



Abstract—The growing demand for 3D simulation techniques

in various application domains leads to more and more

specialized tools and complex frameworks. Between

homogeneous or inhomogeneous clients, data has to be

distributed and synchronized in centralized or decentralized

setups. Hardware/Software-in-the-Loop and Co-Simulation are

common tasks in virtual prototyping. Load balancing and

parallelization is necessary for computationally intensive

simulations. Spatially distributed developers and designers

collaborate in networked virtual environments. All these

different applications impose different requirements on the

data distribution and synchronization mechanism. In this

paper, we categorize distribution scenarios, their requirements

and according synchronization techniques. Four different

approaches with different key aspects are presented and

compared by means of a reference implementation and several

application examples. This overview shall enable the reader to

choose the approach best suited for his particular distribution

problem.

Index Terms—Data management, distribution, simulation,

synchronization.

I. INTRODUCTION

Today, many 3D simulation applications demand some

kind of distribution. Thus, synchronization between the

different participating components is an issue. This can be

realized in different ways. One standardized approach is the

High Level Architecture (HLA) [1]. It is especially favorable

for interoperability scenarios with different simulation

systems. However, it is not the first choice for every type of

synchronization problem.

In our daily work in the context of science and industry

projects we identified four types of application scenarios that

require different types of distribution and synchronization.

This publication shall give an overview of these scenarios

and the proposed solutions as well as a comparison in

between them.

The first scenario is a 3D multi-projection Virtual Reality

(VR) system. Here, a single VR scene is distributed onto

multiple projection screens. A separate render and simulation

client creates each image. The distribution mechanism

between these clients must ensure a tight synchronicity

between the screens. HLA however is not suitable for such

tasks, since there is no central communication hub acting as a

federation server and due to the lack of an automatically

generated interchange model (FOM). Instead, we developed

Manuscript received November 4, 2013; revised January 8, 2014.

The authors are with the Institute for Man-Machine Interaction of RWTH

Aachen University, Germany (e-mail: {hoppen, waspe, rast,

rossmann}@mmi.rwth-aachen.de).

a simplified synchronization protocol with focus on speed.

The second scenario is a Co-Simulation. Here, two

different simulation applications – both experts on their

respective field – are interconnected to achieve an overall

goal. This is a classic interoperability problem. Thus, HLA is

a proper choice as the synchronization of two independent

systems benefits from a standardized protocol.

Simulation applications based on huge 3D world models

are another type. Such models, e.g., forest or city models are

often managed in (geo) databases. Synchronization is needed

when multiple simulation clients concurrently use and

change such a model. One approach is to use a separate

means for synchronization like an HLA RTI (runtime

interface). This however carries the risk of divergence

between data management (i.e., the simulation model in the

database) and communication (RTI). Thus, an integrated

approach for data management as well as communication

should be favored. In [2], we propose such an approach

where a central database is not only used to manage the

shared simulation model but also to serve as an active

communication hub.

Finally, a fourth type of simulation scenarios are simple

interconnections between similar simulation clients. A

“no-frills” peer-to-peer approach can be used to simply

interchange some values. An example we realized would be

the connection between a simulated planetary exploration

vehicle and a ground control both realized with the same

simulation software. In contrast, an HLA RTI would impose

more efforts to integrate.

The rest of this paper is structured as follows: While

Section II portrays the utilized reference simulation system,

Section III contains an overview of each distribution

approach presented in Section I. The approaches are

compared in detail in Section IV and exemplary applications

are given in Section V. Finally, after presenting related work

in Section VI, we conclude and give a summary in Section

VII.

II. REFERENCE SYSTEM

The major prerequisite on the tool level is the use of one

single but comprehensive and integrated 3D simulation

framework that is able to implement all the methods and

support all the processes needed for an integrated

prototyping, development and testing environment. The

simulation system must support a broad range of applications

and usage scenarios. As new usage scenarios require new

data structures, the data model must be adaptable to new

simulation models, even at runtime. Thus, a meta-data system

and a reflection API (like the one available in Java) are

necessary.

