
  


 

Abstract—We present a system for spatio-temporally 

coherent 3D animation reconstruction from multi-view RGB-D 

images. Our system captures multi-view synchronous RGB-D 

images from six RGB-D cameras and we show that by using the 

unique properties of both depth and color images, it is possible 

to reconstruct a spatio-temporally consistent 3D animation 

from a non-coherent time-varying data. The reconstructed 

spatio-temporally coherent 3D animation can be used in a 

number of applications that require time-coherent data, e.g. 

motion analysis, gesture recognition, compression, 

free-viewpoint video and CG animations. 

 
Index Terms—Multi-view video acquisition, 3D and 

free-viewpoint video, dynamic scene reconstruction, RGB-D 

data acquisition. 

 

I. INTRODUCTION 

First step in obtaining spatio-temporally coherent 3D video 

is to capture the shape, appearance and motion of a dynamic 

real-world object. One or more video cameras are employed 

for this acquisition, but unfortunately, data obtained by these 

video cameras lacks temporal consistency, as there is no 

relationship between the consecutive frames of a video 

stream. In addition, for a multi-view video, all the cameras 

have to be synchronized to extract temporal correspondences 

at each frame of the video, which is typically achieved by 

means of a hardware-based camera trigger. From the 

acquired synchronized data, in order to reconstruct a 

spatio-temporally coherent 3D animation, a spatial structure 

between cameras has to be established along with the 

temporal matching over the complete video data. In this 

paper we present a system for acquiring synchronized 

dynamic 3D data using multiple RGB-D cameras along with 

a new method for capturing spatio-temporal coherence 

between RGB-D images captured from multiple RGB-D 

video cameras. 

Synchronized multi-view video (MVV) data is used in a 

number of applications, e.g. motion capture, dynamic scene 

reconstruction, free-viewpoint video etc. Traditionally, the 

MVV recordings are acquired using synchronized color 

(RGB) cameras, which are later processed for use in a 

number of applications [1]. The acquisition setups used for 

these earlier works comprised of a dedicated system for 

capturing synchronous high quality RGB MVV recordings, 

which were then used to reconstruct dynamic 3D scene 

representation. Previously, a number of methods have been 
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proposed toreconstruct spatio-temporally consistent 3D 

animation from MVV data [2], [3]. However, the arrival of 

Microsoft Kinect [4] has generated a new wave of interest in 

this area. One or more depth sensors are employed in 3D 

shape scanning and dense 3D reconstruction of static objects; 

pose, motion and 3D shape estimation [5]-[7]. These works 

show that despite the limitation of depth sensors, i.e. low 

resolution and high noise, it is possible to employ them to get 

high quality results. 

One or more depth sensors have been employed in a 

number of applications to reconstruct a three-dimensional 

representation or static and dynamic objects [8], [9]. Using 

multiple Kinects, Kim et al. [10] presented the design and 

calibration of a system that enables simultaneous recording 

of dynamic scenes with multiple high-resolution video and 

low-resolution ToF depth cameras. Unlike our system, their 

system relied on hardware trigger for the explicit 

synchronization of color and depth cameras. Berger et al. [5] 

employed four Kinects for marker-less motion capture. Since 

their area of application was silhouette-based motion capture, 

they did not explore the use of multiple Kinects in generating 

dynamic scene geometry. They also assume that Kinects are 

synchronous and did not actively try to create a setup for the 

synchronous capture. For motion capture, it can be assumed 

that synchronization is not a primary requirement as shown 

by Hasler et al. [11]. Nevertheless, for a dynamic scene 

reconstruction setup, which merges the data from multiple 

cameras, a higher degree of synchronization is required to 

produce a correct 3D animation. Both of the methods [5], 

[10] do not try to extract any time coherence information 

from the captured depth and color data. 

The goal of our work is to present a unified system 

comprising of multiple Kinects to synchronously capture 

using a software-only acquisition setup and reconstruct 

spatio-temporally coherent dynamic 3D scene geometry from 

dynamic RGB-D data. Our system is highly scalable and can 

be extended to any number of cameras. We show that the data 

from our acquisition setup can be merged to reconstruct the 

dynamic 3D scene to a very good approximation of its real 

world counterpart. Our system is very low cost, and we only 

use easily available open source software solutions to 

acquire, register, and process the data. To our knowledge this 

is the first system, which shows that acquisition, and 

time-coherent 3D animation reconstruction is possible using 

multiple Kinects. In principle, any type and combination of 

RGB and depth cameras can be used for the acquisition. We 

chose Microsoft Kinect because it is a hybrid color (RGB) 

and depth camera system which provides both the color and 

depth information at the rate of 30 frames per second. Our 

Using Multiple RGB-D Cameras for 3D Video Acquisition 

and Spatio-Temporally Coherent 3D Animation 

Reconstruction 

Naveed Ahmed and Imran Junejo 

International Journal of Computer Theory and Engineering, Vol. 6, No. 6, December 2014

