
  

 

Abstract—Quantum Monte Carlo (QMC) methods are used 

in many scientific computer simulation as their core kernels. 

The implementation of QMC for distributed NUMA clusters 

may have load balancing issues at petascale level because of its 

random nature. We are studying on a simulation for 

inhomogeneous ultra-cold atoms on optical lattice, for which we 

developed a QMC algorithm with hybrid MPI+OpenMP 

programming model. This hybrid model uses the nested 

parallelism such that the outer loops are parallelized by MPI, 

while the inner loop relies on OpenMP parallelism. In this 

work, we presented an adaptive computing approach which 

learns the system work load dynamically by using our Adaptive 

Computing Library at run-time and then creates sufficient 

amount of OpenMP threads based on the availability of the 

system resources during the execution. The implementation 

shows that our adaptive approach can get very good load 

balancing without unnecessary overheads and can significantly 

provide performance increases up to 20% increases in 

comparison to MPI-only implementation on a XE6m Cray 

super computer. 

 
Index Terms—Hybrid parallel programming, load balancing, 

QMC simulation.  

 

I. INTRODUCTION 

Many scientific simulations use quantum Monte Carlo 

method (QMC) at their most time consuming kernels. QMC 

method provides an accurate description of many-body 

physics which can be applied to problems relevant to 

chemistry, biology, physics, material science and even drug 

design at molecular level. In our collaborative and 

interdisciplinary work with physics department of George 

Town University, we want to build scalable and efficient an 

optical lattice simulator with ultra cold atoms by using 

inhomogeneous dynamical-mean field theory (IDMFT) in 

which again most time consuming portions of the simulation 

are QMC methods [1], [2].  

These calculations are computationally intensive and 

require very large high performance computing systems to 

able to study realistic simulations. Thus, the simulator is 

originally written with FORTRAN+MPI programming 

model to run distributed computer cluster with 

manager-worker paradigm. However, we observed that load 

balancing problem occurred since each MPI process 

performing QMC which is random by nature. We 

implemented the hybrid MPI+OpenMP programming to 

overcome load balancing issues. However, this cause 
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memory stalling problem on Cray XE6m, where each 

compute node has non-uniform memory access (NUMA) 

memory design. When the system is fully busy with MPI 

processes [3] by launching new OpenMP threads [4] which 

stresses the memory bandwidth, cause starvation to some 

threads. To overcome this difficulty, we design Adaptive 

Computing Library (ACL) which can be used to improve the 

hybrid MPI+OpenMP or MPI+thread programming model. 

The cluster system, which consists of shared memory 

nodes with several multi-core CPUs connected to a high 

speed network to comprise a distributed memory system, is 

the most widely available hardware architecture for the 

high-performance computing community. On these systems, 

the hybrid parallel programming model with MPI internodes 

communication with combination of a shared memory 

programming model to manage intranode parallelism has 

become a common approach to parallel programming. ACL 

provides a library to help hybrid programmers to improve the 

performance by managing the process vs. thread balance. 

User of ACL will not create more threads than necessary so 

that their NUMA or even SMP cluster will not cause memory 

congestions with unwanted parallelism. 

In this paper, we present our work to improve the 

performance of a physics simulation (QMC application) for 

ultra-cold atoms in optical lattice by using a hybrid 

programming paradigm at very large scale high performance 

computing cluster consists of NUMA nodes. We developed 

ACL library to improve the hybrid parallel programming 

further at this NUMA platform. We demonstrate the API of 

ACL and how to use it for hybrid programming environment. 

We compared the performance evaluation of MPI-only, 

MPI+OpenMP and our adaptive hybrid model of the 

inhomogeneous ultra-cold atoms simulation on a Cray XE6m 

supercomputer. 

Section II of the paper presents an overview description of 

theory used in the simulation and briefly describing the main 

QMC kernel, and Section III provides hardware view of the 

NUMA platform. Section IV presents MPI parallelization of 

the simulation, while Section V explains a hybrid 

implementation of the simulation. Section VI presents our 

adaptive hybrid approach, followed with a description of the 

interface and implementation of our library. An evaluation of 

three models in terms of load balancing and performance is in 

Section VII. Related work and the conclusion are presented 

in Section VIII and Section VIIII, respectively. 

