

Abstract—We present a system for spatio-temporally

coherent 3D animation reconstruction from multi-view RGB-D

images. Our system captures multi-view synchronous RGB-D

images from six RGB-D cameras and we show that by using the

unique properties of both depth and color images, it is possible

to reconstruct a spatio-temporally consistent 3D animation

from a non-coherent time-varying data. The reconstructed

spatio-temporally coherent 3D animation can be used in a

number of applications that require time-coherent data, e.g.

motion analysis, gesture recognition, compression,

free-viewpoint video and CG animations.

Index Terms—Multi-view video acquisition, 3D and

free-viewpoint video, dynamic scene reconstruction, RGB-D

data acquisition.

I. INTRODUCTION

First step in obtaining spatio-temporally coherent 3D video

is to capture the shape, appearance and motion of a dynamic

real-world object. One or more video cameras are employed

for this acquisition, but unfortunately, data obtained by these

video cameras lacks temporal consistency, as there is no

relationship between the consecutive frames of a video

stream. In addition, for a multi-view video, all the cameras

have to be synchronized to extract temporal correspondences

at each frame of the video, which is typically achieved by

means of a hardware-based camera trigger. From the

acquired synchronized data, in order to reconstruct a

spatio-temporally coherent 3D animation, a spatial structure

between cameras has to be established along with the

temporal matching over the complete video data. In this

paper we present a system for acquiring synchronized

dynamic 3D data using multiple RGB-D cameras along with

a new method for capturing spatio-temporal coherence

between RGB-D images captured from multiple RGB-D

video cameras.

Synchronized multi-view video (MVV) data is used in a

number of applications, e.g. motion capture, dynamic scene

reconstruction, free-viewpoint video etc. Traditionally, the

MVV recordings are acquired using synchronized color

(RGB) cameras, which are later processed for use in a

number of applications [1]. The acquisition setups used for

these earlier works comprised of a dedicated system for

capturing synchronous high quality RGB MVV recordings,

which were then used to reconstruct dynamic 3D scene

representation. Previously, a number of methods have been

Manuscript received January 9, 2014; revised March 26, 2014.

The authors are with University of Sharjah, United Arab Emirates

(e-mail: nahmed@sharjah.ac.ae, ijunejo@sharjah.ac.ae).

proposed toreconstruct spatio-temporally consistent 3D

animation from MVV data [2], [3]. However, the arrival of

Microsoft Kinect [4] has generated a new wave of interest in

this area. One or more depth sensors are employed in 3D

shape scanning and dense 3D reconstruction of static objects;

pose, motion and 3D shape estimation [5]-[7]. These works

show that despite the limitation of depth sensors, i.e. low

resolution and high noise, it is possible to employ them to get

high quality results.

One or more depth sensors have been employed in a

number of applications to reconstruct a three-dimensional

representation or static and dynamic objects [8], [9]. Using

multiple Kinects, Kim et al. [10] presented the design and

calibration of a system that enables simultaneous recording

of dynamic scenes with multiple high-resolution video and

low-resolution ToF depth cameras. Unlike our system, their

system relied on hardware trigger for the explicit

synchronization of color and depth cameras. Berger et al. [5]

employed four Kinects for marker-less motion capture. Since

their area of application was silhouette-based motion capture,

they did not explore the use of multiple Kinects in generating

dynamic scene geometry. They also assume that Kinects are

synchronous and did not actively try to create a setup for the

synchronous capture. For motion capture, it can be assumed

that synchronization is not a primary requirement as shown

by Hasler et al. [11]. Nevertheless, for a dynamic scene

reconstruction setup, which merges the data from multiple

cameras, a higher degree of synchronization is required to

produce a correct 3D animation. Both of the methods [5],

[10] do not try to extract any time coherence information

from the captured depth and color data.

