
  

 

Abstract—Surrogate models can be used to replace expensive 

computer simulations for the purposes of optimization. In this 

paper, we propose an optimization approach based on artificial 

neural network (ANN) surrogate models and infill sampling 

criteria (ISC) strategy to evaluate design variables. The 

criterion for infill sample selection is a function which aims at 

identify design that offer potential improvement. We employ 

four widely used analytical benchmark problems to test the 

proposed approach. Our results show that a more accurate 

surrogate model obtained with fewer points is obtained when 

one includes the infill sample criterion to an ANN-based 

optimization. 

 
Index Terms—Surrogate model, design variables, artificial 

neural network, infill sampling criteria, optimization, 

benchmark function.  

 

I. INTRODUCTION 

Optimization methods for black-box systems have 

applications in many engineering-domains. Most engineering 

design problems require high fidelity simulations to evaluate 

design variables. These simulations are based on 

mathematical models of some system of interest. Examples 

include finite element analysis (FEA) method for structural 

engineering problems or Navier-Stokes models in 

computational fluid dynamics (CFD). However, for many 

real world problems, despite steady advances in computing 

power, a single simulation can take many minutes, hours, or 

even days to complete. As a result, design optimization 

becomes impractical since it may require thousands or even 

millions of simulation evaluations. For example, in order to 

find the optimal material parameters, the finite element 

analysis (FEA) along with nanoindentation test is undertaken 

[1]-[3]. 

Therefore, to overcome this problem cheap approximating 

models (often termed “surrogate models”) are sought. These 

are based on a limited number of calls to the high fidelity 

model. Once constructed, the surrogate model can replace the 

original high fidelity model for the purposes of optimization. 

Polynomial regression [4]-[6], radial basis function (RBF) 

[7], and Kriging [8], [9] are among some of the most 
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prominent and commonly used techniques. In this paper we 

concentrate on artificial neural network (ANN) surrogate 

models. ANN models have been successfully applied to 

many engineering problems. ANNs are universal 

approximates which have been mathematically proven to be 

able to approximate any continuous nonlinear function 

arbitrarily well over a compact interval to any degree of 

accuracy as long as they contain at least one hidden layer.  

During an ANN-based optimization, the global optimum 

will not be found if we only utilize the ANN models built 

from a small set of initially sampled data, since the models 

are not globally accurate. Therefore, several new inputs 

should be added so that the ANN models can be updated, 

where each new input incorporates with all prior information. 

This process is performed by the infill sampling criterion 

(ISC) function. ISC function can adaptively select better 

additional sampling point to improve the surrogate model and 

find the optimum value at every iteration. This step is 

repeated until a time limit, evaluation budget, convergence, 

or model accuracy is reached.  

Since the iterative strategy represents the heart of the 

surrogate-based optimization process, the choice of ISC is 

then of great importance. In [10], the expected improvement 

(EI) is introduced. Also, Viana [11] used the probability of 

improvement (PI) to update a Kriging surrogate model.   

In this paper, we propose a criterion for infill sample 

selection that helps to select the points in the design space 

with the biggest contribution to the current error. In other 

words, it considers both the spatial position of the design 

variables and the areas of high estimated approximation error 

generated by the surrogate model. This criterion is simple and 

easy to use. 

The rest of this paper is organized as follows. Section II 

introduces the setting of this problem. The proposed 

methodology is presented in Section III. Section IV we show 

some results from our approach and in the final section 

conclusions are drawn and areas of further research 

highlighted. 

