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Abstract—The growing demand for 3D simulation techniques 

in various application domains leads to more and more 

specialized tools and complex frameworks. Between 

homogeneous or inhomogeneous clients, data has to be 

distributed and synchronized in centralized or decentralized 

setups. Hardware/Software-in-the-Loop and Co-Simulation are 

common tasks in virtual prototyping. Load balancing and 

parallelization is necessary for computationally intensive 

simulations. Spatially distributed developers and designers 

collaborate in networked virtual environments. All these 

different applications impose different requirements on the 

data distribution and synchronization mechanism. In this 

paper, we categorize distribution scenarios, their requirements 

and according synchronization techniques. Four different 

approaches with different key aspects are presented and 

compared by means of a reference implementation and several 

application examples. This overview shall enable the reader to 

choose the approach best suited for his particular distribution 

problem. 

 
Index Terms—Data management, distribution, simulation, 

synchronization. 

 

I. INTRODUCTION 

Today, many 3D simulation applications demand some 

kind of distribution. Thus, synchronization between the 

different participating components is an issue. This can be 

realized in different ways. One standardized approach is the 

High Level Architecture (HLA) [1]. It is especially favorable 

for interoperability scenarios with different simulation 

systems. However, it is not the first choice for every type of 

synchronization problem.  

In our daily work in the context of science and industry 

projects we identified four types of application scenarios that 

require different types of distribution and synchronization. 

This publication shall give an overview of these scenarios 

and the proposed solutions as well as a comparison in 

between them. 

The first scenario is a 3D multi-projection Virtual Reality 

(VR) system. Here, a single VR scene is distributed onto 

multiple projection screens. A separate render and simulation 

client creates each image. The distribution mechanism 

between these clients must ensure a tight synchronicity 

between the screens. HLA however is not suitable for such 

tasks, since there is no central communication hub acting as a 

federation server and due to the lack of an automatically 

generated interchange model (FOM). Instead, we developed 
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a simplified synchronization protocol with focus on speed. 

The second scenario is a Co-Simulation. Here, two 

different simulation applications – both experts on their 

respective field – are interconnected to achieve an overall 

goal. This is a classic interoperability problem. Thus, HLA is 

a proper choice as the synchronization of two independent 

systems benefits from a standardized protocol. 

Simulation applications based on huge 3D world models 

are another type. Such models, e.g., forest or city models are 

often managed in (geo) databases. Synchronization is needed 

when multiple simulation clients concurrently use and 

change such a model. One approach is to use a separate 

means for synchronization like an HLA RTI (runtime 

interface). This however carries the risk of divergence 

between data management (i.e., the simulation model in the 

database) and communication (RTI). Thus, an integrated 

approach for data management as well as communication 

should be favored. In [2], we propose such an approach 

where a central database is not only used to manage the 

shared simulation model but also to serve as an active 

communication hub. 

Finally, a fourth type of simulation scenarios are simple 

interconnections between similar simulation clients. A 

“no-frills” peer-to-peer approach can be used to simply 

interchange some values. An example we realized would be 

the connection between a simulated planetary exploration 

vehicle and a ground control both realized with the same 

simulation software. In contrast, an HLA RTI would impose 

more efforts to integrate. 

The rest of this paper is structured as follows: While 

Section II portrays the utilized reference simulation system, 

Section III contains an overview of each distribution 

approach presented in Section I. The approaches are 

compared in detail in Section IV and exemplary applications 

are given in Section V. Finally, after presenting related work 

in Section VI, we conclude and give a summary in Section 

VII.  

 

II. REFERENCE SYSTEM 

The major prerequisite on the tool level is the use of one 

single but comprehensive and integrated 3D simulation 

framework that is able to implement all the methods and 

support all the processes needed for an integrated 

prototyping, development and testing environment. The 

simulation system must support a broad range of applications 

and usage scenarios. As new usage scenarios require new 

data structures, the data model must be adaptable to new 

simulation models, even at runtime. Thus, a meta-data system 

and a reflection API (like the one available in Java) are 

necessary.  
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Such a flexible database can then be used in all kinds of 

data storage and data manipulation scenarios, not only 3D 

simulation, but any other kind of simulation. This way, all 

methods can use the same model that contains (on an equal 

level) geometric information, as well as, e.g., sensor 

configurations or controller programs. 