Distributed Information Processing and Rendering for 3D

Simulation Applications

Martin Hoppen, Ralf Waspe, Malte Rast, and Juergen Rossmann

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

247DOI: 10.7763/IJCTE.2014.V6.870

Such a flexible database can then be used in all kinds of

data storage and data manipulation scenarios, not only 3D

simulation, but any other kind of simulation. This way, all

methods can use the same model that contains (on an equal

level) geometric information, as well as, e.g., sensor

configurations or controller programs.

A. Model Representation

The tiered data model consists not only of the simulation

model itself, but also incorporates a meta-model layer. The

meta-model is essential for the flexibility as well as the

developer and end user friendliness of the database and the

simulation system. The design shown in Fig. 1 is inspired by

the Object Management Group (OMG) meta-model

hierarchy [3].

The middle layer describes the data model of the

simulation. The key idea is the introduction of a micro kernel,

the “Versatile Simulation Database” (VSD).

Fig. 1. The core of the “Versatile Simulation Database” (VSD).

In order to be able to retain semantic information and

integrate data and algorithms into one single database, the

VSD data model is an object oriented graph database [4],

consisting of nodes and node extensions. A simplified class

hierarchy of the VSD core is shown in Fig. 1. All nodes in the

graph database, the database itself and even the simulation

environment are derived from a single base class called

“Instance”. This base class provides mechanisms for

inter-instance communication, as well as access to the

meta-information system, which allows introspection of class

hierarchy, properties and methods. The complete simulation

state is held in properties of database nodes and/or node

extensions. Due to the active nature of the VSD it is easy to

obtain a map of changes of the simulation state starting from

an arbitrary point in time, by listening to the messages

emitted by the database for property changed, node creation

and node deletion. All database entities have an integer

identifier generated at runtime, which is unique within one

instance of the simulation system.

The uppermost layer is the meta-information system, the

basis for persistence, parallel and distributed simulation and

communication. It mainly consists of meta-types,

meta-instances, meta-properties and meta-methods. In

addition to “built-in” classes, it is also possible to generate

meta-instances with the corresponding meta-properties and

meta-methods during runtime (e.g. for object oriented

scripting or new data models). Such “runtime

meta-instances” are treated in exactly the same way as the

build in meta-instances without any performance overhead in

the data management.

B. Micro Kernel Architecture

All simulation functionality of the framework is achieved

by creating specialized add-ons, which build upon and

interact with the VSD core. Following this approach, the

database is able to integrate standard geometric models as

well as block-oriented simulation models using input/output

connections, the intermediate representation of scripting

languages [5] or entirely different types of information like

forest inventory data [6] (see Fig. 2).

Fig. 2. Exemplary additional classes of the VSD.

The functionality of the micro kernel is extended by

various plugins implementing simulation or data processing

algorithms, interfaces to hard- or software systems, user

interfaces, etc. Using the VSD, the plugins can communicate

with the database as well as establish directed

communications between themselves. One crucial point is

the combination of, and the communication between,

different simulation algorithms. This can be challenging in

complex scenarios, which incorporate different application

domains and require a mutual interaction between the

different domains for realistic simulation results.

The basic simulation system architecture is now the basis

for our implementation of a novel comprehensive 3D

simulation system called VEROSIM, extending the VSD

kernel in various directions.

III. APPROACHES

In this section the different approaches introduced in

Section I is presented in detail.

A. Direct Simulation State Distribution (DSSD)

The most direct approach is unidirectional state change

propagation from one instance of our reference simulation

system to another. The fundamental idea of this distribution

method is that it does not require a predefined interchange

model.

In the simplest case the two simulation systems share an

identical simulation schema and data model, replicated from

the same source. Since the node creation order is identical on

both systems, each corresponding simulation database entity

has been assigned the same identifier. Therefore property

changes can simply be transmitted as a value triplet,

consisting of the unique id of the node or extension, the name

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

248

or id of the property and the new property value. Property

values can easily be serialized with the built-in functionality

of the database. Optionally, the communication between the

simulation systems can be compressed to preserve

bandwidth. However, this leads to an increased time in

encoding and decoding the data stream.