 

II. THEORY: INHOMOGENEOUS QUANTUM MECHANICAL 

SYSTEMS 

The inhomogeneous quantum mechanics is one of the most 

important fields used to solve difficult problems in physics. 
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This project is to build an optical lattice simulator which 

models inhomogeneous mixture of Boson and Fermion atoms 

moving on the optical lattice at ultra-cold temperature. The 

model is restricted to the case where only the Fermion atoms 

can move from site to site and the Bosons are stationary but 

have an interaction with the Fermions if they exist on the 

same site. Furthermore, we look at only nearest neighbour 

hopping for the Fermions. The system, because it is at the 

atomic scale, is governed by quantum mechanics; more 

precisely it is a many body quantum mechanical problem 

subject to the differential equation (i.e. the equation of 

motion) [1], [2]: 

 

( ) ( )  
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where the indices i,j denote discrete indices that label space 

points on the optical lattice. t is the time variable and the 

matrix Hij is a complicated function of space time points 

given by the following Eq. 2: 
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Each term in the above equation exhibits some type of 

interaction between the two types of atoms. The important 

thing to note is that only the first term has terms that connect 

two lattice points i and j. Because we restrict ourselves to 

only nearest neighbor interaction we see that the matrix Hij is 

sparse. This is the important observation of the above 

equation the other terms simply add to the diagonal 

components of H. 

Returning back to Eq. l our ultimate goal is to compute the 

matrix Gij. It turns out that the physical quantities of interest 

depend only on the diagonal elements of Gij, i.e. Gii. The 

system uses QMC solver to calculate for this quantity for 

each Gii. The QMC part is the most expensive part of the 

simulation.  

 
Algorithm 1: The pseudo code of QMC method. 

Generate initial random configurations 

DO g = 1 to N_generations 

DO w = 1 to N_walkers 

DO p = 1 to N_particles 

Move particle new random position 

Compute Wave and Green's function ratios  

Accept/reject move with Metropolis 

Calculate new energy of walker  

Calculate s = base on walker energy  

if s == 0 remove walker  

if s == 1 do nothing 

if s > 1 create s—1 additional walkers 

END DO 

END DO 

END DO 

 

The QMC method is summed up in the Algorithm 1. The 

algorithm is simply comprised of three main loops. The first 

loop is going on the number of Monte Carlo cycle and the 

second and third loops go through walkers (parallel instances 

of systems) and particles respectively. Finally, we also have 

the branching part where some walkers are removed; some 

are untouched, while others breed new walkers by spawning 

new copies. Since the randomness natural of QMC algorithm, 

we can only know at run-time how expensive each QMC 

becomes. This becomes the source of load imbalance at the 

simulation. 

 

III. NUMA CLUSTER ARCHITECTURE 

Any realistic scientific simulations which employ QMC 

methods requires to a usage of distributed memory high 

performance system to enable calculation to complete in a 

reasonable amount of time with a good accuracy. These 

distributed systems consists of many shared memory 

multi-core nodes connected to each other with a high speed 

interconnect. However, the share memory multi-core nodes 

have two different memory architectures. The first 

architecture is called the Symmetric Multiprocessor (SMP) 

architecture which has many identical processors and all of 

processors have equal access times to all memory regions of 

the system. The second architecture is called Non-Uniform 

Memory Access (NUMA) architecture [5] as shown Fig. 1.  

 

 
Fig. 1. NUMA architecture at Cray XE6 nodes. 

 

The cores of NUMA architectures can access local 

memory faster than at non-local remote memory but still can 

access all memory region supported by the hardware. The 

NUMA architecture can scale better than SMP architecture 

after a number of processors. Thus, modern high 

performance hardware such as Cray XE6 which is used in 

this study has 4 NUMA nodes where each has 6 cores. That 

makes the total number of cores in the node 24. We believe 

that our ACL library will provide a support for NUMA aware 

programming to reduce memory contentions. 

 

IV. IMPLEMENTATION OF MPI PARALLELIZATION  

The original parallel version of the simulation code was 

developed using FORTRAN+MPI programming with 

master-slave model where the master processor dispatches 

work to the slave processors, who perform the work and 

return the results back to the master. The master-slave model 

fairly balances workloads among the slaves. However, in this 
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simulation, every slave performs many QMC algorithms 

which create load imbalances during the later stages of the 

simulation. To overcome this issue, we considered blending 

coarse grain MPI parallelism with fine grain OpenMP 

parallelism at the shared memory nodes of the cluster. 

The simulation pays importance to eliminate many-to-one 

communications which is very common at master-slave 

model that can lead to a bottleneck affecting scaling to large 

number of nodes. The code chooses many-to-many 

communications that slave nodes communicate directly 

amongst themselves to accumulate a final answer. 

 

V. IMPLEMENTATION OF HYBRID MPI+OPENMP 

Hybrid MPI+OpenMP model mainly used at nested 

parallelism applications [6], [7]. MPI portion of the hybrid 

can parallelize the outside loop by distributing the iteration 

space among the nodes of the cluster. On the other hand, 

OpenMP portion of the hybrid model enable shared memory 

parallelism among cores inside a compute node. The 

requirement of two different programming models increases 

the programming complexity at this parallel programming. 