A. Model Representation 

The tiered data model consists not only of the simulation 

model itself, but also incorporates a meta-model layer. The 

meta-model is essential for the flexibility as well as the 

developer and end user friendliness of the database and the 

simulation system. The design shown in Fig. 1 is inspired by 

the Object Management Group (OMG) meta-model 

hierarchy [3]. 

The middle layer describes the data model of the 

simulation. The key idea is the introduction of a micro kernel, 

the “Versatile Simulation Database” (VSD).  

 

 
Fig. 1. The core of the “Versatile Simulation Database” (VSD). 

 

In order to be able to retain semantic information and 

integrate data and algorithms into one single database, the 

VSD data model is an object oriented graph database [4], 

consisting of nodes and node extensions. A simplified class 

hierarchy of the VSD core is shown in Fig. 1. All nodes in the 

graph database, the database itself and even the simulation 

environment are derived from a single base class called 

“Instance”. This base class provides mechanisms for 

inter-instance communication, as well as access to the 

meta-information system, which allows introspection of class 

hierarchy, properties and methods. The complete simulation 

state is held in properties of database nodes and/or node 

extensions. Due to the active nature of the VSD it is easy to 

obtain a map of changes of the simulation state starting from 

an arbitrary point in time, by listening to the messages 

emitted by the database for property changed, node creation 

and node deletion. All database entities have an integer 

identifier generated at runtime, which is unique within one 

instance of the simulation system. 

The uppermost layer is the meta-information system, the 

basis for persistence, parallel and distributed simulation and 

communication. It mainly consists of meta-types, 

meta-instances, meta-properties and meta-methods. In 

addition to “built-in” classes, it is also possible to generate 

meta-instances with the corresponding meta-properties and 

meta-methods during runtime (e.g. for object oriented 

scripting or new data models). Such “runtime 

meta-instances” are treated in exactly the same way as the 

build in meta-instances without any performance overhead in 

the data management. 

B. Micro Kernel Architecture 

All simulation functionality of the framework is achieved 

by creating specialized add-ons, which build upon and 

interact with the VSD core. Following this approach, the 

database is able to integrate standard geometric models as 

well as block-oriented simulation models using input/output 

connections, the intermediate representation of scripting 

languages [5] or entirely different types of information like 

forest inventory data [6] (see Fig. 2). 

 

 
Fig. 2. Exemplary additional classes of the VSD. 

 

The functionality of the micro kernel is extended by 

various plugins implementing simulation or data processing 

algorithms, interfaces to hard- or software systems, user 

interfaces, etc. Using the VSD, the plugins can communicate 

with the database as well as establish directed 

communications between themselves. One crucial point is 

the combination of, and the communication between, 

different simulation algorithms. This can be challenging in 

complex scenarios, which incorporate different application 

domains and require a mutual interaction between the 

different domains for realistic simulation results.  

The basic simulation system architecture is now the basis 

for our implementation of a novel comprehensive 3D 

simulation system called VEROSIM, extending the VSD 

kernel in various directions. 

 

III. APPROACHES 

In this section the different approaches introduced in 

Section I is presented in detail.  

A. Direct Simulation State Distribution (DSSD) 

The most direct approach is unidirectional state change 

propagation from one instance of our reference simulation 

system to another. The fundamental idea of this distribution 

method is that it does not require a predefined interchange 

model. 