Direct Simulation State Distribution is not dependent on

any specific transportation layer or protocol, and therefore

has no fixed propagation speed. Transportation modes

currently implemented are TCP, UDP and file stream, with

USB and InfiniBand planned for the future. A file stream

offers the ability to log and replay complete simulation runs,

while standard gigabit Ethernet is used to interactively

operate multiscreen 3D projection systems.

However, a completely identical schema and data model

with matching ids across all simulation systems is not always

achievable or even desirable. For instance, one might

attribute certain simulation functions, such as physics,

rendering, user input or hardware control, only to a subset of

participating computers, thus balancing the overall load

across several simulation systems. These systems may run on

different hardware and in different simulation configurations.

Therefore, a preliminary id matching stage must be

introduced to the distribution process.

In a first step the sender compiles and sends a list of its

schema, which attributes a unique id to each class and each

property available to its simulation database, thus building a

meta-instance and meta-property id list. In a second step, the

structure of the database is serialized. Nodes are identified by

their meta-instance id (shorthand for their class type), their

unique instance id and the id of the parent node. Afterwards

the synchronization commences with the communication of

the aforementioned value triplets.

On the receiver side a list of meta-instances and

meta-properties is also compiled. After receiving the

corresponding list from the sender, these two lists are

compared. If the sender list contains unknown meta-instances

or meta-properties these can either be created on the receiver

side (without the functionality) or any changes to a node with

an unknown meta-instance will be ignored. Next, the ids of

the graph database nodes are mapped. This can either be done

by matching the meta-instance and the path of a node within

the graph [7] or by building and comparing adjacency

matrices of the two involved graph databases [8].

B. Selected Property Synchronization (PropertySync)

In contrast to DSSD, which efficiently reproduces the full

simulation state from one instance of the runtime DB to

another, PropertySync is used to synchronize only a selected

set of properties. The main objectives here are flexibility and

configurability. It can be used to partition a simulation model

onto several machines with varying operating systems,

purposes, locations and workloads. Inputs, outputs and

shared parts of these sub-models are instances and properties

according to section II.A. So-called sync connections make

use of the publish/subscribe pattern provided by VSD as

described above. They are used to realize a

cross-platform-synchronization mechanism for simulation

models.

Fig. 3 shows the data view of a simulation model with a

node prepared for synchronization. The sync connection

provides a file, TCP server or socket connection. The object

is marked with a sync instance. The sync property defines

which property of the object needs to be synchronized (here:

worldframe). The mode defines whether the property is

subscribed (read), published (write) or both (read-write). To

provide a maximum of flexibility, the sync instance and

property can be marked with individual sync ids, which are

added to the message header. Thus, any properties with

matching types can be mapped onto each other. Nonetheless,

the default behavior is the standard publish/subscribe pattern

and can be automatically configured for the user.

Fig. 3. Data view of a simulation model with a node prepared for

synchronization.

C. Database Synchronization (DBSync)

As mentioned in the introduction, we also developed a

database-driven approach for distributed 3D simulation [2].

Here, a central external database (generically called ExtDB)

is used for data management, communication and versioning,

providing a Central World Model (CWM) as introduced in

[9]. It manages a simulation model comprising static (e.g.,

buildings or trees) as well as dynamic (e.g., cars or

helicopters) parts. Simulation clients connect to ExtDB to

jointly use the shared model. It also works as an active

communication hub by providing a change notification

mechanism just like VSD. This way, e.g., updates to a car

simulated by one client are distributed to all others. Hence,

the whole simulation is represented by the shared model’s

sequence of states. Using a temporal database [10], all these

changes are versioned yielding a queryable simulation log for

archiving and debriefing. In our current prototypes the

object-oriented data management system SupportGIS Java

(SGJ) [11] is used as an ExtDB implementation.

