
  

 

Abstract—In this paper we present two implementations of 

event-driven algorithms for simulating molecular dynamics 

using the Omnet++ Simulation Framework and its Future 

Event Set (FES) implementation. The first one uses a cell-linked 

list algorithm. The second one extends the cell-linked list 

algorithm incorporating a Verlet neighbor list algorithm. We 

also present results and compare both algorithms over a set of 

different scenarios. Finally, we discuss the advantages of using 

the Omnet++ Simulation Framework and the implemented 

algorithm for simulating cell-signaling communications. 

 
Index Terms—Event-driven, molecular dynamics, Omnet++, 

particle system.  

 

I. INTRODUCTION 

Cells, in terms of biological organisms, are able to perceive 

and produce a response to their environment accordingly. For 

unicellular organisms, the ability to react to changes in their 

environment is key for survival, whereas for multicellular 

organisms the exchange of information between neighbor 

cells governs basic cellular activities and actions. This 

communication between cells is known as cell signaling. 

There are different types of cell signaling communications: 

cells can communicate with each other via direct contact 

(juxtacrine signaling), over short distances (paracrine 

signaling) or over large distances (endocrine signaling). 

In this work we focus on the subset of juxtacrine and 

paracrine signaling types, where event driven simulation 

algorithms can be easily applied. Specifically, we will focus 

on the simulation of large systems of particles modeling the 

communication channel using a hard-sphere system approach. 

Furthermore, since our goal is to provide the tools to study 

these types of communications, we present an 

implementation of two event-driven algorithms implemented 

using the Omnet++ [1] framework simulator. We also 

comment some of the results of running the algorithms on a 

set of different scenarios. 

To conclude, we discuss the advantages of using 

event-driven algorithms on cell-signaling communications, 

but we also point out the difficulties to model realistic 

scenarios. 

 

II. EVENT-DRIVEN MOLECULAR DYNAMICS 

In molecular dynamics there are two different, well-known 
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simulation methods [2]. The first one, known as time-driven 

simulation, divides the simulation in small steps and 

performs the required computations after each time step. The 

other one, referred to as event-driven simulation [3], [4], 

defines a series of events that take place during the simulation 

process, which are then processed one after the other. The 

main difference from the time-driven method is that the 

simulation time does not advance in small steps, but it 

advances the difference in time between events, thus jumping 

in time from one event to the next. Time-driven algorithms 

tend to be inaccurate when the time step is large (in terms of 

processed events), and become more accurate as the time step 

tends to zero. On the other hand, event-driven algorithms 

tend to keep accuracy since automatically adjust the time 

step. 

One example of molecular dynamics using a time-driven 

simulation method applied to molecular communications is 

the N3Sim [5] from the N3Cat Initiative, which has already 

brought valuable results on the field of molecular 

communications [6]. 

Although both simulation methods were considered we 

chose to implement an event-driven algorithm [7]. The main 

reason to do so is that it best suits for a network simulation 

framework like Omnet++, since it already implements a 

Future Event Set (FES) that can be easily adapted as a 

self-ordering event heap for the algorithm. The main 

structure of the algorithm is based on the hard-spheres model, 

although it can be easily extended to other type of models 

such as fluid and particle interaction models. 

The hard-spheres model, also referred as the billiards 

model, consists of a collection of non-overlapping spheres (or 

disks in a 2D model) contained within a bounded region, each 

moving with a certain velocity. The main features of the 

model are that the spheres follow the Newtonian laws of 

physics, that is, particles move along simple, deterministic 

paths in between collisions. Also binary collisions are 

considered to have no duration and involve deterministic 

changes of velocities of the colliding particles. Furthermore, 

elastic collisions are considered, thus conserving the total 

momentum and kinetic energy of the system. 
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Secondly, different types of events must be considered: 

sphere to sphere collision evens and sphere to boundary 

collision events are the main ones, but other events must be 

considered to help reduce computational costs. 

Finally, we model the cells, the signaling molecules and 
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the medium particles by choosing different sphere radius, 

mass and velocity values accordingly. 

 

III. THE ALGORITHM 

A. The Main Loop 

Starting from a naïve approach, the algorithm is composed 

of the following steps: 

S1: Compute the time of the next collision event. 

S2: Advance all the particles in the system up to the 

computed time. 

S3: Change the state of the particles associated to the 

computed event. 

