracy, has been recently applied in solving 

electromagnetic problems governed by Maxwell’s equations.  

This paper investigates the accuracy of SEM in two- 

dimensional, frequency-domain electromagnetic scattering 

problems where Helmholtz equation acts as the governing 

partial differential equation (PDE). As experience in meshing a 

problem in finite element method is important to obtain 

accurate results, the choice of elements in SEM, on the other 

hand, is important too.  The aspect ratio in this paper is taken 

into account while studying the accuracy in a single element by 

utilizing the Green’s function. In addition, the scalar field 

scattered by a circular cylinder placed in front of an incident 

plane wave is solved after truncating the domain by perfectly 

matched layer. Numerical results show that one should 

carefully discretize the problem and keeping the aspect ratio 

close to unity as much as possible to guarantee accurate results. 

 
Index Terms—Aspect ratio, electromagnetic scattering, PML 

SEM. 

 

I. INTRODUCTION 

It is more an art experience than a science to know how to 

optimally place and size the mesh in finite element method 

(FEM). In fact, experience taught us to have more elements in 

the physical domain where functions change rapidly and less 

elements where low gradient is expected. Mesh generation 

may take several trials before achieving a good mesh [1]. On 

the other hand, the complexity in the physical domain itself 

may add additional limitations to mesh generation. 

In FEM, ranges of the aspect ratio have been investigated 

extensively and for wide variety of problems. As an example, 

but not restricted to, M. Picasso [2] proposed an adaptive 

algorithm for solving the Strokes problem with finite 

elements and meshes with high aspect ratio. In that paper, the 

effect of aspect ratio on the results is discussed in details and 

some examples were illustrated for a non-acceptable mesh 

that can deteriorate accuracy. V. Prachittham et al. [3] 

presented a two-dimensional adaptive method with large 

aspect ratio finite elements for the numerical simulation of 

mixed electroosmotic microflows. In their work, the 

refinement/ coarsening criterion is based on a posteriori error 

estimates. On the other side, spectral element method (SEM) 

which is known for its high degree of accuracy and lower 

CPU time and less memory requirement, when compared 
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with other numerical methods, has the flexibility of using 

larger elemental aspect ratio without significant deterioration 

in accuracy. S. Dong et al. [4] proposed a parallel SEM for 

dynamic three-dimensional nonlinear elasticity problems that 

provides a tolerant large elemental aspect ratio employing 

Jacobi polynomial-based shape functions, as an alternative to 

the typical Legendre polynomial-based shape functions in 

solid mechanics. D. Rh. Gwynllyw et al. [5] proposed an 

iterative method for moving SEM applied to the journal 

bearing problem where they investigated the results of 

extremely large physical aspect ratio.  

Recently, the features of SEM have attracted researchers to 

utilize this method in electromagnetic problems [6]-[8]. 

However, the effect of elemental aspect ratio on accuracy has 

not been investigated in numerical modeling of 

electromagnetic radiation and/or scattering problems when 

SEM is utilized. Thus, the motivation of this work is to 

investigate how much deterioration in solution accuracy is 

obtained at different values of elemental aspect ratio in 

two-dimensional electromagnetic scattering problems. We 

confirm that no such work exists in the literature. This kind of 

investigation is very important in the sense that one can 

depend on this work when deciding how to accurately mesh 

the physical domain using SEM. In contrast to FEM, 

elements or subdomains in SEM has Legendre- 

Gauss-Lobatto grids, i.e., once the elements are chosen, its 

mesh can’t be changed. This study utilizes Legendre 

polynomials as the basis functions. Finally, to check how 

results obtained from single-element problems are related to 

typical electro- magnetic scattering problems in which the 

well-known Perfectly Matched Layer (PML) is utilized for 

domain truncation [9].  

The content of this paper is arranged as follows: in Section 

II, the equations to be solved using SEM are presented. In 

Section III, shapes of the elements in SEM are discussed. 

Section IV demonstrates the numerical results and 

discussion, and finally some conclusions are presented in 

Section V. 

 

II. ELECTROMAGNETIC SCATTERING PROBLEMS 

Electromagnetic scattering problems in two-dimensional 

free-space regions are reduced to the two-dimensional homo- 

genous Helmholtz equation: 
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where u(x, y) is the scalar field to be solved, and k is the wave 

number defined as:  
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with   being the wavelength. In a typical, unbounded 

electromagnetic scattering problem, the domain is truncated 

by an absorbing boundary layer or the so-called Perfectly 

Matched Layer (PML) which was introduced by J. P. 

Berenger [9]. Fig. 1 shows the scatterer in the free space 

region ( FS ) surrounded by the PML ( PML ). 

 

 
Fig. 1. A typical electromagnetic computational domain. 

 

The PML formulation in [10] is adopted in this work. That 

is, attenuating the scalar field along x-direction in the PML 

region is governed by the non-homogenous Helmholtz 

equation: 
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where a  is defined as: 
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and a  is a positive real constant (called attenuation factor). 