 

II. PROBLEM SETTING 

We consider the system of interest as a black box that 

provides no information other than the measurements of 

system performance.  In a typical approximation model the 

relationship between responses and design variables on a 

k-dimensional domain D is expressed as 

 

𝑦 = 𝑓(𝒙,𝑢),                                 (1) 

 

where 𝑦  is the observed response, 𝒙  is a vector of k 
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independent design variables whose values are unknown, and  

u is a vector of design parameters whose values are fixed as a 

part of the problem specifications. In the case of a high 

fidelity model (such as FEA), the design parameters are 

assigned values, that is the response y must be a function 𝑓𝐿 

of the parameters 𝒙 and 𝑢: 

 

𝑦 = 𝑓𝐿(𝒙,𝑢).                                (2) 

 

Assuming that we can afford to run the high fidelity 

analysis 𝑁  times, we sample for 𝑁  designs denoted by 

((𝒙 𝟏 ,𝑢), (𝒙 𝟐 ,𝑢),… , (𝒙 𝑵 ,𝑢))  , at which we obtain the 

responses  (𝑦 1 ,𝑦 2 ,… ,𝑦(𝑁)). The surrogate model is built 

on these designs and responses. 

The surrogate-based optimization problem is formulated 

as: 

 

𝑀𝑖𝑛 𝐸𝑢  |𝑓 𝒙,𝑢 − 𝑧(𝒙,𝑢)|,                     (3) 

                             s.t.  𝑥 ∈ 𝐷 ⊆ 𝑋𝑘  

 

where 𝐸𝑢  denotes the expectation with respect to u, 𝑓(𝑥,𝑢) 

is the experiment response, 𝑧(𝑥,𝑢) is the prediction obtained 

by ANN model, and D is the design space.  

When the probabilistic distribution function 𝜑(𝑢) is given, 

𝐸𝑢  is calculated by the following equation:  

 

𝐸𝑢 =  𝜑 𝑢 |𝑓 𝒙,𝑢 − 𝑧 𝒙,𝑢 |𝑑𝑢 .            (4) 

 

On the other hand, when the uncertain parameters deviate 

randomly within a certain interval, or the probabilistic 

distribution function is not given explicitly, the above 

computation is substituted by the average over m samples. In 

this case, a large number of samples can increase the 

accuracy of such a computation: 

 

𝐸𝑢 =  |(𝑓 𝒙,𝑢𝑖 − 𝑧(𝒙,𝑢𝑖)|𝑚
𝑖=1  .               (5) 

 

III. METHODOLOGY 

In this section, the methodological foundations of our 

approach are introduced. The flowchart for the optimization 

method based on ANN with ISC is shown in Fig. 1. The first 

step is to generate an initial data set based on some design of 

experiments. A surrogate model is then built based on true 

simulations from this initial sample. The second stage 

extracts knowledge from the surrogate to find points for 

model refinement referred to as updating. These update 

points are selected via an infill sampling criterion. 

 

 
Fig. 1. Flowchart for ANN with ISC. 

A. Sampling Plan 

The first step consists of generating an initial population of 

design points either by random generation or by means of 

design of experiments (DOE) techniques [12]. DOE is the 

preferred sampling plan as it permits to evenly fill the design 

space with a limited number of points.  

The most frequently used techniques in this stage of the 

process are latin hypercube sampling algorithm (LHS) [13], 

full-factorial design, orthogonal arrays and box-behnken 

design. Each of these methods has its own advantages and 

disadvantages depending on the characteristics of the design 

problem.  Here, we use LHS design optimized with respect to 

the maximum criterion, which is common choice in many 

cases. The advantage of this method is that they divide 

uniformly the design space for each parameter and guarantee 

to have good space-filling properties.  

Then, high fidelity model is executed for all the values of 

the input variables in the DOE specified in the previous step. 

B. Building a Surrogate  

After selecting the initial sample points an appropriate 

experimental design and performing the necessary computer 

runs, the next step is to build surrogate model. Surrogate 

model is the key to surrogate-based design optimization.  

There are several approaches for building such models, 

here we choose to work with ANNs on the grounds that their 

training is inexpensive, yet, as we will see, they are 

sufficiently accurate for optimization purposes.  

ANNs are computational models inspired by animal 

central nervous systems (in particular the brain) that are 

capable of machine learning and pattern recognition. ANNs 

can be seen as systems of interconnected "neurons" that can 

compute values from inputs by feeding information through 

the network. Three training methods are commonly used, 

namely back propagation, conjugate gradient, and 

Levenberg-Marquardt methods. 