In the simplest case the two simulation systems share an 

identical simulation schema and data model, replicated from 

the same source. Since the node creation order is identical on 

both systems, each corresponding simulation database entity 

has been assigned the same identifier. Therefore property 

changes can simply be transmitted as a value triplet, 

consisting of the unique id of the node or extension, the name 
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or id of the property and the new property value. Property 

values can easily be serialized with the built-in functionality 

of the database. Optionally, the communication between the 

simulation systems can be compressed to preserve 

bandwidth. However, this leads to an increased time in 

encoding and decoding the data stream.  

Direct Simulation State Distribution is not dependent on 

any specific transportation layer or protocol, and therefore 

has no fixed propagation speed. Transportation modes 

currently implemented are TCP, UDP and file stream, with 

USB and InfiniBand planned for the future. A file stream 

offers the ability to log and replay complete simulation runs, 

while standard gigabit Ethernet is used to interactively 

operate multiscreen 3D projection systems. 

However, a completely identical schema and data model 

with matching ids across all simulation systems is not always 

achievable or even desirable. For instance, one might 

attribute certain simulation functions, such as physics, 

rendering, user input or hardware control, only to a subset of 

participating computers, thus balancing the overall load 

across several simulation systems. These systems may run on 

different hardware and in different simulation configurations.  

Therefore, a preliminary id matching stage must be 

introduced to the distribution process.  

In a first step the sender compiles and sends a list of its 

schema, which attributes a unique id to each class and each 

property available to its simulation database, thus building a 

meta-instance and meta-property id list. In a second step, the 

structure of the database is serialized. Nodes are identified by 

their meta-instance id (shorthand for their class type), their 

unique instance id and the id of the parent node. Afterwards 

the synchronization commences with the communication of 

the aforementioned value triplets. 

On the receiver side a list of meta-instances and 

meta-properties is also compiled. After receiving the 

corresponding list from the sender, these two lists are 

compared. If the sender list contains unknown meta-instances 

or meta-properties these can either be created on the receiver 

side (without the functionality) or any changes to a node with 

an unknown meta-instance will be ignored. Next, the ids of 

the graph database nodes are mapped. This can either be done 

by matching the meta-instance and the path of a node within 

the graph [7] or by building and comparing adjacency 

matrices of the two involved graph databases [8]. 

B. Selected Property Synchronization (PropertySync) 

In contrast to DSSD, which efficiently reproduces the full 

simulation state from one instance of the runtime DB to 

another, PropertySync is used to synchronize only a selected 

set of properties. The main objectives here are flexibility and 

configurability. It can be used to partition a simulation model 

onto several machines with varying operating systems, 

purposes, locations and workloads. Inputs, outputs and 

shared parts of these sub-models are instances and properties 

according to section II.A. So-called sync connections make 

use of the publish/subscribe pattern provided by VSD as 

described above. They are used to realize a 

cross-platform-synchronization mechanism for simulation 

models. 

Fig. 3 shows the data view of a simulation model with a 

node prepared for synchronization. The sync connection 

provides a file, TCP server or socket connection. The object 

is marked with a sync instance. The sync property defines 

which property of the object needs to be synchronized (here: 

worldframe). The mode defines whether the property is 

subscribed (read), published (write) or both (read-write). To 

provide a maximum of flexibility, the sync instance and 

property can be marked with individual sync ids, which are 

added to the message header. Thus, any properties with 

matching types can be mapped onto each other. Nonetheless, 

the default behavior is the standard publish/subscribe pattern 

and can be automatically configured for the user. 

 

 
Fig. 3. Data view of a simulation model with a node prepared for 

synchronization. 

 

C. Database Synchronization (DBSync) 

As mentioned in the introduction, we also developed a 

database-driven approach for distributed 3D simulation [2]. 