447DOI: 10.7763/IJCTE.2014.V6.907

mailto:nahmed@sharjah.ac.ae


  

acquisition system can acquire synchronous streams of 

RGB-D data from multiple Microsoft Kinects. 

Our system uses both depth and color information and 

extracts time coherence information from the dynamic 

three-dimensional content. The dynamic three-dimensional 

content is assumed to be in the form of a three-dimensional 

point cloud with color information associated with every 

point at every frame. We will show that we can obtain this 

information very easily from our acquisition setup that 

provides us not only the depth information of real world 

scene but also its color information. Our work is not limited 

to the data obtained by the Microsoft Kinect cameras but we 

will also show that our work is equally suitable for the 

three-dimensional content obtained using a traditional 

acquisition setup of multi-view color cameras. 

 

II. DATA ACQUISITION AND CALIBRATION 

Our multi-view recording setup comprises of multiple 

Kinect cameras. We test our acquisition, using two, four and 

six cameras. For acquisition with six cameras, three cameras 

are placed on each side of the room (Fig. 1a). The four corner 

cameras are placed at an angle of 90 between them. In 

between on each side, two additional cameras are placed that 

make an angle of 45 degrees with their two adjacent cameras 

(shown in red and yellow in Fig. 1a). In principle, all Kinects 

emit the infrared laser at the same frequency, which is a 

potential source of problem when using multiple Kinects for 

simultaneous acquisition. The ideal angle between two 

Kinects should be 180 degrees for simultaneous acquisition 

without any interference. For our work, we deliberately 

ignore this interference issue as our aim is to test 360° 

acquisition and study the effect of the interference. Our 

intuition that missing information from one camera will be 

filled by one of the other cameras turned out to be correct, as 

shown by our results. Our particular placement of the 

cameras allows for capturing a dynamic object within an area 

of around 2m × 3m. 

 

 
Fig. 1. Our system pipeline. (a) Six Kinects are used to acquire the RGB and 

depth images (only one frame from one camera is shown). (b) shows the 3D 

point cloud from one camera with the mapped RGB image. (c) Shows the top 

down view of six merged 3D point clouds. The alignment of the cameras 

after the global registration is shown in (d) using the color-coded points. The 

final segmented and filtered point cloud is shown in (e). 

 

Each Kinect is connected to a dedicated machine 

comprising Intel Core i5 2.4 GHz with 4 GB of RAM running 

Windows 7 64 bit. We believe that this is not a big limitation 

as all comparable acquisition systems use a similar setup. We 

make use of Open Kinect freenect Kinect drivers and library 

for data acquisition [12], as it provides a wrapper to query for 

the depth and the RGB data using a synchronous interface 

[13] - a feature not provided by Microsoft’s current SDK for 

Kinect. In general, all current Kinect SDKs provide an 

asynchronous interface where callback functions are invoked 

when sensor data is available. The synchronous interface 

manages a buffer where it holds the data and on query 

provides the depth or RGB data with their respective time 

stamp. This procedure introduces some gaps in the data, but 

for a multi-view synchronous capture, these gaps are 

desirable if all Kinects can query the data at the same time. 

All machines are clock-synchronized and record the data at 

same time, resulting in a sequence of depth and color images 

from all six cameras. 

 

 
Fig. 2. Intrinsic camera calibration - Checkerboard as recorded from the (a) 

color camera, (b) depth camera, and (c) infrared sensor. 

 

 
Fig. 3. Extrinsic calibration for global registration - checkerboard as 

recorded from three cameras. Corners from the checkerboard are used as 

some of the initial correspondences for the iterative closest point method for 

the global registration. 