In Fig. 2, a sketch of a hierarchical neural network is 

shown. An ANN is a multilayered construction made up of 

one or more hidden layers placed between the input and 

output layers. The layers include several processing units 

called neurons. All of them are connected with variable 

weights that have to be determined. 

 

 
Fig. 2. Sketch of a multilayer feed forward neural net. 

 

The inputs are operated and transformed into the output by 

the state transition rule as 

 

𝑣𝑗 =  𝑤𝑖 ,𝑗𝑦𝑖 + 𝜃𝑗 ,                            (6) 

 

𝑦𝑗 = 𝑓(𝑣𝑗 ),                                 (7) 

 

where 𝑦𝑖  in “(3)” and 𝑦𝑗  in “(4)” denote the output from a 
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neuron 𝑖 acting as an input on neuron 𝑗 and the output of 

neuron 𝑗  respectively. 𝑤𝑖 ,𝑗  is the synaptic weight, 𝜃𝑗  is the 

bias, and 𝑣𝑗  is the state variable of the synaptic weights which 

imply the connection strength between the neurons. A neuron 

in the network produces its output 𝑦𝑗  by processing the net 

input through an activation (transfer) function 𝑓. In this work, 

the activation function is given by the smooth sigmoidal 

function 

 

𝑓 𝑣𝑗  = 1/{1 + exp(−𝑣𝑗 )}                         (8) 

 

taking values between 0 and 1. 

An ANN is trained by repeatedly presenting a series of 

input and output pattern sets to the network. The neural 

network gradually “learns” the relationship of interest by 

modifying the weights between its neurons to minimize the 

error between the actual and predicted output patterns of the 

training set. Then, a separate set of data called the test set to 

monitor network’s performance. During training, the learning 

rule is used to iteratively adjust the weights and biases of the 

network in order to move the network outputs closer to the 

target values by minimizing the network performance 

indicator. 

C. Infill Sampling Criterion 

The cornerstone of any optimization strategy based on 

surrogate models is the choice of the updating method, i.e. 

given an initial global model, how to select the next sites 

where the expensive objective will be sampled. Perhaps the 

most obvious strategy is to re-sample in areas that appear 

promising in terms of the objective function value which 

predicted by the surrogate model. The success of this 

approach depends on the quality of the initial approximation. 

If the initial approximation is accurate, it is likely to lead the 

designer quickly to the global minimum or at least to a very 

good solution. 

A second approach is to search areas of high estimated 

approximation error, i.e. in our case, to choose the design that 

maximizes the estimated error of the ANN predictor. This 

infill criterion uses information of the current model in order 

to assess the utility of evaluating this design on the actual 

problem. The infill criteria are used to increase the accuracy 

of the prediction by creating globally accurate surrogate 

models. 

The offset (error) value 𝐼𝑧 𝑝  is as a quality index, which 

is the sum of the difference between the actual response and 

simulation data. In order to calculate this, we make a 

sampling, more precisely,  

 

𝐼𝑧 𝑝 =  
1

𝑚
 (𝑧 𝑢𝑖 ,𝑝 − 𝑓(𝑢𝑖 ,𝑝))2𝑚

𝑖=1 ,            (9) 

 

here, 𝑓(𝑢𝑖) is the actual response at points 𝑢𝑖  , the function 

𝑧  is a ANN model trained, and m  is the number of 

experiment data related to the fix parameter 𝑢. 

We try to select points with the biggest contribution to the 

current error. In order to estimate the representativeness of 

selected point 𝑝, we give a weight function, that is  

 

𝑤𝑖 ,𝑗 = 𝑑(𝑝𝑖 ,𝑝𝑗 )                              (10) 

where 𝑑 𝑝𝑖 ,𝑝𝑗  = 1 − exp  − 𝑝𝑖 − 𝑝𝑗 
2
 , and 𝑝𝑗  is the 

original LHS data. This weight function gives the similarity 

of the design variables. When the two design variables are 

near each other, the value of this function is small; on the 

contrary, the two design variables are far away, the value is 

big. 