Then repeat these three steps up to the required simulation 

time. This oversimplified algorithm can be applied as long as 

the number of particles in the system is not very large. But 

this algorithm does not scale well with the total number of 

particles since the required number of calculations that have 

to be performed each iteration depends on the number of 

particle pairs as follows 

 

1
( 1)

2
cN n n                               (3) 

 

Then it is clear that some changes need to be made on the 

previous algorithm to improve the performance and 

scalability [8]. The first one is to save collision times, since 

on two consecutive iterations the computed time on the first 

iteration will likely be the same on the second one. Is at this 

point where we make use of the Omnet++ Future Event Set 

(FES) implementation, and saving the collision times in its 

time ordered queue of events. The second change comes from 

the realization that a collision between two particles is not 

likely to affect distant particles in the near future. So in order 

to reduce the number of pairs that need to be checked for each 

particle we implement a cell list algorithm. 

B. Cell List Algorithm 

As Fig. 1 shows, a cell list algorithm consists in dividing 

the simulation space into smaller cells and link the particles 

to the region they are in. Then, when a particle needs to 

compute the next collision event it only needs to check the 

pairs with particles in cells nearby, since distant particles are 

not likely to interfere. 

 
Fig. 1. Simulation space divided into smaller cells. 

 

This introduces a new type of event, conveniently called a 

transfer event that needs to be handled in the algorithm. This 

event is produced when particles leave one cell and enter 

another one, and ensures that no collisions are overlooked. 

This may seem that adds extra computation to our algorithm. 

However, since distant particles are not constantly checked 

for collisions (which is an expensive computation in terms of 

CPU cycles) the overall performance is improved. 

Furthermore, these transfer events will also be saved in the 

Omnet++ queue of events to save the algorithm to be 

constantly checking for them. 

Nevertheless, since we need to create a list of particles for 

each cell, this algorithm has a higher cost in memory usage: 

the smaller the cell size the higher the number of lists needed 

and the transfer events that need to be handled. We can see 

that there is a lower limit for the size of the cell and thus in the 

total number of cells: a cell can be no smaller than the 

diameter of a particle. Also, the finer the grid, the fewer pairs 

that need to be checked. 

At this point, our algorithm is formed of the following 

steps: 

S1: Compute the time of the next event, be it a collision 

event or a transfer event. 

S2: Advance all the particles in the system up to the 

computed time. 

S3: Handle the event, that is, change the particle states in 

case of a collision event, or update the cell lists in the event of 

a transfer. 

These three steps are conveniently placed in the event 

handler that every Omnet++ module has to implement. This 

is a relevant difference with previous hard-sphere 

event-driven algorithms seen so far. Extending a sphere as an 

Omnet++ module and placing the steps from the main loop in 

its event handler we can remove step 2, which leaves the 

algorithm with two main steps: 

S1: Compute the time of the next event, be it a collision or 

a transfer. 

S2: Handle the event, that is, change the particle states in 

case of a collision event, or update the cell list in the event of 

a transfer. 

This change gives the algorithm an asynchronous approach, 

meaning that not all the particles are at the same simulation 

time. This is easily handled by saving the last event time for 

each of the particles. 

C. Verlet Neighbor List Algorithm 

In order to further improve the performance of the 

algorithm, we have also included a Verlet Neighbor List 

algorithm, or also known as Near-Neighbor List algorithm 

[9]. This algorithm consist in skipping those particles that are 

further away from a given cut off radius ( cutR ), only taking 

into account the ones that fall inside, creating the so called 

neighbor list. As Fig. 2 illustrates, only the particles that are 

closer than cutR  are taken into account. Collisions are then 

checked only with those particles that are in the neighbor list. 

In our case, the neighbor list algorithm uses the cell lists to 

retrieve only the particles in the neighboring cells. Then, 

applying the cut off radius further crops the list of particles to 

be checked. However, this list will change over time and 

needs to be updated. We then define the out-of-neighbor 

event, that is, the current particle has left the neighbor area 

and needs to update its neighbor list. Furthermore, this list 

update is also performed when the particle leaves the space 

cell where it is listed. 
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Fig. 2. 2D particles falling inside and outside of the cut off radius of the i-th 

particle. 

D. Events Translation and Omnet++ Visualization 

From the previous algorithms we must translate three types 

of events into Omnet++ messages. Therefore, we define three 

different kinds of Omnet++ messages: 

1) Collision message, whether it is a particle to particle or a 

particle to boundary collision. 

2) Transfer message. 

3) Out-of-neighbor message. 

These messages are then managed by Omnet++ and 

delivered to each particle (module). Every time a message is 

delivered it will trigger the execution of the steps before 

mentioned, computing the next event and updating the 

simulation state each time, until the desired simulation time is 

reached. 