Here, a central external database (generically called ExtDB) 

is used for data management, communication and versioning, 

providing a Central World Model (CWM) as introduced in 

[9]. It manages a simulation model comprising static (e.g., 

buildings or trees) as well as dynamic (e.g., cars or 

helicopters) parts. Simulation clients connect to ExtDB to 

jointly use the shared model. It also works as an active 

communication hub by providing a change notification 

mechanism just like VSD. This way, e.g., updates to a car 

simulated by one client are distributed to all others. Hence, 

the whole simulation is represented by the shared model’s 

sequence of states. Using a temporal database [10], all these 

changes are versioned yielding a queryable simulation log for 

archiving and debriefing. In our current prototypes the 

object-oriented data management system SupportGIS Java 

(SGJ) [11] is used as an ExtDB implementation. 

To efficiently access the shared simulation model within 

ExtDB, we developed a flexible approach for database 

synchronization. Here, the runtime database of the simulation 

system (generically called SimDB) is synchronized with 

ExtDB. For SimDB we use the aforementioned VSD.  

Synchronization is realized on three levels: Schema, data, 

and functional level. Once during system startup, the schema 

description from ExtDB is synchronized to SimDB yielding a 
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schema mapping (see Fig. 4) so both systems “speak the same 

language.” During runtime, data conforming to the matched 

schema can be replicated from ExtDB to SimDB. Local 

changes to these replicates can be resynchronized to ExtDB 

using the data mapping (also see Fig. 4) in between. They are 

detected using the state change notifications of VSD as 

mentioned above. 

 

 
Fig. 4. Schema and data mapping of the database synchronization approach. 

 

ExtDB notifies other clients of these changes so they can 

adopt them within their respective replicate copies of the 

same data. Fig. 5 shows an example where a door object in 

ExtDB is replicated to two simulation clients’ SimDB 

instances. The door is opened in client #1 where SimDB 

locally emits a change notification. The change is 

resynchronized to ExtDB were a time-stamped version of the 

door’s previous state is stored before the change is notified. 

Subsequently, client #2 will adopt the door’s new state in his 

replicate copy. 

 

 
Fig. 5. Example of database-driven communication including versioning. 

 

Especially when using simulation models with 

standardized data schemata like CityGML [12] or SEDRIS 

[13] some semantics or functions of data objects need to be 

synchronized as well. This is done using functional data 

synchronization during runtime. Here, specific objects 

represented in ExtDB’s schema are translated into functional 

equivalents interpretable by the simulation system. A simple 

example would be a material description in SEDRIS 

translated to a material description known by the simulation 

system so it can be used for rendering.  

To make the approach portable to other SimDB and ExtDB 

implementations, generalized database requirements were 

defined [14]. They are based on techniques known from 

Model-Driven Engineering (MDE) [15] and follow a similar 

approach like Model-Driven Interoperability (MDI). Here, 

both databases’ meta-models (i.e., their abstract syntax) are 

required to be matched by model transformations, e.g., using 

ATL [16]. By requiring additional model transformations to 

and from the UML [17] as a pivot meta-model, UML 

structures and semantics can be used to give a generalized 

method specification of the database synchronization 

approach presented above [18]. 

D. HLA 

Our simulation system is also capable of interacting with 

other systems via HLA. This is achieved by attaching specific 

sender and/or receiver extensions to the nodes whose 

properties are distributed within the HLA federation.  A 

central HLA communication node – referenced by each 

sender/receiver – is responsible for communication with the 

federation and for translating the native data into a FOM 

compatible format (and vice versa). Again, the state change 

message of the database is used to obtain data necessary for 

sending these changes to the HLA federation via the 

communication node.  Changes from the federation are 

redirected to the corresponding receiver extensions, which in 

turn update the properties. To avoid possible update loops, 

message emissions are blocked while updating a property. 

 

IV. COMPARISON 

The four approaches can be compared with regard to 

different aspects. 

A. Basic Idea  

The basic idea or main purpose of the DSSD approach is 

load distribution. I.e., rendering and simulation tasks shall be 

distributed over a set of clients typically at the same site. The 

PropertySync technique is rather used for a simple 

synchronization of individual property values, e.g., to pass 

values through a distributed I/O network. HLA is a protocol 

for cooperative distribution between different sites and 

clients with a focus on interoperability. Finally, the DBSync 

approach’s main idea is to provide a Central World Model for 

persistence, communication, and versioning. 