The goal of our work is to present a unified system

comprising of multiple Kinects to synchronously capture

using a software-only acquisition setup and reconstruct

spatio-temporally coherent dynamic 3D scene geometry from

dynamic RGB-D data. Our system is highly scalable and can

be extended to any number of cameras. We show that the data

from our acquisition setup can be merged to reconstruct the

dynamic 3D scene to a very good approximation of its real

world counterpart. Our system is very low cost, and we only

use easily available open source software solutions to

acquire, register, and process the data. To our knowledge this

is the first system, which shows that acquisition, and

time-coherent 3D animation reconstruction is possible using

multiple Kinects. In principle, any type and combination of

RGB and depth cameras can be used for the acquisition. We

chose Microsoft Kinect because it is a hybrid color (RGB)

and depth camera system which provides both the color and

depth information at the rate of 30 frames per second. Our

Using Multiple RGB-D Cameras for 3D Video Acquisition

and Spatio-Temporally Coherent 3D Animation

Reconstruction

Naveed Ahmed and Imran Junejo

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

447DOI: 10.7763/IJCTE.2014.V6.907

mailto:nahmed@sharjah.ac.ae

acquisition system can acquire synchronous streams of

RGB-D data from multiple Microsoft Kinects.

Our system uses both depth and color information and

extracts time coherence information from the dynamic

three-dimensional content. The dynamic three-dimensional

content is assumed to be in the form of a three-dimensional

point cloud with color information associated with every

point at every frame. We will show that we can obtain this

information very easily from our acquisition setup that

provides us not only the depth information of real world

scene but also its color information. Our work is not limited

to the data obtained by the Microsoft Kinect cameras but we

will also show that our work is equally suitable for the

three-dimensional content obtained using a traditional

acquisition setup of multi-view color cameras.

II. DATA ACQUISITION AND CALIBRATION

Our multi-view recording setup comprises of multiple

Kinect cameras. We test our acquisition, using two, four and

six cameras. For acquisition with six cameras, three cameras

are placed on each side of the room (Fig. 1a). The four corner

cameras are placed at an angle of 90 between them. In

between on each side, two additional cameras are placed that

make an angle of 45 degrees with their two adjacent cameras

(shown in red and yellow in Fig. 1a). In principle, all Kinects

emit the infrared laser at the same frequency, which is a

potential source of problem when using multiple Kinects for

simultaneous acquisition. The ideal angle between two

Kinects should be 180 degrees for simultaneous acquisition

without any interference. For our work, we deliberately

ignore this interference issue as our aim is to test 360°

acquisition and study the effect of the interference. Our

intuition that missing information from one camera will be

filled by one of the other cameras turned out to be correct, as

shown by our results. Our particular placement of the

cameras allows for capturing a dynamic object within an area

of around 2m × 3m.

Fig. 1. Our system pipeline. (a) Six Kinects are used to acquire the RGB and

depth images (only one frame from one camera is shown). (b) shows the 3D

point cloud from one camera with the mapped RGB image. (c) Shows the top

down view of six merged 3D point clouds. The alignment of the cameras

after the global registration is shown in (d) using the color-coded points. The

final segmented and filtered point cloud is shown in (e).

Each Kinect is connected to a dedicated machine

comprising Intel Core i5 2.4 GHz with 4 GB of RAM running

Windows 7 64 bit. We believe that this is not a big limitation

as all comparable acquisition systems use a similar setup. We

make use of Open Kinect freenect Kinect drivers and library

for data acquisition [12], as it provides a wrapper to query for

the depth and the RGB data using a synchronous interface

[13] - a feature not provided by Microsoft’s current SDK for

Kinect. In general, all current Kinect SDKs provide an

asynchronous interface where callback functions are invoked

when sensor data is available. The synchronous interface

manages a buffer where it holds the data and on query

provides the depth or RGB data with their respective time

stamp. This procedure introduces some gaps in the data, but

for a multi-view synchronous capture, these gaps are

desirable if all Kinects can query the data at the same time.

All machines are clock-synchronized and record the data at

same time, resulting in a sequence of depth and color images

from all six cameras.

Fig. 2. Intrinsic camera calibration - Checkerboard as recorded from the (a)

color camera, (b) depth camera, and (c) infrared sensor.

Fig. 3. Extrinsic calibration for global registration - checkerboard as

recorded from three cameras. Corners from the checkerboard are used as

some of the initial correspondences for the iterative closest point method for

the global registration.

