
  

 

Abstract—Study of the heat transfer processes is an 

important component in understanding the energy balance of 

an electrolytic cell. Computational modeling of the heat transfer 

is thus necessary for electrochemical analyses. This paper 

describes our efforts in developing a viable computational 

model for heat transfer, in certain green electrolytic cells that 

are driven by new molten salt chemistry discovered at the 

George Washington University. As part of our initial efforts, we 

model the heat transfer in a simplified electrolytic cell, and then 

obtain electrical equivalent networks. Of particular interest is 

the heat transfer in the presence of an endothermic reaction, 

which prevents the use of simple lumped resistor components 

for the electrical counterparts.  In this paper, we derive closed 

form solutions using both the thermal and electrical forms of 

the model, and demonstrate their functional equivalence. We 

are able to show that instead of solving a second order 

differential equation, the electrical equivalent model allows for 

numerical computation of the steady state heat flow. The 

electrical analogue thus sets the stage for simulation of the heat 

transfer on parallel computers, and also enables the model to be 

extended for more complex structures. 

 
Index Terms—Thermal modeling, electrolytic cell, heat 

transfer, electrical equivalence.  

 

I. INTRODUCTION 

Electrolysis involves the use of electricity through molten 

or liquid solutions for driving chemical reactions, resulting in 

separation of materials. At the George Washington 

University, discovery of new molten salt chemistry has 

resulted in the use of electrolysis for calcium oxide (CaO) 

production from limestone (CaCO3), without the generation 

of carbon dioxide that is normally released in regular 

processes [1]. The underlying reaction requires a certain 

temperature threshold to be maintained, which motivates us 

to study the thermal energy movement in the system. The 

study of the energy balance in any electrolytic cell is essential 

in design and implementation [2]. We therefore begin with a 

simplified view of the system and derive the heat transfer 

model. 

To enable simulation of complex structures, as well as 

provide a framework for simulation on parallel computers, 

we study the use of electrical equivalent networks for the heat 

transfer. There are instances in the literature of similar 

efforts, for example, in the modeling of fuel cells through 

electrical equivalents [3]. In our specific case of the 
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endothermic electrolytic cell, we observe that while simple, 

conducting regions can be easily modeled as lumped 

resistors, zones where the chemical reaction absorbs heat 

requires more careful consideration. In this paper, we derive 

closed form solutions using both the thermal and electrical 

forms of the model, and demonstrate their functional 

equivalence in obtaining the thermal distribution. We carry 

out this analysis for the particular case of CaCO3 electrolysis, 

by considering a simple, idealized system. 

This paper is organized as follows. Section II describes the 

basic system set up for thermal modeling of an electrolytic 

cell. Subsequently, Section III develops the thermal model, 

and obtains a closed form solution by solving a differential 

equation. Section IV obtains the electrical equivalent network 

for all regions of the simplified cell. Finally, Section V 

concludes this study. 

 

II. SYSTEM DESCRIPTION AND SETUP 

We consider a simplified view of the system as depicted in 

Fig. 1. The figure shows an electrolytic cell that is made up of 

a cylindrical crucible constructed out of Alumina. This 

crucible holds molten lithium carbonate (Li2CO3) electrolyte, 

which contains dissolved calcium carbonate (CaCO3) that 

needs to be electrolyzed. Electrolysis is performed by using 

two electrodes placed close to the center of the cylinder 

within the electrolyte. A steel cathode and an ickelanode are 

utilized. The crucible is heated uniformly from the outside 

using a suitable heat source, such as a heating element or 

solar energy. As long as the temperature is maintained higher 

than800◦C, the following reaction takes place: 

 

                 CaCO3 → CaO + CO +  
1

2
O2                        (1) 

 

 

 
Fig. 1. Basic electrolytic cell. 

 

The generated calcium oxide precipitates out of the 

solution, and carbon monoxide can be collected for use in 

fuel generation. The electrochemical reaction is endothermic 
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and cools down the electrolyte. We model this cooling 

through an idealized reaction zone that absorbs heat, a 

cylindrical volume as shown in Fig. 1. This approximation is 

fine as long as we have long electrodes that span most of the 

crucible height, placed close to the center. Since this reaction 

zone absorbs heat, the temperature of the electrolyte will 

decrease, which may change the reactions taking place. We 

need to ensure that the coldest part of the solution will be 

above 800 °C, and thus seek to model the heat transfer in the 

system. 