Based on the above equations, the proposed ISC is given 

by: 

 

𝒑𝒊 = arg𝑚𝑎𝑥𝑝∈𝐷   𝑤𝑖 ,𝑗 (𝐼(𝒑𝑖) − 𝐼((𝒑𝑗 ))𝑛
𝑗=1  .    (11) 

 

The proposed ISC has the following advantages: 1) it can 

intelligently add sample points to improve the ANNs, so it 

can learn with a small number of expensive simulations; 2) it 

can avoid searching the areas with relative large function 

values and decrease the computational cost; 3) it considers 

both the similarity of the design variables and the points of 

high estimated approximation error which generated by ANN 

model; 4) It is simple and easy to use. 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this section, we employed four widely used analytical 

benchmark problems [14], namely Rosenbrock, Sphere, Six 

Hump Camel Back functions of 2-dimensional (2D), and 4D 

Sphere function.  

The benchmark functions are chosen to cover a large 

variety of problem properties. Rosenbrock (2D) and Sphere 

(2D) functions are unimodal functions. The valley of the 

global minimum is easy to find, however fine convergence to 

the global minimum is difficult. Six Hump Camel Back (2D) 

is a multimodal function. Also, the simulation is conducted 

on the 4D Sphere function to account for multiple 

parameters. 

We use LHS to generate the initial sample in all cases. In 

some cases, by pure luck, this initial sample may include a 

point close to the global optimum, accelerating the search. To 

avoid any bias when testing, here ANN and ANN with ISC 

use the same initial sample. In our setup, the simulation and 

training of the ANN have been performed using the Neuroet 

toolbox [15]. Furthermore, the transfer function between the 

input layer and the hidden layer is “log-sigmoide”, while the 

transfer function between the hidden layer and the output 

layer is “pure-linear”. A genetic algorithm is used for both 

objective-function of interest and for the maximization of 

ISC. 

The performance of the infill criteria can be assessed in a 

number of ways. Here this performance is measured by the 

distance of the best finding optimum to the global optimum. 

To be more precise, for benchmark functions, the true 

optimum 𝑥∗ is known, an intuitive method of comparison is 

to find the absolute error between the true optimum 𝑥∗ , and 

best feasible point 𝑥𝑏𝑒𝑠𝑡 . The absolute error is defined as: 

 

 𝑥∗ − 𝑥𝑏𝑒𝑠𝑡  =  (𝑥∗ − 𝑥𝑏𝑒𝑠𝑡 )2.                 (12) 

 

A series of 20 runs was performed for each of the 4 test 

functions. This was done to see at what low evaluation 

number each method approached convergence for all 20 runs. 

With that setup, the global optima of the criteria are found in 
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the vast majority of the cases for all considered 

configurations.  

A. Sphere Function (2D) 

The first example is the minimization of the Sphere test 

function, a common and simple benchmark test function used 

in surrogate-based global optimization. It is given as 

𝑓 𝑥 = 𝑥1
2 + 𝑥2

2. Test area is usually restricted to hyphercube 

−5.12 ≤ 𝑥𝑖 ≤ 5.12, 𝑖 = 1, 2. It is continuous, convex and 

unimodal. The Fig. 3 shows its two-dimensional form. There 

is a global optima of the Sphere function, for which 

𝑓(𝑥∗) = 0, 𝑥∗ =  0,0 .  
 

 
Fig. 3. Sphere function in 2D. 