To efficiently access the shared simulation model within

ExtDB, we developed a flexible approach for database

synchronization. Here, the runtime database of the simulation

system (generically called SimDB) is synchronized with

ExtDB. For SimDB we use the aforementioned VSD.

Synchronization is realized on three levels: Schema, data,

and functional level. Once during system startup, the schema

description from ExtDB is synchronized to SimDB yielding a

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

249

schema mapping (see Fig. 4) so both systems “speak the same

language.” During runtime, data conforming to the matched

schema can be replicated from ExtDB to SimDB. Local

changes to these replicates can be resynchronized to ExtDB

using the data mapping (also see Fig. 4) in between. They are

detected using the state change notifications of VSD as

mentioned above.

Fig. 4. Schema and data mapping of the database synchronization approach.

ExtDB notifies other clients of these changes so they can

adopt them within their respective replicate copies of the

same data. Fig. 5 shows an example where a door object in

ExtDB is replicated to two simulation clients’ SimDB

instances. The door is opened in client #1 where SimDB

locally emits a change notification. The change is

resynchronized to ExtDB were a time-stamped version of the

door’s previous state is stored before the change is notified.

Subsequently, client #2 will adopt the door’s new state in his

replicate copy.

Fig. 5. Example of database-driven communication including versioning.

Especially when using simulation models with

standardized data schemata like CityGML [12] or SEDRIS

[13] some semantics or functions of data objects need to be

synchronized as well. This is done using functional data

synchronization during runtime. Here, specific objects

represented in ExtDB’s schema are translated into functional

equivalents interpretable by the simulation system. A simple

example would be a material description in SEDRIS

translated to a material description known by the simulation

system so it can be used for rendering.

To make the approach portable to other SimDB and ExtDB

implementations, generalized database requirements were

defined [14]. They are based on techniques known from

Model-Driven Engineering (MDE) [15] and follow a similar

approach like Model-Driven Interoperability (MDI). Here,

both databases’ meta-models (i.e., their abstract syntax) are

required to be matched by model transformations, e.g., using

ATL [16]. By requiring additional model transformations to

and from the UML [17] as a pivot meta-model, UML

structures and semantics can be used to give a generalized

method specification of the database synchronization

approach presented above [18].

D. HLA

Our simulation system is also capable of interacting with

other systems via HLA. This is achieved by attaching specific

sender and/or receiver extensions to the nodes whose

properties are distributed within the HLA federation. A

central HLA communication node – referenced by each

sender/receiver – is responsible for communication with the

federation and for translating the native data into a FOM

compatible format (and vice versa). Again, the state change

message of the database is used to obtain data necessary for

sending these changes to the HLA federation via the

communication node. Changes from the federation are

redirected to the corresponding receiver extensions, which in

turn update the properties. To avoid possible update loops,

message emissions are blocked while updating a property.

IV. COMPARISON

The four approaches can be compared with regard to

different aspects.

A. Basic Idea

The basic idea or main purpose of the DSSD approach is

load distribution. I.e., rendering and simulation tasks shall be

distributed over a set of clients typically at the same site. The

PropertySync technique is rather used for a simple

synchronization of individual property values, e.g., to pass

values through a distributed I/O network. HLA is a protocol

for cooperative distribution between different sites and

clients with a focus on interoperability. Finally, the DBSync

approach’s main idea is to provide a Central World Model for

persistence, communication, and versioning.

B. Mode / Topology

DSSD, HLA, and DBSync use a client-server architecture.

In DSSD, the topology can be arbitrarily configured but is

fixed during runtime. In contrast, HLA has a

publish-subscribe model allowing clients to dynamically

connect and disconnect from its RTI. Similarly, clients can

connect and disconnect to the central database in the DBSync

approach. In contrast, the PropertySync approach has a

peer-to-peer structure where individual properties are

synchronized between a pair of clients.

C. Clients

DSSD, HLA, and DBSync conceptually all support an

arbitrary number of clients. For DSSD, these clients must be

homogeneous (currently only VEROSIM clients are

supported). In contrast, HLA and DBSync support

heterogeneous clients as long as they support the respective

protocol or API. PropertySync however can only be used to

connect two homogeneous clients (currently VEROSIM).