 

III. HEAT TRANSFER MODEL 

The external surface of the electrochemical cell is 

maintained at a constant temperature through a heating 

element. We therefore expect the temperature variation to be 

as shown in Fig. 2. Given the constant external temperature 

T2, the aim is to find the lowest temperature T0 in the steady 

state at the center of the electrolyte. This will give us an 

understanding of the required minimum value of T2. 

 

 
Fig. 2. Electrolytic cell temperature variation. 

 

A. Crucible Wall 

 

 
Fig. 3. Heat transfer in the crucible wall region. 

 

We first consider the heat variation in the crucible wall. As 

the heat transfer is radially in ward, we can model the heat 

conduction in one dimension and accurately obtain the 

temperature on the inner wall of the crucible. Fig. 3 shows a 

detailed diagram of the crucible section used in the model. 

The height of the cylindrical container is L. The figure shows 

an infinitesimal element of radius r and thickness dr. By 

conservation of energy, the quantity of heat entering this 

element should match the heat leaving this element, Q̇ 

(Joules/sor Watts). Using Fourier‟s Law for conduction [4], 

we have 

 

𝑄 =  𝑘𝑤𝑎𝑙𝑙 𝐴 
𝑑𝑇

𝑑𝑟
  where 𝐴 = 2𝜋𝑟𝐿         (2) 

 

Kwall is the thermal conductivity of the crucible wall, in 

W/m/K. In the steady state, the heat transfer rate Q̇ is a 

constant. Integrating (2), we get: 

 

Q 

2πL
 

𝑑𝑟

𝑟

𝑟2

𝑟1

  =   𝑘𝑤𝑎𝑙𝑙  𝑑𝑇
𝑇2

𝑇1

 

 

Which gives 

 

𝑄 =
𝑇2−𝑇1
1

2π𝑘𝑤𝑎𝑙𝑙 L
ln
𝑟2
𝑟1

                           (3) 

 

where r2 is the radius of the outer wall, and r1 is the radius of 

the inner wall. Thus, for a known heat source that maintains a 

temperature T2 on the outer surface of the crucible, it is 

possible to have an estimate of the temperature T1 on the inner 

surface. 

B. Molten Salt 

 

 
Fig. 4. Heat transfer in the molten salt region (reaction-free zone). 

 

We now study the heat transfer through are gi on of the 

molten salt electrolyte that is not actively involved in there 

action process ata given moment, and thus does not 

contribute to any changes in the heat energy. The cylindrical 

portion used for analysis is depicted in Fig. 4. To simplify the 

analysis, we do not consider any heavy convection currents 

occurring in the molten solution. However, mild convection 

current scan be captured by an equivalent the rmal 

conductivity that includes convection and conduction. We 

denote this effective conductivity as ksalt. Following the steps 

similar to the crucible wall in Section III-A, we get 

 

𝑄 =
𝑇1−𝑇𝑐
1

2π𝑘𝑠𝑎𝑙𝑡 L
ln
𝑟1
𝑟𝑐

                                   (4) 

 

where 𝑟𝑐  is the inner radius of the annular cylindrical region 

of the reaction-free molten salt. The reaction zone extends 

from the center till radius 𝑟𝑐 , and is analyzed next. 

C. Reaction Zone 

The reaction zone is the inner cylindrical region of the 

molten salt where the endothermic reaction occurs due to 

electrolysis of calcium carbonate.  In this region, we consider 

the chemical reaction to consume heat at a rate „a‟ W/m3 or 
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J/s/m3. Due to this heat absorption, the heat transfer rate 𝑄  
does not remain the same as we go radially inward. We 

analyze this region using the diagrams in Fig. 5. The full zone 

is depicted on the left side in the figure. 

 

 
Fig. 5. Heat Transfer in the reaction zone. 

 

Consider an infinitesimal annular cylindrical component 

of the reaction zone as indicated in the left side of Fig. 5, with 

a radial section as shown in detail on the right side in Fig. 5. 