 
TABLE I: COMPARISON OF ERRORS FOR SPHERE FUNCTION (2D) 

Method 

The number 

of sample 

points 𝑚 

The values of the finding 

optima 
Average error 

ANN 10 (-1.127472, 0.324886) 1.376740 

ANN 30 (6.36508E-5, -0.008073) 6.51796E-05 

ANN 35 (-0.0094507, -0.005342) 1.17858E-04 

ANN 40 (-0.0072253, -0.003513) 6.45475E-05 

ANN 

with ISC 
11 (-0.465341, -0.217933) 0.264037 

ANN 

with ISC 
15 (0.098401, -0.064587) 0.013854 

ANN 

with ISC 
16 (-0.015163, 0.009281) 3.16055E-04 

ANN 

with ISC 
18 (0.001937, -0.00234) 9.22623E-06 

 

We select an initial design with m =10 points. Table I 

shows the results of both ANN and ANN with ISC 

approaches. It can be seen that as m increases, our model 

generally becomes more accurate (the error reduces), as 

expected. Here we compare the accuracy of the optimum of 

the true function with and without ISC. Both approaches 

succeed in finding the true optimum. Without ISC the ANN 

required around 40 data points to reach the global optimum. 

On the other hand, utilizing the proposed ISC the optimum 

was found with only 18 points after 8 iterations. So in this 

case, ANN with ISC is far superior. 

B. Six-Hump Camel Back Function (2D) 

Six-Hump Camel back function (2D) is defined as: 

𝑓 𝑥 = 4𝑥1
2 − 2.1𝑥1

4 +
𝑥1

6

3
+ 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4. 

 

Test area is usually restricted to −5 ≤ 𝑥𝑖 ≤ 5, 𝑖 = 1, 2. 

 

 
Fig. 4. Six Hump Camel Back Function in different range. 

 

The left plot in Fig. 4 shows the six-hump Camel function 

on its recommended input domain. The plot on the right 

shows only a portion of this domain, to allow for easier 

viewing of the function's key characteristics.  

In the continuous domain, six local minima are located, 

two of them are global minima; namely, 𝑥∗ = (0.089842,
−0.712656)  and 𝑥∗∗ = (−0.089842,0.712656)  with 
𝑓(𝑥∗) = 𝑓 𝑥∗∗ = −1.031628 . It also has two additional 

local minima. 

We select an initial design with m=30 points. Table II 

shows the results of both ANN and ANN with ISC 

approaches. Since this test function is complicated, the 

results of both methods are not entirely accurate. In some 

cases, the optimization method gets trapped in one of the 

local minima. Still, the use of the ISC took nearly 36 points 

for an acceptable solution. Without the ISE, a similar solution 

was found after 45 points.  

 
TABLE II: COMPARISON OF ERRORS FOR SIX-HUMP CAMEL BACK 

FUNCTION (2D) 

Method 

The number 

of sample 

points 𝑚 

The values of the finding 

optima 
Average error 

ANN 30 (1.833207, 0.269188) 1.395452 

ANN 35 (0.989603, 1.410874) 0.909037 

ANN 40 (0.340639, 0.130975) 0.511647 

ANN 45 (-0.813648, 0.218690) 0.619639 

ANN 

with ISC 
31 (1.840641, 0.107743) 1.367189 

ANN 

with ISC 
35 (0.0954703, 0.004843) 0.507324 

ANN 

with ISC 
36 (0.270422, -0.05306) 0.483538 

ANN 

with ISC 
38 (0.409892, 0.328426) 0.445692 

 

C. Rosenbrock Function (2D) 

The Rosenbrock’s valley is a classic optimization problem, 

known as banana function or the second function of De Jong. 

It is naturally nonseparable and is defined as follows: 
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𝑓 𝑥 = 100 × (𝑥2 − 𝑥1
2) + (1 − 𝑥1)2. 

 

Test area is usually restricted to −2.048 ≤ 𝑥𝑖 ≤
2.048, 𝑖 = 1, 2.  

 

 
Fig. 5. Rosenbrock function in 2D. 

 

Rosenbrock function (2D) has a global minima 𝑥∗ = (1,1) 

with 𝑓(𝑥∗) = 0 . The global minimum is inside a long, 

narrow, parabolic shaped flat valley. To find the valley is 

trivial. To converge to the global minimum, however, is 

difficult. 