D. Schema / Data

The DSSD approach works with distributed heterogeneous

schema and data. I.e., schema and data do not have to be

identical at every client. PropertySync goes one step further

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

250

by even allowing to synchronize properties independent of

their schema – only the data types have to match. HLA

combines a central common schema (the FOM) with a

heterogeneous set of schemata for each client (SOM).

Finally, the DBSync method uses a central schema within

ExtDB that is synchronized to all clients and manages a

central master-copy of the shared simulation model.

E. Replication

Only two of the presented techniques rely on replication.

DSSD presumes a large percentage of existing replication of

the simulation model using files or other techniques. Using

DBSync, schema and data are replicated. Data replication

however can be done selectively (i.e., only parts of the

simulation model can be replicated to a client). In contrast,

HLA and PropertySync do not presume any replication.

V. APPLICATIONS

A. Virtual Reality and Multiscreen 3D Simulation

With the help of the DSSD approach we can easily transfer

any 3D simulation model from a desktop workspace onto a

stereo multiscreen setup, without any further adaptation

necessary by the simulation expert. Each screen is powered

by two computers (one for each eye) and additional

computers are responsible for the simulation and user

interaction. On each computer the simulation is started in the

appropriate configuration and the model is loaded and

executed automatically.

The result is a comprehensive development and testing

environment based on simulation technology, a Virtual

Testbed (see Fig. 6).

Fig. 6. Interaction with the virtual Testbed.

The Virtual Testbed concept is a key technology in the

emerging field of eRobotics [19], because Virtual Testbeds

can act as a central focal point in multi-disciplinary

development projects. The additional screen space leads to a

more immersive experience for the user.

B. Self-Localization Unit

In the context of the research project SELOK, an algorithm

for the self-localization of mobile robots in unstructured

environments called VisualGPS was developed [20]. A local

map of landmarks is constructed from sensor information

(laser scanners, stereo cameras) and localized in a global map

of landmarks, usually derived from aerial survey data, using a

particle filter. The approach is generic and can be applied to

trees in the woods or stones and craters on planetary surfaces.

A multi-purpose mobile self-localization unit was

constructed (see Fig. 7), which contains an industrial

computer running the simulation system VEROSIM that

features all necessary algorithms and holds the environment

model. Another instance of VEROSIM is running on a

ground station, which controls the mobile robot as well as the

localization unit. In this scenario, all data flow is realized

using PropertySync.

Fig. 7. Integration of 2D laser scanner, stereo camera, IMU and industrial

computer to a localization unit.

C. Virtual City Simulation

A drive through a virtual city model stored in a central

database was realized using the approach presented in

Subsection III.C (Fig. 8). Here, a central SGJ database

contains a SEDRIS-based desert village (data: RDE) as static

parts of the shared simulation model. It also comprises the

dynamic parts of the simulation: A helicopter and a car. Two

VEROSIM simulation clients are connected to SGJ. Client

#1 runs on a standalone PC connected to a television screen

and controls the car. Client #2 controls the helicopter. To

drive its multi-projection screen it uses the DSSD approach.

Changes to either vehicle are logged and communicated via

the central SGJ. For debriefing, a simulation run can be

replayed using a VEROSIM instance that accesses the

versioned data from the shared simulation model.

In the context of the research project Virtual Forest the

same techniques are used to manage forest model data.

Fig. 8. Database-Driven virtual city simulation.

D. MATLAB Co-Simulation

Based on HLA, the simulation system VEROSIM was

connected to the MATLAB Toolbox [21] to obtain a

standardized and easily configurable way to establish a

co-simulation. In a test scenario we used MATLAB to

calculate the behavior of a system consisting of damped

harmonic oscillators and used VEROSIM to present the

results in 3D. Furthermore, any property changes in

VEROSIM relating to the oscillators (such as stiffness) were

sent to the MATLAB model.