At the same time, a novel web server module has been 

introduced into the simulation algorithm. Omnet++ comes 

with tcl/tk visualization support, but with no 3D space 

representation. The idea behind this custom, self-content 

module is to surpass some of these limitations and offer the 

ability to visualize the current simulation status. This web 

server runs on an independent, parallel thread and offers real 

time 3D visualization using any of the latest web browsers 

using the WebGL technology [10]. This opens the door to a 

whole new set of tools to manage molecule dynamics 

simulations with Omnet++. 

 

IV. RESULT 

In this section we validate that the algorithm behaves as 

expected through a series of experiments. First we use 

different initial particle distributions to compare how the 

algorithm behaves. Secondly, we compare the running time 

of both algorithms over a set of different configurations 

parameters. Finally, we suggest possible modifications to 

better fit the algorithm for the simulation of cell signaling 

communications. All the experiments are performed using a 

3D simulation space. The results presented hereafter have 

been obtained running the algorithm on a x86_64 Intel(R) 

Core(TM) i7-2600 CPU @ 3.40GHz GenuineIntel 

GNU/Linux, 8.0 GB RAM. 

 

 
Fig. 3. Chromium web browser visualizing a running simulation. 

 

A. Initial Particle Distribution 

We start with a fixed number of particles n=1000 and a low 

volume density ρ~1%. First we place the particles randomly 

over a sphere surface to minimize the neighbor particles. 

Secondly we place all the particles near the center of the 

simulation to increase it. Finally we repeat the simulation 

placing the particles following a cube pattern. In Fig. 4 we see 

that the centered particle distribution initially produces a 

much higher amount of particle collisions to later tend to a 

stationary state, similar to the sphere surface distribution, 

which corresponds to what is expected. 

Now we increase the number of particles to n=10000 and 

the volume density up to ρ=35%. This means that the sphere 

surface distribution cannot be used in the same way since 

there is not enough room. We opt to place the particles over a 

series of concentric sphere surfaces, which for higher volume 

densities it tends to a close-packing sphere distribution. Fig. 5 

shows the projection on a x-y plane of the particles position 

for the cube distribution (left) and the sphere or close-packing 

distribution (right). 

This time we focus on both the number of collisions per 

second at the start and end of the simulation, and the initial 

and final particle distribution. In Fig. 6 we see how the two 

different initial distributions rapidly tend to stabilize at a 

certain rate of collisions. Fig. 5 shows the particle distribution 
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at the start of the simulation and Fig. 7 at the end. We see that 

after a certain amount of time the effect of the initial 

distribution becomes unnoticeable on the final particle 

disposition. We also notice that the cube distribution tends 

much faster than the dense-packed distribution to a steady 

state. 

In Fig. 6 we see how the transient tends to stabilize much 

faster than the previous results with a lower volume density. 

Also both distributions tend to the same collision rate. The 

higher collision rate during the steady state relates to the 

increased volume density, which reduces the time between 

particle collisions. 

In Fig. 7 we see the position of the particles centroid after 

t=100ns for both initial distributions. The first half shows the 

final position using the cube distribution, whereas the second 

half shows the final position using the dense-packed 

distribution. We see how different initial states tend to a 

similar steady state distribution, as expected. 

 

 
Fig. 4. Particle collisions vs. simulation time for three different initial 

particle distributions (n=1000 particles, ρ~1%). 

 

    
Fig. 5. Left: x-y projection of particles position at t = 0 ns, placed following a 

cube pattern. Right: x-y projection of particles position at t = 0 ns, 

dense-packed at the center of the simulation space. 
 

 
Fig. 6. Particle collisions vs simulation time. 

 

 
Fig. 7. Comparison of the final particles position between the cube 

distribution (first half) and the dense-packed (second half), after 100 ns. 

In Fig. 8 we plot the paths of a particle during the transient 

state when using the cube distribution (on top) and the path 

that follows a particle using the dense-packed distribution 

(bottom). We see how the last part of the particles path 

describes the same behavior (similar to a random-walk), 

according to the steady state. On the other hand, at the 

beginning of the paths the two particles show a different 

behavior according to the initial distribution used (cube and 

dense-packed, respectively). The first one (on top) shows a 

uniform collision-free paths between sections with higher 

collisions, whereas the second one (bottom) has a main 

section with much more collisions that force the particle to 

remain near the same place for longer time. 

Since the cube distribution reaches the steady state faster 

and minimizes the effect of the transient-state we opt to use it 

in order to evaluate the algorithm performance.  

 

 
Fig. 8. Particles path for the cube distribution (top) and dense packed 

distribution (bottom). Shadowed regions show the end of the path. 