A multi-view acquisition system requires both local and

global calibration. Local calibration provides camera specific

parameters, or intrinsic parameters. On the other hand, the

global calibration or extrinsic parameters provide the spatial

mapping between the cameras. For a Microsoft Kinect, which

has two sensors, there is an additional level of local

calibration. In the first step, both the depth and color sensors

have to be calibrated to estimate their intrinsic parameters, as

shown in Fig. 2. Secondly, a mapping should be established

between the depth and color sensors so that color data can be

projected on the depth data. Finally, depth values are mapped

to real-world distances in order to get 3D positions in a global

coordinate system. The intrinsic parameters are obtained

using Matlab Camera Calibration toolkit. We record a

checkerboard from both color and infrared sensors to

facilitate this calibration. To convert the depth data to meters

we employ the method proposed by Nicolas Burrus. We use

the Kinect RGB Demo software to do the full internal

calibration. Using the internal calibration we obtain a 3D

point cloud for each camera along with its mapping to the

color data. An example of the 3D point cloud with depth to

color mapping can be seen in Fig. 1.

The final step for getting a dynamic 3D point cloud is to

merge all the cameras together in a global unified coordinate

system. This global registration is an important step because

without it each point cloud would be in its own coordinate

frame. To achieve this global registration we first need to find

out correspondences between different cameras. This is

achieved by recording the checkerboard pattern at different

locations for each pair of adjacent cameras, as shown in Fig.

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

448

3. The corners of the checkerboard seen in different views

provide the correspondences between two cameras. These

corners of the checkerboard are estimated using OpenCV, and

in addition, we also find the correspondences using SIFT

[14]. The correspondences are estimated in RGB space. The

depth to RGB mapping is also obtain using correspondences

between the point clouds. Once the correspondences between

all adjacent cameras are found, any one camera is selected as

a reference camera and the correspondences are used as the

starting point for the iterative closest point algorithm to find

the rotation and translation transformations that maps one

point cloud to the other. This transformation is found for each

of two adjacent pairs and all cameras are mapped to a unified

global coordinate system, i.e. the coordinate frame of the

reference camera. The global registration is a standard

process and any relevant method can be applied for this step.

In our work we used the Point Cloud Library (PCL) [15]

because of its flexible data format (PCD) for storing point

clouds.

Global registration gives a unique pair of rotation and

translation transformations for each camera and it is applied

to the corresponding depth data. The final result of the global

registration is a 3D point cloud for each animation frame.

Additionally, using the mapping between color and depth

cameras, we also associate the color value to each depth

point. Thus we obtain a dynamic 3D representation of a real

world scene. However, this representation is not time

coherent as each frame is independent of the other. Examples

of a 3D point cloud from one of the cameras can be seen in

Fig. 1b and 4a.

Fig. 4. One frame of the dynamic 3D point cloud with RGB mapping can be

seen in (a). (b) shows the merged point clouds from all cameras after global

registration and segmentation.

Before getting a dynamic 3D point cloud, we have to

segment the scene so that a real-world actor can be separated

from the background. This background subtraction is

performed using the depth data. First the acquisition room is

recorded without the human actor and later the depth

information of the background is used to subtract the

real-world actor from the background. The result of Global

registration and segmentation can be seen in Fig. 1 and Fig. 4.

We use data provided by Ahmed et al. [3]. The data has a

3D visual hull representation at every time step and a

corresponding color information. We extract the point cloud

from the visual hull representation and also extract the

time-coherent representation of dynamic 3D content from the

data, as explained in the next section.

III. SPATIO-TEMPORALLY COHERENT 3D ANIMATION

As explained in the previous section, the dynamic

three-dimensional content obtained through either one or

more Microsoft Kinects or a traditional multi-view video

acquisition system completely lacks any temporal coherence.

That is, there is no connectivity from one point cloud to the

next for each consecutive frame of the video. Thus the data is

not very useful in extracting any meaningful information

about the scene other than simple visualization. It is not even

visually pleasing, as the position of the points change so

quickly from frame to frame that it distracts the viewer from

the actual animation. We therefore propose a new method to

extract spatio-temporal coherence information from this

dynamic 3D point clouds using both geometric and color

information. This coherence info will be found between two

consecutive frames over the course the animation. Using the

coherence information we aim at tracking a 3D point cloud

throughout the entire animation.