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

251

VI. RELATED WORK

The use of HLA in distributed discrete event simulation is

detailed in [22]. In distributed virtual environments (DVE) a

more direct approach is generally favored. Reference [23]

gives an overview of different synchronization algorithms

used in various DVEs. This paper also describes a method

somewhat similar to DSSD. The method does not explicitly

propagate state changes of the simulation system, but

commands that in turn may be used to alter the state of the

target system.

As described in [24]-[26], in multiscreen systems

distributed rendering is also quite common. However, here

the rendering alone (not the simulation) is distributed.

Regarding Subsection III.C we found different approaches

that combine 3D software systems with databases. However,

none of them provides a comparable integration of data

management, collaboration, versioning, and flexible schema

support. Some only use a database to store simple object

positions [27]. In contrast, others store the complete scene

data like in our approach. Some of those also support a

distribution mechanism for collaboration between the clients

[28]-[32], while others only support single user or read-only

usage [33], [34]. Different data schemata are only supported

by few systems [30], [32], [34]-[36]. Finally, data versioning

is only provided using proprietary data schemata [33] or on

file level using a CVS-like approach [35], [36].

VII. CONCLUSION

An evident conclusion that can be drawn from this work is

that different simulation problems require different

approaches for distribution and synchronization. In

particular, we outlined how the standard HLA-based

approach may not suit every scenario. High-performance

synchronization between the clients of a 3D multi-projection

screen benefit from a more direct approach we call DSSD

(Direct Simulation State Distribution). A “no-frills”

synchronization between single properties can more simply

be realized using the presented PropertySync method.

Finally, collaborative scenarios with huge shared simulation

models benefit from a database-driven approach to

distribution. Nevertheless, classic interoperability scenarios

like a Co-Simulation between heterogeneous simulation

systems still do benefit from the standardized HLA protocol.

Prototypical implementations based on a Versatile

Simulation Database (VSD) as well as various exemplary

applications practically prove the advantages of our

diversified approach.

In the future, we plan to improve the DSSD approach by

minimizing the time and bandwidth required to generate,

transmit and evaluate the schema and the current state of the

sending VEROSIM system. This should lead to a significant

speed-up of the simulation start. Furthermore we want to

introduce a mixed TCP / UDP protocol, which enables

multicasting of non-essential information. Regarding the

DBSync approach, we are thinking about prototypes for other

database systems for ExtDB, e.g., PostgreSQL. Another

interesting research field is the combination of the different

approaches. As shown above, this has already been done for

DSSD and DBSync. It may likely be evaluated in more detail

to identify other benefiting scenarios.

ACKNOWLEDGMENT

Parts of this work were developed in the context of the

research projects Virtual Forest, SELOK and iBOSS-2.

Virtual Forest: This project is co-financed by the European

Union and the federal state of North Rhine-Westphalia,

European Regional Development Fund (ERDF). Europe -

Investing in our future. SELOK/iBOSS-2: Supported by

German Aerospace Center (DLR) with funds of the German

Federal Ministry of Economics and Technology (BMWi),

support code 50 RA 0911 (SELOK) and 50 RA 1203

(iBOSS-2).

REFERENCES

[1] Standard for Modeling and Simulation High Level Architecture, IEEE

1516, 2010.

[2] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig,

“Database-driven distributed 3D simulation,” in Proc. the 2012 Winter

Simulation Conference, 2012.

[3] I. Kurtev and K. V. D. Berg, MISTRAL: A Language for Model

Transformations in the MOF Meta-Modeling Architecture, pp.

139–158, 2005.

[4] M. Gyssens, J. Paredaens, J. V. D. Bussche, and D. V. Gucht, “A

graph-oriented object database model,” IEEE Trans. Knowl. Data

Eng., vol. 6, no. 4, pp. 572–586, 1994.