 

A multi-view acquisition system requires both local and 

global calibration. Local calibration provides camera specific 

parameters, or intrinsic parameters. On the other hand, the 

global calibration or extrinsic parameters provide the spatial 

mapping between the cameras. For a Microsoft Kinect, which 

has two sensors, there is an additional level of local 

calibration. In the first step, both the depth and color sensors 

have to be calibrated to estimate their intrinsic parameters, as 

shown in Fig. 2. Secondly, a mapping should be established 

between the depth and color sensors so that color data can be 

projected on the depth data. Finally, depth values are mapped 

to real-world distances in order to get 3D positions in a global 

coordinate system. The intrinsic parameters are obtained 

using Matlab Camera Calibration toolkit. We record a 

checkerboard from both color and infrared sensors to 

facilitate this calibration. To convert the depth data to meters 

we employ the method proposed by Nicolas Burrus. We use 

the Kinect RGB Demo software to do the full internal 

calibration. Using the internal calibration we obtain a 3D 

point cloud for each camera along with its mapping to the 

color data. An example of the 3D point cloud with depth to 

color mapping can be seen in Fig. 1. 

The final step for getting a dynamic 3D point cloud is to 

merge all the cameras together in a global unified coordinate 

system. This global registration is an important step because 

without it each point cloud would be in its own coordinate 

frame. To achieve this global registration we first need to find 

out correspondences between different cameras. This is 

achieved by recording the checkerboard pattern at different 

locations for each pair of adjacent cameras, as shown in Fig. 
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3. The corners of the checkerboard seen in different views 

provide the correspondences between two cameras. These 

corners of the checkerboard are estimated using OpenCV, and 

in addition, we also find the correspondences using SIFT 

[14]. The correspondences are estimated in RGB space. The 

depth to RGB mapping is also obtain using correspondences 

between the point clouds. Once the correspondences between 

all adjacent cameras are found, any one camera is selected as 

a reference camera and the correspondences are used as the 

starting point for the iterative closest point algorithm to find 

the rotation and translation transformations that maps one 

point cloud to the other. This transformation is found for each 

of two adjacent pairs and all cameras are mapped to a unified 

global coordinate system, i.e. the coordinate frame of the 

reference camera. The global registration is a standard 

process and any relevant method can be applied for this step. 

In our work we used the Point Cloud Library (PCL) [15] 

because of its flexible data format (PCD) for storing point 

clouds. 

Global registration gives a unique pair of rotation and 

translation transformations for each camera and it is applied 

to the corresponding depth data. The final result of the global 

registration is a 3D point cloud for each animation frame. 

Additionally, using the mapping between color and depth 

cameras, we also associate the color value to each depth 

point. Thus we obtain a dynamic 3D representation of a real 

world scene. However, this representation is not time 

coherent as each frame is independent of the other. Examples 

of a 3D point cloud from one of the cameras can be seen in 

Fig. 1b and 4a.  

 

 
Fig. 4. One frame of the dynamic 3D point cloud with RGB mapping can be 

seen in (a). (b) shows the merged point clouds from all cameras after global 

registration and segmentation. 

 

Before getting a dynamic 3D point cloud, we have to 

segment the scene so that a real-world actor can be separated 

from the background. This background subtraction is 

performed using the depth data. First the acquisition room is 

recorded without the human actor and later the depth 

information of the background is used to subtract the 

real-world actor from the background. The result of Global 

registration and segmentation can be seen in Fig. 1 and Fig. 4. 

We use data provided by Ahmed et al. [3]. The data has a 

3D visual hull representation at every time step and a 

corresponding color information. We extract the point cloud 

from the visual hull representation and also extract the 

time-coherent representation of dynamic 3D content from the 

data, as explained in the next section. 

 

III. SPATIO-TEMPORALLY COHERENT 3D ANIMATION 

As explained in the previous section, the dynamic 

three-dimensional content obtained through either one or 

more Microsoft Kinects or a traditional multi-view video 

acquisition system completely lacks any temporal coherence. 

That is, there is no connectivity from one point cloud to the 

next for each consecutive frame of the video. Thus the data is 

not very useful in extracting any meaningful information 

about the scene other than simple visualization. It is not even 

visually pleasing, as the position of the points change so 

quickly from frame to frame that it distracts the viewer from 

the actual animation. We therefore propose a new method to 

extract spatio-temporal coherence information from this 

dynamic 3D point clouds using both geometric and color 

information. This coherence info will be found between two 

consecutive frames over the course the animation. Using the 

coherence information we aim at tracking a 3D point cloud 

throughout the entire animation. 