Similarly, attenuating the scalar field along y-direction in the 

PML region is governed by: 
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And wherever there is a corner in the PML region, 

attenuation is applied in both directions, i.e., the following 

equation must be satisfied: 
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Equations (1) to (6) can be expressed as follows: 

 
2
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in which the tensor   is defined as:  
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where; 
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 for a corner region, 

and 1a   for FS . 

The numerical implementation of SEM introduced in [8] is 

adopted in this paper with Legendre polynomials being the 

basis functions.  

 

III. SHAPES OF 2D-ELEMETS 

Lagrangian basis polynomials associated with a tensor 

product grid of Gauss-Lobbatto-Legendre (GLL) nodes is 

used to build a nodal basis for a reference element having 

dimensions [-1,1]× [-1,1]. Fig. 2 illustrates an example of 

such a grid for a tenth-order polynomial space (nodes are 

represented by intersections between horizontal and vertical 

lines). 

 

 
Fig. 2. GLL grid nodes on the reference element. 

 

In contrast to FEM where two dimensional element can be 

chosen to be triangular, in SEM, quadrilateral elements are 

the only possible elements. Fortunately, quadrilateral 

elements with straight sides or curved sides are applicable to 

SEM (See Fig. 3). 

 

 
Fig. 3. Various quadrilateral elements that are applicable to SEM. 

 

In this work, the following definition for the elemental 

aspect ratio (AR) is considered: 

max( )

min( )

i

i

d
AR

d
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where di stands for side length of an element, i=1, 2, 3, 4. To 

make use of this definition, one needs to study the accuracy 

of SEM for a single-element problem having a reference area 

with equal dimensions. Then, by changing the dimensions of 

the element while having the same area, a comparison can be 

performed. With this approach, the effect of AR on the 

accuracy can be well investigated. It is also worth here to 

point that all sides of the elements are assumed to have equal 

nodes.  

 

IV. NUMERICAL RESULTS AND DISCUSSION  

The two-dimensional Green’s function that has Helmholtz 

equation as the governing PDE (point source problem): 

2 2 ( )u k u r   


                         (10) 

 

is considered in our study. To avoid singularity in the 

solution, the point source is placed at the origin of the 

xy-plane so that the homogenous Helmholtz equation is to be 

solved inside a square element (Ω) with dimensions   , 

and 1  ; hence the element has a unit area (See Fig. 4). 

This square element will be referred as the reference element. 

On the boundary ∂Ω the exact solution in terms of Hankel 

function of the second kind (zero order), 

( (2)

0( ) ( / 4) ( )u r j H k r
 

, is applied. 

 

 
Fig. 4. The reference square element with unit area. 

 

The real part of the solution is shown in Fig. 5 for N=18 

points per wavelength. Throughout this work, the maximum 

relative error is defined as: 

 

, ,

,

max
i

i exact i SEM

i exact

u u
Err

u


                       (11) 

 

where 
,i exactu  and 

,i SEMu  are the exact solution and the 

SEM solution, respectively, at the ith node corresponding to 

the free space region, Ω. The error is presented in Table I as N 

increases. 

Now we consider a quadrilateral element with straight 

sides and having a unit area as shown in Fig. 6. The error is 

presented in Table II for the aspect ratios AR=1.33, 1.88 and 

2.87 (while the elemental area is kept the same). In Table III, 

the errors are represented in a normalized form with respect 

to the errors obtained from the reference element. It is very 

obvious to observe that as the aspect ratio (AR) increases, the 

accuracy is highly deteriorated. But one wonders whether 

this deterioration occurs for other types of element. 
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Fig. 5. Real part of the solution in the reference element at N=18. 

 
TABLE I: ERRORS VS N FOR THE REFERENCE ELEMENT 

N  Err 

7 0.00091 

8 1.30E-04 

9 1.25E-05 

10 1.14E-06 

11 1.13E-07 

12 1.26E-08 

13 1.51E-09 

14 2.23E-10 

15 2.57E-11 

16 3.23E-12 

17 2.86E-13 

 

 
Fig. 6. Quadrilateral element with straight sides and unit area. 

 

TABLE II: ERRORS FOR QUADRILATERAL ELEMENT WITH STRAIGHT SIDES 

AND UNIT AREA 

N  Err 

(AR= 

1.33) 

Err 

(AR= 

1.88) 

Err 

(AR= 

2.87) 

7 0.001 0.003 0.062 

8 1.5e-04 6.0e-04 0.012 

9 1.5e-05 1.2e-04 0.004 

10 1.6e-06 2.4e-05 0.001 

11 1.7e-07 4.6e-06 2.6e-04 

12 1.8e-08 8.2e-07 6.3e-05 

13 2.0e-09 1.4e-07 1.5e-05 

14 2.6e-10 2.3e-08 3.4e-06 

15 3.1e-11 3.6e-09 7.3e-07 

16 3.8e-12 5.5e-10 1.5e-07 

17 4.3e-13 8.0e-11 2.9e-08 

 

Next, a quadrilateral element having one curved side and a 

unit area is investigated (See Fig. 7). This kind of elements is 

encountered in meshing of many computational 

electromagnetic problems. The solution of the Green’s 

function problem is applied on the boundary of the element 

where the homogeneous Helmholtz equation is satisfied. The 

maximum relative errors are presented in Table IV for 
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different values of aspect ratio while keeping the elemental 

area unchanged.  