[5] J. Rossmann, M. Schluse, and R. Waspe, “Combining supervisory

control, object-oriented petri-nets and 3D simulation for hybrid

simulation systems using a flexible meta data approach,” in Proc. the

3rd International Conference on Simulation and Modeling

Methodologies, Technologies and Applications (Simulation Tools and

Platforms) - Simultech 2013, 29-31 July, 2013.

[6] J. Rossmann, M. Schluse, A. Buecken, P. Krahwinkler, and M.

Hoppen, “Cost-Efficient semi-automatic forest inventory integrating

large scale remote sensing technologies with goal-oriented manual

quality assurance processes,” in Proc. IUFRO Division 4 Conference

Extending Forest Inventory and Monitoring over Space and Time,

Quebec City, Canada, May 19-22, 2009.

[7] C. D. Godsil and G. Royle, Algebraic Graph Theory, Springer, 2001.

[8] S. Roman, “Advanced linear algebra,” Springer, 2007.

[9] E. Freund, M. Müller, and J. Rossmann, “Data storage and flow control

in automation systems by means of an active database,” in

Computational Intelligence for Modelling, Control & Automation ’99.

Intelligent Image Processing, Data Analysis & Information Retrieval,

Vienna, Austria: Amsterdam: IOS Press; Tokyo: Ohmsha, 1999, pp.

235–240.

[10] R. Elmasri and S. B. Navathe, Database Systems: Models, Languages,

Design, and Application Programming, 6th ed., Prentice Hall

International, pp. 1155, 2010.

[11] SupportGIS Java. [Online]. Available: http://www.supportgis.de

[12] CityGML. [Online]. Available: http://www.citygml.org

[13] SEDRIS. [Online]. Available: http://www.sedris.org

[14] M. Hoppen, M. Schluse, and J. Rossmann, “A metamodel-based

approach for generalizing requirements in database-driven 3D

simulation (WIP),” in Proc. the Symposium on Theory of Modeling &

Simulation - DEVS Integrative M&S Symposium, 2013, pp. 3:1–3:6.

[15] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven software

engineering in practice,” Morgan and Claypool Publishers, 2012.

[16] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model

transformation tool,” Sci. Comput. Program., vol. 72, no. 1–2, pp.

31–39, Jun. 2008.

[17] Unified Modeling Language (UML). OMG. [Online]. Available:

http://www.uml.org/

[18] M. Hoppen, M. Schluse, and J. Rossmann, “Database-driven 3D

simulation - a method specification using the UML metamodel,” in

Proc. 11th International Industrial Simulation Conference ISC 2013,

2013, pp. 147–154.

[19] J. Rossmann and M. Schluse, “Virtual robotic Testbeds: A foundation

for e-robotics in space, in industry - and in the woods,” 2011 Dev.

E-systems Eng., pp. 496–501, Dec. 2011.

[20] J. Rossmann, C. Schlette, M. Emde, and B. Sondermann, “Advanced

self-localization and navigation for mobile robots in extraterrestrial

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

252

http://www.supportgis.de/

environments,” Computer Technology and Application 2, no. 5, pp.

344–353, 2011.

[21] HLA Interoperability for MATLAB models – HLA Toolbox™

[Online]. Available:

http://www.mak.com/products/partner-products/hla-interoperability-f

or-matlab-models.html

[22] R. Fujimoto, “Parallel and distributed simulation,” in Proc. 2001

Winter Simul. Conf., 2001.

[23] Z. Bartosiewicz, “Control theory with singular state-space constraints,”

Journal of Mathematical Systems Estimation and Control, vol. 8.1, pp.

147-150, 1998.

[24] M. Repplinger, A. Löffler, D. Rubinstein, and P. Slusallek, “URay: A

flexible framework for distributed rendering and display,” Technical

Report 2008-01, Universität des Saarlandes, Saarbrücken, 2008.

[25] G. Humphreys and I. Buck, “Distributed rendering for scalable

displays,” in Proc. the 2000 ACM/IEEE Conference on

Supercomputing, IEEE Computer Society, 2000.

[26] P. Yin, X. Jiang, J. Shi, and R. Zhou, “Multi-screen tiled displayed,

parallel rendering system for a large terrain dataset,” IJVR, vol. 5, no. 4,

2006.