In the first step, we reconstruct a coarse surface

representation of the all 3D point clouds by fitting a plane to

every 3D point x at frame i. This course surface

representation allows us to use the first order normal of that

point N(xi), and the second order curvature C(xi). In the

second step we estimate SURF features [16] on the color

data. Using the intrinsic mapping we find key 3D points that

are associated with the SURF features in the color images

S(xi):

Finally, using these three local descriptors for each x + i

we define a matching function to find the mapping of each xi

to xi+1:

𝑀 𝑥𝑖 = 𝛼 1.0 −𝑁 𝑥𝑖 .𝑁 𝑥𝑖+1 + 𝛽 𝐶 𝑥𝑖 − 𝐶 𝑥𝑖+1

+ 𝛾 𝑆 𝑥𝑖 − 𝑆 𝑥𝑖+1

 (1)

where xi+1 is the 3D point at the frame i + 1 , which is used to

evaluate the eq (1). M(xi) is the matching distance, 1:0

N(xi):N(xi+1) is the angular difference in orientation, with the

similar orientation resulting in a smaller value. ||C(xi) C(xi+1)||

is the absolute difference of curvature between the points.

||S(xi) S(xi+1)|| is the absolute difference in the distance to the

two nearest SURF feature. The three parameters α, β, and γ

are weighting parameters. For our method we set α = 0:3, β =

0:25, and γ = 0:45. These values are chosen according the

weight of each feature in terms of its influence. The SURF

feature localizes the position; therefore it gets the maximum

weight. Under the assumption that the motion of the object is

small over two consecutive frame, and the deformations are

isometric, the local orientation of the normal should not

change. The orientation therefore gets the second highest

weight. Finally, curvature is an important property for the

matching, but due to inherent noise in Kinect depth data, it is

not as reliable compared to SURF and orientation, therefore it

is assigned a lower weight. We use this matching function to

find the mapping of each xi to a point at i + 1. A map of xi is

the point that minimizes the matching function M(xi).

IV. RESULTS

To test our method, we record a number of sequences

using different number of cameras. Each sequence is between

100 200 frames long. Additionally, we use data from Ahmed

et al. [3], which is captured using eight color cameras with an

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

449

acquisition system synchronized by the dedicated hardware.

The sequences range from a simple walking motion to the

fast boxing motion. Results from our acquisition system can

be seen in Fig. 1 and Fig. 5. It can be seen that the dynamic

depth maps are well aligned and the RGB image are also

mapped accurately to the point cloud. As can be seen in Fig.

5a, there is no connectivity between the two frames, e.g. feet

of the actor have different shape. Using the estimated time

coherence, we can visualize the animation with a single 3D

point cloud tracked over the sequence, which can be seen in

Fig. 5b. It can be observed that our method can reliably track

the point cloud from one frame to the next and consequently

over the course of the animation. This results in generating a

3D animation that is temporally smooth.

Fig. 5(a) Shows two consecutive frames from a dynamic 3D point cloud

without any time coherence. (b) Show same two frames tracked using the

time coherence. For example, at the feet, the point cloud changes

dramatically from one frame to the next without the time coherence, whereas

in (b) the point cloud remains consistent.

Our method is subjected to some limitations. Most notably,

we only employ two nearest SURF features in our matching

function (cf. eq. (1)). We cannot use more SURF features,

because the nearest function can map points at different body

parts, which will result in the incorrect animation.

Additionally, due to high noise in Kinect’s depth data the

curvature is not the most reliable descriptor. One can improve

it by first smoothing the surface and then estimating the

curvature. We would like to explore this in the future work.

Despite the limitations, we show that it is possible to

reconstruct spatio-temporally coherent 3D animation of a

real-world object from RGB-D data from multiple Kinects.