B. Algorithm Running Time 

We run both algorithms varying the number of particles 

from 1000 to 27000 with a fixed volume density, keeping it at 

ρ=15%. We also keep the cell size fixed at its lower limit, 

equal to the diameter of the particles. The particles are placed 

in the simulation space following a cube pattern. In Fig. 9 we 

plot the running time versus the number of particles in the 

system. 

 

 

 
Fig. 9. Top: running time vs. number of particles of each algorithm for a 

volume density of ρ=15% and ρ=35%. Bottom: running time vs. volume 

density. 

 

In Fig. 9 (top) we see that execution time grows linearly 

with the amount of particles in the system. This behavior is 
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achieved thanks to the use of the cell list algorithm. 

Furthermore, in both figures we see that the Verlet list 

algorithm outperforms the previous one. However, we also 

see that for lower volume densities there is no overall benefit 

from choosing the Verlet list implementation over the cell list, 

since the costs of building and updating a neighbor list is 

higher for less neighbor particles. We must also note the 

higher slope when using a volume density of ρ=35%. This is 

due to the higher collisions that the algorithm needs to check. 

Now we run the algorithms varying the volume density 

while keeping a fixed number of particles n=1000 and a 

Verlet list radius of r=2 (the list radius also equals the space 

cell side length which is the smallest possible, that is, the 

diameter of the particles). Again, the initial position of 

particles follows a cube pattern, and the space cell size is set 

to equal the diameter of the particles. In Fig. 9 (bottom) we 

plot the running time versus the volume density of the system. 

We see that the Verlet neighbor list algorithm performs 

slightly better than the cell list algorithm in terms of running 

time, as expected. 

 

 
Fig. 10. Comparison between the running time vs. near neighbor list radius 

(Verlet list radius) using different space cell lengths (n=10000 particles, 
volume density 35%). 

 

Given the previous results, now we fix the number of 

particles n=10000 and the volume density ρ=35% and plot in 

Fig. 10 the running time vs. the Verlet list radius when using 

different values for the space cell side length. We clearly see 

that as we increase the length of the space cell we can highly 

reduce the running time of the simulation by using smaller 

Verlet radius, up to a limit. 

Fig. 11 shows a similar result, but this time comparing the 

running time against the number of cells per side. We see 

how there is a tradeoff between the use of different Verlet list 

radius and the size of the space cells. However, it is 

convenient to have a combination of both to improve the 

running time of the algorithm. 

 

 
Fig. 11. Running time vs. space cells per side. 

 

Finally, in Fig. 12 we run the algorithm using similar 

parameters to those used in [8], that is: n=50000 particles and 

ρ=15%. We see that, despite the higher running time values 

obtained due to the simulation time used, the overall behavior 

of the algorithm is the same, indicating that the simulator is 

well behaved. Herir Sigurgeirsson, Andrew Stuart and 

Wing-Lok Wan in 2001 [8] report that for a 5000 particle 

system, their algorithm handles about 16,000 collisions per 

second on a Pentium III PC. For the same amount of particles 

our algorithm handles around 30,600 collisions per second 

using the cell list algorithm. This increase is mainly due to the 

use of a newer CPU with a higher clock rate. However, the 

use of a combination of both algorithms improves the 

previous value up to 34000 collisions per second. 
 

 
Fig. 12. Running time vs. number of space cells per side. 

 

C. Cell Signaling 

In Fig. 13 we reproduce the signaling process between two 

cells modeled as spheres. The first one is configured as a 

particle emitter, emitting particles with an emission rate of 

1,000 particles/ns to all directions. Then a nearby sphere, 

configured as a particle receiver, receives the emitted 

particles removing them from the simulation space in the 

process. As we can see, the emitted pulse is highly reduced in 

amplitude mainly due to the distance between the emitter and 

receiver, proportional to r
2
. Also the duration of the pulse 

received has been increased compared to the emitted pulse 

due to the particles propagation and collisions. 

 

 
Fig. 13. Signaling process between a particle emitter and a particle receiver. 

 

V. CONCLUSION 

In this paper we have shown that both algorithms are 

capable to run an N-body simulation with a large amount of 

particles alongside an event-driven network simulator like 

Omnet++. This leads us into thinking that we are at a good 

start point to develop a new open, integrated framework for 

Omnet++. We have also shown a new visualization software 

developed with 3D capabilities (in parallel with the existing 

tcl/tk) thanks to a novel web server module and the use of the 

latest WebGL technology. This makes us think that the 

Omnet++ framework may need an update with new 

visualization capabilities, like incorporating The 
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Visualization Toolkit (VTK). 

As part of future work, one of our immediate goals will be 

to further develop this work and delve into new and more 

elaborated simulation scenarios regarding the cell signaling 

communications. 
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