[27] T. Manoharan, H. Taylor, and P. Gardiner, “A collaborative analysis

tool for visualisation and interaction with spatial data,” in Proc. the

Seventh International Conference on 3D Web Technology, 2002, pp.

75–83.

[28] E. V. Schweber. (1998). SQL3D - Escape from VRML island.

[Online]. Available:

http://www.infomaniacs.com/SQL3D/SQL3D-Escape-From-VRML-I

sland.htm

[29] S. Julier, Y. Baillot, M. Lanzagorta, D. Brown, and L. Rosenblum,

“Bars: Battlefield augmented reality system,” in Proc. NATO

Symposium on Information Processing Techniques for Military

Systems, 2000, pp. 9–11.

[30] C. Watanabe and Y. Masunaga, “VWDB2: A network virtual reality

system with a database function for a shared work environment,”

Information Systems and Databases, pp. 190–196, 2002.

[31] K. Kaku, H. Minami, T. Tomii, and H. Nasu, “Proposal of virtual space

browser enables retrieval and action with semantics which is shared by

multi users,” in Proc. 21st International Conference on Data

Engineering Workshops (ICDEW’05), 2005, pp. 1259–1259.

[32] K. Walczak, “Dynamic database modeling of 3D multimedia content,”

in Interactive 3D Multimedia Content, W. Cellary and K. Walczak,

Eds. London: Springer London, pp. 55–102, 2012.

[33] A. Vakaloudis and B. Theodoulidis, Spatiotemporal Database

Connection to VRML, 1998.

[34] D. Schmalstieg, G. Schall, D. Wagner, I. Barakonyi, G. Reitmayr, J.

Newman, and F. Ledermann, “Managing complex augmented reality

models,” IEEE Comput. Graph. Appl., vol. 27, no. 4, pp. 48–57, 2007.

[35] Dassault Systèmes. (2008). ENOVIA V6 technical advantages

whitepaper [Online]. Available:

http://www.3ds.com/fileadmin/PRODUCTS/ENOVIA/PDF/WHITE-

PAPERS/PCSWhitepaper-0807_final_July_29.pdf

[36] Autodesk. (2005). Best Practices for Implementing Autodesk Vault

[Online]. Available:

http://images.autodesk.com/adsk/files/best_practices1.pdf

J. Rossmann studied electrical engineering at the Universities of Dortmund

and Bochum, Germany. After his studies he worked as a researcher and team

leader at the Institute of Robotics Research (IRF) in Dortmund. He received

his doctorate in 1993 and was named junior professor for robotics and

computer graphics at the University of Southern California in 1998. He

habilitated in 2002 at the University of Dortmund and was managing director

of EFR-Systems GmbH in Dortmund from 2005 to 2006. Since 2006 he is

director of the Institute of Man-Machine Interaction and full professor at the

RWTH Aachen University in Aachen, Germany. His research interests are

projective virtual reality, multi-agent control and supervision, multi-sensor

integration, system simulation and optimization techniques, computer vision,

real-time visualization and man-machine interaction.

R. Waspe studied theoretical physics at Queen Mary College, University of

London, UK. Between 2001 and 2005 he was a research assistant at the

Institute of Robotics Research (IRF) in Dortmund, and between 2005 and

2006 software developer at EFR-Systems GmbH in Dortmund. Since 2006

he is team leader at the Institute of Man-Machine Interaction at the RWTH

Aachen University.

M. Hoppen studied computer science at the University of Bonn, Germany.

Since 2007 he is a Ph.D. student and research associate at the Institute for

Man-Machine Interaction of RWTH Aachen University (Germany) where he

works on combining 3D simulation systems with databases.

M. Rast has studied physics at the University of Bonn, Germany and is

currently working as a research associate at the Institute for Man-Machine

Interaction of RWTH Aachen University since 2008. His main field of

interest is the integration of physics process simulation for virtual

prototyping.

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

253