The heat entering and exiting the region are respectively 

𝑄  𝑟+∆𝑟 and𝑄  𝑟 . The amount of heat energy absorbed by the 

endothermic reaction in this zone is a ∆V, where ∆V is the 

volume of this infinitesimal region, given by, 

 

∆𝑉 =  𝜋  𝑟 + ∆𝑟 2 − 𝑟2 𝐿 ≃ 2𝜋𝐿𝑟∆𝑟            (5) 

 

Through conservation of energy, we have, 

 

𝑄  𝑟+∆𝑟 = 𝑄  𝑟 + 𝑎∆𝑉                      (6) 

 

Substituting for ∆V using (5), the relation in (6) becomes: 

 

𝑄  𝑟+∆𝑟 − 𝑄  𝑟 

∆𝑟
= 2𝜋𝐿𝑟𝑎 

 

Which, as ∆𝑟 → 0, is the same as: 

 
𝑑𝑄 

𝑑𝑟
= 2𝜋𝐿𝑟𝑎                                  (7) 

 

We can determine 𝑄 (r) using Fourier‟s Law of conduction, 

which states that the time rate of heat flow is directly 

proportional to the temperature gradient across the 

infinitesimal element, as well as the area of cross section 

perpendicular to the flow: 
 

𝑄  𝑟 = 𝑘𝑧𝑜𝑛𝑒 𝐴
𝑑𝑇

𝑑𝑟
 ,𝑤ℎ𝑒𝑟𝑒 𝐴 = 2𝜋𝑟𝐿            (8) 

 

where 𝑘𝑧𝑜𝑛𝑒 is the effective thermal conductivity of the 

reaction zone. Using the above expression for 𝑄  in (7), we 

obtain the following differential equation: 

 
𝑑2T

d𝑟2 +
1

𝑟

𝑑𝑇

𝑑𝑟
=

𝑎

𝑘𝑧𝑜𝑛𝑒
                             (9) 

 
In order to solve this second order differential equation, we 

need boundary conditions. These are: 

 

𝑇|𝑟=𝑟𝑐 = 𝑇𝑐  

 𝑑𝑇

𝑑𝑟
 
𝑟=0

= 0 

We can then solve the differential equation in (9) to obtain 

a solution for the temperature function: 

 

𝑇 𝑟 =  𝑇𝑐 +
𝑎

4𝑘𝑧𝑜𝑛𝑒
 𝑟2 − 𝑟𝑐

2              (10) 

 

The lowest temperature is expected at the center of the 

zone (r=0), which is: 

 

𝑇0 =  𝑇𝑐 −
𝑎

4𝑘𝑧𝑜𝑛𝑒
𝑟𝑐

2                        (11) 

 

Putting it all together, using (3), (4) and (11) we have: 

 

𝑇0 =  𝑇2 −
𝑄 

2𝜋𝐿
 

1

𝑘𝑤𝑎𝑙𝑙
ln

𝑟2

𝑟1
+

1

𝑘𝑠𝑎𝑙𝑡
ln

𝑟1

𝑟𝑐
 −

𝑎

4𝑘𝑧𝑜𝑛𝑒
𝑟𝑐

2  (12) 

 

The size of the reaction zone, 𝑟𝑐 , depends on the heat 

𝑄 provided to the electrolytic cell. In the steady state, the heat 

transferred into the zone must be consumed fully by the 

endothermic reaction. In other words, 

 

𝑄 =  𝑎𝑉 = 𝑎𝜋𝑟𝑐
2𝐿                            (13) 

 

We can use this in (12) to give us a final expression for the 

value of 𝑇0: 

 

𝑇0 =  𝑇2 −
𝑄 

2𝜋𝐿
 

1

𝑘𝑤𝑎𝑙𝑙
ln

𝑟2

𝑟1
+

1

𝑘𝑠𝑎𝑙𝑡
ln

𝑟1

𝑟𝑐
+

1

2𝑘𝑧𝑜𝑛𝑒
        (14) 

 

where 𝑟𝑐 =  𝑄 /(𝑎𝜋𝐿) from (13). We can set the value of 𝑇0 

to a required value (> 800 °C ). If we have a particular 

maximum temperature that we do not want to exceed on 

theouter surface of the electrolytic cell (say T2< 1100°C), we 

can determine the amount of heat that needs to be supplied to 

the cell. Conversely, if the amount of heat 𝑄  is known, the 

temperature distribution can be easily computed when we 

maintain 𝑇0 at the minimum required value. 

 

 
Fig. 6. Electrical equivalent for crucible wall. 

 

 
Fig. 7. Electrical equivalent for two reaction-free regions. 

 

IV. ELECTRICAL ANALOGY FOR HEAT TRANSFER 

It is well known that the heat transfer can be represented by 

an equivalent electrical analogue in most of the simple cases 

[5]. For our study, we seek to obtain an electrical equivalent 

in order to obtain computationally simpler alternatives, and to 

help with expansion to more complex experimental 

scenarios. 