B. Mode / Topology 

DSSD, HLA, and DBSync use a client-server architecture. 

In DSSD, the topology can be arbitrarily configured but is 

fixed during runtime. In contrast, HLA has a 

publish-subscribe model allowing clients to dynamically 

connect and disconnect from its RTI. Similarly, clients can 

connect and disconnect to the central database in the DBSync 

approach. In contrast, the PropertySync approach has a 

peer-to-peer structure where individual properties are 

synchronized between a pair of clients.  

C. Clients 

DSSD, HLA, and DBSync conceptually all support an 

arbitrary number of clients. For DSSD, these clients must be 

homogeneous (currently only VEROSIM clients are 

supported). In contrast, HLA and DBSync support 

heterogeneous clients as long as they support the respective 

protocol or API. PropertySync however can only be used to 

connect two homogeneous clients (currently VEROSIM). 

D. Schema / Data 

The DSSD approach works with distributed heterogeneous 

schema and data. I.e., schema and data do not have to be 

identical at every client. PropertySync goes one step further 
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by even allowing to synchronize properties independent of 

their schema – only the data types have to match. HLA 

combines a central common schema (the FOM) with a 

heterogeneous set of schemata for each client (SOM). 

Finally, the DBSync method uses a central schema within 

ExtDB that is synchronized to all clients and manages a 

central master-copy of the shared simulation model. 

E. Replication 

Only two of the presented techniques rely on replication. 

DSSD presumes a large percentage of existing replication of 

the simulation model using files or other techniques. Using 

DBSync, schema and data are replicated. Data replication 

however can be done selectively (i.e., only parts of the 

simulation model can be replicated to a client). In contrast, 

HLA and PropertySync do not presume any replication. 

 

V. APPLICATIONS 

A. Virtual Reality and Multiscreen 3D Simulation 

With the help of the DSSD approach we can easily transfer 

any 3D simulation model from a desktop workspace onto a 

stereo multiscreen setup, without any further adaptation 

necessary by the simulation expert. Each screen is powered 

by two computers (one for each eye) and additional 

computers are responsible for the simulation and user 

interaction. On each computer the simulation is started in the 

appropriate configuration and the model is loaded and 

executed automatically.  

The result is a comprehensive development and testing 

environment based on simulation technology, a Virtual 

Testbed (see Fig. 6). 

 

 
Fig. 6. Interaction with the virtual Testbed. 

 

The Virtual Testbed concept is a key technology in the 

emerging field of eRobotics [19], because Virtual Testbeds 

can act as a central focal point in multi-disciplinary 

development projects. The additional screen space leads to a 

more immersive experience for the user.  

B. Self-Localization Unit 

In the context of the research project SELOK, an algorithm 

for the self-localization of mobile robots in unstructured 

environments called VisualGPS was developed [20]. A local 

map of landmarks is constructed from sensor information 

(laser scanners, stereo cameras) and localized in a global map 

of landmarks, usually derived from aerial survey data, using a 

particle filter. The approach is generic and can be applied to 

trees in the woods or stones and craters on planetary surfaces. 

A multi-purpose mobile self-localization unit was 

constructed (see Fig. 7), which contains an industrial 

computer running the simulation system VEROSIM that 

features all necessary algorithms and holds the environment 

model. Another instance of VEROSIM is running on a 

ground station, which controls the mobile robot as well as the 

localization unit. In this scenario, all data flow is realized 

using PropertySync. 

 

 
Fig. 7. Integration of 2D laser scanner, stereo camera, IMU and industrial 

computer to a localization unit. 