Similar to the previous cases, m=30 points were selected as 

initial design and the results are given in Table III. We can 

see from the table, that the use of the ISC permitted the 

optimization algorithm to find a solution near to the optimum 

with a small number of points (36 points).  However, we 

observed very little success at finding optima by ANN with 

LHS design alone. The optimization algorithm was unable to 

make any additional progress beyond this point, perhaps 

struggling to traverse the valley.  

 
TABLE III: COMPARISON OF ERRORS FOR ROSENBROCK FUNCTION (2D) 

Method 

The number 

of sample 

points 𝑚 

The values of the finding 

optima 
Average error 

ANN 30 (0.326942, 0.408716) 0.895891 

ANN 35 (-0.10094, 0.070638) 1.440765 

ANN 40 (0.584282, 0.254416) 0.853649 

ANN 45 (0.547114, 0.299495) 0.834154 

ANN 50 (0.593662, 0.207915) 0.89023 

ANN 

with ISC 
31 (-0.312919, 0.229329) 1.522397 

ANN 

with ISC 
35 (0.909437, 0.954252) 0.101461 

ANN 

with ISC 
36 (0.804714, 0.947936) 0.202112 

ANN 

with ISC 
38 (1.006475, 1.018454) 0.019561 

 

D. Sphere Function (4D) 

The Sphere function (4D) has four parameters. The 

function is defined as:  𝑓 𝑥 = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2,   −2 ≤
𝑥𝑖 ≤ 2, 𝑖 = 1,… ,4 .  

TABLE IV: COMPARISON OF ERRORS FOR SPHERE FUNCTION (4D) 

Method 

The number 

of sample 

points 𝑚 

The values of the finding 

optima 
Average error 

ANN 20 (1.099, 2, 2, 1.71) 3.483605 

ANN 40 
(-0.0537, 0.00576,

 -0.0285, -0.3004) 
0.306571 

ANN 50 
(0.03244, -0.01353, 

-0.06338, 0.13806) 
0.155925 

ANN 55 
(-0.00164, 0.04242, 

0.09037,  0.00972) 
0.100317 

ANN 

with ISC 
21 

(-0.3707, -1.999,   

-2, 0.3936) 
2.879635 

ANN 

with ISC 
23 

(-0.1786, -0.183, 

-0.0633, 0.0728) 
0.273351 

ANN 

with ISC 
26 

(-0.0093,  -0.1436, 

-0.1662,  -0.1478) 
0.264952 

ANN 

with ISC 
28 

(-0.0085, -0.09655, 

-0.06465, -0.1295) 
0.171102 

 

From Table IV, the results in 4D sphere function are 

similar to 2D case. Both approaches succeed in finding the 

true optimum. However, less sample points are required if the 

ISC guides the selection of the design points to be sampled. 

To summarize the results, boxplots for the sphere 4D, 

six-hump carmel, and Rosenbrock function are presented in 

Fig. 6 and Fig. 7 which are more visualized. Fig. 6 presents 

the results with ISC and the Fig. 7 without ISC method. It 

turns out that use of ISC has a superior performance on all 

benchmark functions.  

 

 
Fig. 6. Boxplot of the errors by ANN with ISC method over 20 runs. 

 

 
Fig. 7. Boxplot of the errors by ANN method over 20 runs. 

 

V. CONCLUSION AND FUTURE WORK 

In this paper, an optimization method using ANN with ISC 

is developed. A predictive model including design 
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parameters is built by using ANN with ISC to reduce the 

computational time. By comparing ANN and ANN with ISC 

methods based on a benchmark with a variety of test 

functions, we get the results showing that the proposed 

method can identify and calculate design parameters with a 

minimum number of computer simulations. 

It must be mentioned that the proposed ISC assumes that 

the design space is fixed, and the range of variables is based 

only on the criteria of the experienced researchers in their 

related fields. Further to this, by selecting model update 

points is close proximity to the constraint boundaries, the 

regions that are likely to contain the feasible optimum can be 

better modeled. Thus, a changeable design space will be 

taken into consideration in research. 
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