In the first step, we reconstruct a coarse surface 

representation of the all 3D point clouds by fitting a plane to 

every 3D point x at frame i. This course surface 

representation allows us to use the first order normal of that 

point N(xi), and the second order curvature C(xi). In the 

second step we estimate SURF features [16] on the color 

data. Using the intrinsic mapping we find key 3D points that 

are associated with the SURF features in the color images 

S(xi): 

Finally, using these three local descriptors for each x + i 

we define a matching function to find the mapping of each xi 

to xi+1: 

 

𝑀 𝑥𝑖 = 𝛼  1.0 −𝑁 𝑥𝑖 .𝑁 𝑥𝑖+1  + 𝛽  𝐶 𝑥𝑖 − 𝐶 𝑥𝑖+1   

+ 𝛾  𝑆 𝑥𝑖 − 𝑆 𝑥𝑖+1     

 (1) 

 

where xi+1 is the 3D point at the frame i + 1 , which is used to 

evaluate the eq (1). M(xi) is the matching distance, 1:0 

N(xi):N(xi+1) is the angular difference in orientation, with the 

similar orientation resulting in a smaller value. ||C(xi) C(xi+1)|| 

is the absolute difference of curvature between the points. 

||S(xi) S(xi+1)|| is the absolute difference in the distance to the 

two nearest SURF feature. The three parameters α, β, and γ 

are weighting parameters. For our method we set α = 0:3, β = 

0:25, and γ = 0:45. These values are chosen according the 

weight of each feature in terms of its influence. The SURF 

feature localizes the position; therefore it gets the maximum 

weight. Under the assumption that the motion of the object is 

small over two consecutive frame, and the deformations are 

isometric, the local orientation of the normal should not 

change. The orientation therefore gets the second highest 

weight. Finally, curvature is an important property for the 

matching, but due to inherent noise in Kinect depth data, it is 

not as reliable compared to SURF and orientation, therefore it 

is assigned a lower weight. We use this matching function to 

find the mapping of each xi to a point at i + 1. A map of xi is 

the point that minimizes the matching function M(xi). 

 

IV. RESULTS 

To test our method, we record a number of sequences 

using different number of cameras. Each sequence is between 

100 200 frames long. Additionally, we use data from Ahmed 

et al. [3], which is captured using eight color cameras with an 
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acquisition system synchronized by the dedicated hardware. 

The sequences range from a simple walking motion to the 

fast boxing motion. Results from our acquisition system can 

be seen in Fig. 1 and Fig. 5. It can be seen that the dynamic 

depth maps are well aligned and the RGB image are also 

mapped accurately to the point cloud. As can be seen in Fig. 

5a, there is no connectivity between the two frames, e.g. feet 

of the actor have different shape. Using the estimated time 

coherence, we can visualize the animation with a single 3D 

point cloud tracked over the sequence, which can be seen in 

Fig. 5b. It can be observed that our method can reliably track 

the point cloud from one frame to the next and consequently 

over the course of the animation. This results in generating a 

3D animation that is temporally smooth. 

 

 
Fig. 5(a) Shows two consecutive frames from a dynamic 3D point cloud 

without any time coherence. (b) Show same two frames tracked using the 

time coherence. For example, at the feet, the point cloud changes 

dramatically from one frame to the next without the time coherence, whereas 

in (b) the point cloud remains consistent. 

 

Our method is subjected to some limitations. Most notably, 

we only employ two nearest SURF features in our matching 

function (cf. eq. (1)). We cannot use more SURF features, 

because the nearest function can map points at different body 

parts, which will result in the incorrect animation. 

Additionally, due to high noise in Kinect’s depth data the 

curvature is not the most reliable descriptor. One can improve 

it by first smoothing the surface and then estimating the 

curvature. We would like to explore this in the future work. 

Despite the limitations, we show that it is possible to 

reconstruct spatio-temporally coherent 3D animation of a 

real-world object from RGB-D data from multiple Kinects. 

 

V. CONCLUSION 

We presented a method to acquire synchronized RGB-D 

data from multiple Kinects and reconstruct spatio-temporally 

coherent animation from that data. Microsoft Kinect provides 

both color and depth information of a scene. We combine 

multiple Kinect cameras and capture a complete 

three-dimensional dynamic scene. Our system is scalable and 

our spatio-temporally coherent re-construction method can 

be applied to any three-dimensional representation of the 

data, as long it is comprised of 3D point clouds with color 

information. We demonstrated this by applying our method 

on the data obtained using multiple acquisition setups, and in 

future we would like to extend our work to increase the 

robustness of our tracking method and explore the 

possibilities in the area of scene analysis and dynamic surface 

reconstruction. 
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