 

C. Virtual City Simulation 

A drive through a virtual city model stored in a central 

database was realized using the approach presented in 

Subsection III.C (Fig. 8). Here, a central SGJ database 

contains a SEDRIS-based desert village (data: RDE) as static 

parts of the shared simulation model. It also comprises the 

dynamic parts of the simulation: A helicopter and a car. Two 

VEROSIM simulation clients are connected to SGJ. Client 

#1 runs on a standalone PC connected to a television screen 

and controls the car. Client #2 controls the helicopter. To 

drive its multi-projection screen it uses the DSSD approach. 

Changes to either vehicle are logged and communicated via 

the central SGJ. For debriefing, a simulation run can be 

replayed using a VEROSIM instance that accesses the 

versioned data from the shared simulation model. 

In the context of the research project Virtual Forest the 

same techniques are used to manage forest model data. 

 

 
Fig. 8. Database-Driven virtual city simulation. 

  

D. MATLAB Co-Simulation 

Based on HLA, the simulation system VEROSIM was 

connected to the MATLAB Toolbox [21] to obtain a 

standardized and easily configurable way to establish a 

co-simulation. In a test scenario we used MATLAB to 

calculate the behavior of a system consisting of damped 

harmonic oscillators and used VEROSIM to present the 

results in 3D. Furthermore, any property changes in 

VEROSIM relating to the oscillators (such as stiffness) were 

sent to the MATLAB model. 
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VI. RELATED WORK 

The use of HLA in distributed discrete event simulation is 

detailed in [22]. In distributed virtual environments (DVE) a 

more direct approach is generally favored. Reference [23] 

gives an overview of different synchronization algorithms 

used in various DVEs. This paper also describes a method 

somewhat similar to DSSD. The method does not explicitly 

propagate state changes of the simulation system, but 

commands that in turn may be used to alter the state of the 

target system.  

As described in [24]-[26], in multiscreen systems 

distributed rendering is also quite common. However, here 

the rendering alone (not the simulation) is distributed. 

Regarding Subsection III.C we found different approaches 

that combine 3D software systems with databases. However, 

none of them provides a comparable integration of data 

management, collaboration, versioning, and flexible schema 

support. Some only use a database to store simple object 

positions [27]. In contrast, others store the complete scene 

data like in our approach. Some of those also support a 

distribution mechanism for collaboration between the clients 

[28]-[32], while others only support single user or read-only 

usage [33], [34]. Different data schemata are only supported 

by few systems [30], [32], [34]-[36]. Finally, data versioning 

is only provided using proprietary data schemata [33] or on 

file level using a CVS-like approach [35], [36]. 

 

VII. CONCLUSION 

An evident conclusion that can be drawn from this work is 

that different simulation problems require different 

approaches for distribution and synchronization. In 

particular, we outlined how the standard HLA-based 

approach may not suit every scenario. High-performance 

synchronization between the clients of a 3D multi-projection 

screen benefit from a more direct approach we call DSSD 

(Direct Simulation State Distribution). A “no-frills” 

synchronization between single properties can more simply 

be realized using the presented PropertySync method. 

Finally, collaborative scenarios with huge shared simulation 

models benefit from a database-driven approach to 

distribution. Nevertheless, classic interoperability scenarios 

like a Co-Simulation between heterogeneous simulation 

systems still do benefit from the standardized HLA protocol. 

Prototypical implementations based on a Versatile 

Simulation Database (VSD) as well as various exemplary 

applications practically prove the advantages of our 

diversified approach. 

In the future, we plan to improve the DSSD approach by 

minimizing the time and bandwidth required to generate, 

transmit and evaluate the schema and the current state of the 

sending VEROSIM system. This should lead to a significant 

speed-up of the simulation start. Furthermore we want to 

introduce a mixed TCP / UDP protocol, which enables 

multicasting of non-essential information. Regarding the 

DBSync approach, we are thinking about prototypes for other 

database systems for ExtDB, e.g., PostgreSQL. Another 

interesting research field is the combination of the different 

approaches. As shown above, this has already been done for 

DSSD and DBSync. It may likely be evaluated in more detail 

to identify other benefiting scenarios. 
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