We begin with the crucible wall. Due to conservation 

energy, the heat transfer rate is constant across the crucible 

wall in the radial direction. This may be likened to an 

V2=T2  V1=T1 
I=Q’ 

Rwall 

V2=T2  

T1 I=Q’ 

Rwall Rsalt 

Vc=Tc  
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electrical current, and therefore we can model the crucible 

using a lumped resistor equivalent. Looking at Fig. 6 and (3), 

we can deduce that the equivalent resistance is: 

 

                         𝑅𝑤𝑎𝑙𝑙 =
1

2𝜋𝑘𝑤𝑎𝑙𝑙 𝐿
ln

𝑟2

𝑟1
                            (15) 

Similarly, the equivalent resistance of the molten salt 

reaction-free zone is: 

 

                         𝑅𝑠𝑎𝑙𝑡 =
1

2𝜋𝑘𝑠𝑎𝑙𝑡 𝐿
ln

𝑟1

𝑟𝑐
                          (16) 

where 𝑟𝑐  is obtained from (13) as noted earlier. Thus the first 

two regions can be represented as shown in Fig. 7, and the 

heat transfer can be easily computed as: 

 

𝑄 =
𝑇2 − 𝑇𝑐

𝑅𝑤𝑎𝑙𝑙 + 𝑅𝑠𝑎𝑙𝑡
 

 

Let us now consider the reaction zone. Due to the existence 

of the endothermic reaction, the heat transfer rate does not 

remain the same as we traverse radially in ward. Since 𝑄 , the 

equivalent of current, is not constant, we cannot model the 

region as a lumped resistor. Instead, we split the zone radially 

into many small elements, so that each element can be 

captured as a resistance. The heat absorption within each 

element can then be modeled as a current source. The 

resulting network is shown in Fig. 8. The current (heat 

absorbed) at each element J is given by a∆𝑣 , where the 

volume ∆𝑣of the annular cylindrical element is given by 

π𝐿(𝑟𝐽
2 −  𝑟(𝐽−1)

2). Therefore, 

 

𝐼𝐽 = 𝑎𝜋𝐿 𝑟𝐽
2 − 𝑟(𝐽−1)

2                       (17) 

Furthermore, the resistance of this element can be easily 

derived based on our analysis of the crucible wall: 

 

                         𝑅𝐽 =
1

2𝜋𝑘𝑧𝑜𝑛𝑒 𝐿
ln

𝑟𝐽

𝑟(𝐽−1)
                        (18) 

 
Fig. 8. Electrical equivalent for the reaction zone. 

 

From the circuit in Fig. 8, we can now apply Kirchoff‟s 

law and Ohm‟s law to easily obtain the temperature 

difference between the outer and inner point of the reaction 

zone: 

 𝑇𝑐 − 𝑇0 = 𝐼1𝑅1 +  𝐼1 + 𝐼2 𝑅2 +⋯+   𝐼𝑖

𝑁

𝑖=1

 𝑅𝑁 

=    𝐼𝑖

𝐽

𝑖=1

 

𝑁

𝐽=1

𝑅𝐽  

We can now substitute for 𝐼𝑖  and 𝑅𝐽  based on (17) and (18) 

respectively. Also, using 𝑟𝐽 − 𝑟(𝐽−1)  =  ∆𝑟 , followed by 

Taylor series expansion/approximation, we get: 

 

 𝑇𝑐 − 𝑇0 =  
𝑎

4𝑘
𝑟𝑐

2  
𝑁(𝑁−1)

𝑁2                        (19) 

In the limit N→∞, this expression matches exactly theone 

in (11) obtained by solving the second order differential 

equation in Section III-C. Based on this functional 

equivalence of the model, we can extend the electrical 

equivalent network for more complex structures. 

Irregularities or non-uniformities in the structure of the 

electrolysis cell will render hand derivation of the differential 

equations rather impractical. By using the electrical 

equivalent described in this section, it would be possible to 

capture any structure by decomposing it into a number of 

small elements. Furthermore, it is possible to distribute the 

computations associated with this large number of elements 

across a parallel computing cluster, thereby providing the 

potential for speeding up the simulations. 

 

V. CONCLUSION 

In this paper, we took the example of an in-house 

electrolysis system, outline das implified version fit, and 

provided the first steps in developing a heat transfer model. 

We derived the thermal model and the electrical equivalents.  

Through the specific example chosen, we showed that 

simple, lumped electrical equivalents are not directly 

applicable. By obtaining the electrical networks for heat 

transfer, we made observations on its applicability for a wider 

ange of structures, as well as amenability for parallel 

computing. Future work would involve a study for 

incorporating non-ideal factors into this simple model, as 

well as carrying out a parallel implementation. 
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