V. CONCLUSION

We presented a method to acquire synchronized RGB-D

data from multiple Kinects and reconstruct spatio-temporally

coherent animation from that data. Microsoft Kinect provides

both color and depth information of a scene. We combine

multiple Kinect cameras and capture a complete

three-dimensional dynamic scene. Our system is scalable and

our spatio-temporally coherent re-construction method can

be applied to any three-dimensional representation of the

data, as long it is comprised of 3D point clouds with color

information. We demonstrated this by applying our method

on the data obtained using multiple acquisition setups, and in

future we would like to extend our work to increase the

robustness of our tracking method and explore the

possibilities in the area of scene analysis and dynamic surface

reconstruction.

REFERENCES

[1] J. Starck and A. Hilton, “Surface capture for performance-based

anima-tion,” IEEE Computer Graphics and Applications, vol. 27, no.

3, pp. 21–31, 2007.

[2] E. de Aguiar, C. Stoll, C. Theobalt, N. Ahmed, H.-P. Seidel, and S.

Thrun, “Performance capture from sparse multi-view video,” ACM

Trans. Graph., vol. 27, no. 3, 2008.

[3] N. Ahmed, C. Theobalt, C. Rossl, S. Thrun, and H.-P. Seidel, “Dense

correspondence finding for parametrization-free animation

reconstruction from video,” CVPR, 2008.

[4] MICROSOFT. (November 2010). Kinect for microsoft windows and

xbox 360. [Online]. Available: http://www.kinectforwindows.org/

[5] K. Berger, K. Ruhl, Y. Schroeder, C. Bruemmer, A. Scholz, and M. A.

Magnor, “Markerless motion capture using multiple color-depth

sensors,” VMV, pp. 317–324, 2011.

[6] A. Weiss, D. Hirshberg, and M. J. Black, “Home 3d body scans from

noisy image and range data,” ICCV, 2011.

[7] A. Baak, M. Muller, G. Bharaj, H.-P. Seidel, and C. Theobalt, “A

data-driven approach for real-time full body pose reconstruction from a

depth camera,” ICCV, 2011.

[8] Y. M. Kim, C. Theobalt, J. Diebel, J. Kosecka, B. Micusik, and S.

Thrun, “Multi-view image and tof sensor fusion for dense 3d

reconstruction,” in Proc. IEEE Workshop on 3-D Digital Imaging and

Modeling (3DIM), Kyoto, Japan, 2009, pp. 1542–1549.

[9] V. Castaneda, D. Mateus, and N. Navab, “Stereo time-of-flight,” ICCV,

2011.

[10] Y. M. Kim, D. Chan, C. Theobalt, and S. Thrun, “Design and

calibration of a multi-view tof sensor fusion system,” in Proc. IEEE

CVPR Workshop on Time-of-flight Computer Vision, 2008.

[11] N. Hasler, B. Rosenhahn, T. Thormahlen, M. Wand, J. Gall, and H.-P.

Seidel, “Markerless motion capture with unsynchronized moving

cameras,” CVPR, 2009.

[12] Open Kinect. Open source libraries for Microsoft kinect. [Online].

Available: http://www.openkinect.org/.”

[13] Openkinect C Sync Wrapper. [Online]. Available:

http://www.openkinect.org/wiki/c sync wrapper

[14] D. G. Lowe, “Object recognition from local scale-invariant features,”

ICCV, pp. 1150–1157, 1999.

[15] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”

ICRA, 2011.

[16] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust

features (surf),” Comput. Vis. Image Underst., vol. 110, no. 3, pp.

346–359, June 2008.

Naveed Ahmed received his Ph.D. in computer science

from the University of Saarland (Max-Planck-Institute

for Informatics), Germany in 2009. He worked as a

research and development engineer at Autodesk in

Cambridge, UK for two years. He is currently working

as an assistant professor at the Department of Computer

Science, University of Sharjah. His research interests

include 3D animation and dynamic scene

reconstruction and multi-view video based modeling and rendering.

Imran N. Junejo received his Ph.D. in computer science

from University of Central Florida, U.S.A in 2007. After

a post-doc at INRIA-Rennes, he joined the Department

of Computer Sciences, University of Sharjah where he is

currently working as an assistant professor. His current

focus of research is human action recognition from

arbitrary views. Other areas of research interests include:

camera calibration, metrology, path modeling, video

surveillance, scene understanding and event detection.

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

450