 
TABLE III: NORMALIZED ERRORS FOR QUADRILATERAL ELEMENT WITH 

STRAIGHT SIDES AND UNIT AREA WITH RESPECT TO REFERENCE ELEMENT 

N  Err 

(AR= 

1.33) 

Err 

(AR= 

1.88) 

Err 

(AR= 

2.87) 

7 1.10 3.3 68 

8 1.15 4.6 92 

9 1.20 9.6 321 

10 1.41 21.1 881 

11 1.50 40.6 2296 

12 1.43 65.1 5003 

13 1.32 92.5 9910 

14 1.17 103.2 15259 

15 1.21 140.3 28445 

16 1.18 170.5 46490 

17 1.51 280.0 101501 

 

 
Fig. 7. Quadrilateral element having one curved side and a unit area. 

 

TABLE IV: ERRORS FOR QUADRILATERAL ELEMENT WITH CURVED SIDE 

AND UNIT AREA 

N  Err 

(AR= 

1.39) 

Err 

(AR= 

1.91) 

Err 

(AR= 

2.39) 

7 0.0014 0.0016 0.0189 

8 0.0005 0.0008 0.0029 

9 1.8e-05 3.3e-05 2.7e-04 

10 2.1e-05 2.8e-05 3.8e-05 

11 2.7e-07 6.5e-07 5.3e-06 

12 1.0e-07 1.7e-07 7.2e-07 

13 4.4e-08 4.7e-08 9.2e-08 

14 5.0e-09 1.3e-08 3.1e-08 

15 5.3e-10 1.5e-09 3.2e-09 

16 5.3e-11 2.5e-10 8.8e-10 

17 5.2e-12 1.6e-10 9.1e-10 

 

Finally, scattering by a circular cylinder is considered. As 

shown in Fig. 8, the analytical solution of the scattered field 

due to an incident plane wave (
i jkx

zu e ) on an infinitely 

long, perfectly conducting cylinder is expressed in terms of 

Bessel and Hankel functions as: 

 

0

(2)

(2)

( ) (k )

( )
= - ( )





s n n n

n n

jnφ

c

c

J kr H e
j

H kr
u u     (12) 

 

Because of symmetry in z direction, the problem is a 

two-dimensional one. And due to symmetry around x-axis, 

only one-half of the plane is studied and symmetric Neumann 

boundary condition is applied along x-axis. The PML region, 

which is formed by elements 5-10, is used to truncate the 

computational domain. Zero-Dirichlet boundary condition is 

applied on the outer boundary of the PML region, and on the 

circular boundary, the analytical solution is introduced. 

Results corresponding to region of interest (elements: 1 to 4) 

are presented in Table V for the following dimensions 

defined on Fig. 9: cylinder radius r = (0.2, 0.5), a = 0.5, 

b=c=d=1 and λ=1. Real part of the scattered field in the 

region of interest at r = 0.2, N = 17 is plotted in Fig. 10. It can 

be clearly seen that as r decreases (AR increases), the error 

increases sharply. In addition, as the resolution or grid points 

are increased when high elemental aspect ratio is involved, 

the rate of error decay is noticeably decreased.   

 

 
Fig. 8. Scattering cylinder. 

 

 
Fig. 9. Elements and dimensions of scattering cylinder problem.  
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Fig. 10. Real part of the scattered field in the region of interest at r = 0.2, N = 

17. 

 
TABLE V: ERRORS OF PROBLEM IN FIG. 7. 

 

N (points) 

Err  

(r =0.5) 

Err  

(r =0.2) 

7 0.001994 0.00619 

8 0.000342 0.00186 

9 6.03E-05 4.63e-4 

10 7.77E-06 2.17 e-4 

11 9.72E-07 1.11 e-4 

12 1.30E-07 5.17E-05 

13 1.50E-08 2.37E-05 

14 1.60E-09 1.09E-05 

15 7.89E-10 5.02E-06 

16 4.65E-10 2.32E-06 

17 3.63E-10 1.08E-06 
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V. CONCLUSION 

In this paper, the maximum relative error is computed by 

SEM with Legendre polynomials being the bases functions. 

The Green’s function is used to study the accuracy on single 

elements at different aspect ratios. And then a real 

electromagnetic scattering problem is solved. As observed 

from the results, in elements with one side being curved, the 

error was less than that of elements having straight sides as 

the aspect ratio increase. However, in the scattering problem, 

the accuracy is highly deteriorated when the aspect ratio 

increases since there are mixed elements of straight and 

curved sides.  

Hence, one can notice from the presented errors that there 

is no safe range of the aspect ratio in which high accuracy is 

guaranteed. In conclusion, the discretization of the physical 

domain should be performed so that the aspect ratio of each 

element is close to unity as much as possible.  
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