However, this model fits nicely with today high performance 

computing architecture. Programmer uses MPI to perform 

domain decomposition of data explicitly. However, OpenMP 

can handle shared tables and data structures among threads 

by locking the critical sections.  

The hybrid programming can be designed with different 

structures. The most common one is to share the number of 

processors among the MPI process and OpenMP threads. We 

did not choose this approach because our simulation requires 

P3 configuration for the number of processors. This limits the 

experiment configurations. In this implementation, we 

choose that every MPI process will have fixed 4 threads each 

as shown Algorithm 2 where show QMC methods of each 

MPI slaves parallelized by OpenMP.  

 
Algorithm 2: The Hybridized pseudo QMC method. 

G e n e ra t e  i n i t i a l  random c o n f i g u ra t i o n s  

D O  g  =  1  to N_generations 

! $ o mp  p a r a l l e l  d o  p r i v a te ( . . . . )  d e fa u l t ( s h a r e d )   

D O  w  =  1 t o  N_w a l k e r s  

D O  p  =  1 t o  N_p a r t i c l e s  

Move p a r t i c l e  n e w  r a n d o m 

p o s i t i o n  

Compute Wave and G re e n ' s  f u n c t i o n  r a t i o s   

A c c e p t / r e j e c t  move w i t h  Me t ro p o l i s  

C a l c u l a t e  n e w  e n e rg y  o f  w a l k e r   

C a l c u l a t e  s  =  b a s e  o n  w a l k e r  e n e rg y   

! $ o mp  c r i t i c a l  

i f  s  = =  0  r e mo v e  w a l k e r   

i f  s  = =  1  d o  n o t h i n g  

i f  s  >  1  c r e a t e  s — 1  a d d i t i o n a l  w a l k e r s  

! $ o mp  c r i t i c a l  e n d  

E N D  D O  

E N D  D O  

!$ o mp  p a r a l l e l  d o  e n d   

E N D  D O  

. . .  

C a l l  M PI _ B a r r i e r ( )  
 

In addition, MPI supports two different thread safety levels 

for hybrid programming. MPI_THREAD_MULTIPLE 

allows multiple threads can call MPI library. This feature can 

enable to overlapping communication with computation 

optimization. The other alternative is 

MPI_THREAD_FUNNELED support in which an MPI 

application may be multithreaded but only one thread at a 

time can call MPI library. We choose this support level since 

our MPI calls are outside of OpenMP parallel region. 

 

VI. ADAPTIVE HYBRID METHOD 

In our simulation, MPI-only approach performs very well 

at the beginning stage of the simulation by keeping the 

system busy. The problem of load imbalance appears at the 

later stage of the simulation. We designed a new library 

where it will help the programmer to decide the number of 

OpenMP threads adaptively. The system will run MPI-only 

style until some of MPI processes start waiting for the 

synchronization barriers or blocking communications. Our 

library can tell the system to use more OpenMP threads for 

the inner node parallelism instead of MPI processes as time 

progress. Our first regular hybrid implementation suffered 

from memory congestion. However, the adaptive approach 

can solve this problem with the help of the programmer. 

 
TABLE I: ADAPTIVE COMPUTING LIBRARY 

Interface Description 

void ACL_Init(Boolean flag) 
ACL_NUMA_NODE/ACL_C

OMPUTE _NODE 

int ACL_Acquire(int myrank) Return available cores 

boolean ACL_Check(int myrank) Quick check 

void ACL_Release(int myrank)    Release cores 

void ACL_Sleep(int myrank)     Inform the blocking 

void ACL_Finalize(int myrank) 
Free all ACL resources 

  

 

Table I gives the number of routines in our Adaptive 

Computing Library (ACL) which is implemented with MPI 

one-sided communication. The ACL library supports two 

policies. It may give the number of cores availability at the 

NUMA nodes or at the larger COMPUTE nodes. Each MPI 

process will keep information about the avalibility of the 

nodes where they affine. The ACL_Init will initialize library 

and allocate internal data structures with 

ACL_NUMA_NODE or ACL_COMPUTE_NODE flag. 

ACL_Acquire routine will grant the number of cores the 

caller process where the appropriate threads will be created 

for the shared memory OpenMP. ACL_Check will return 

Boolean value whether the system should be 

MASTERONLY execution with quick system check without 

any ACL overhead such as internal locks. ACL_Release will 

return cores to the system which may be used other process in 

the same node. ACL_Final will free all internal data 

structures and all the recourses such as locks back to the 

system.  

Algorithm 3 is giving the example of ACL usage for the 

hybrid QMC method. In this code, omp_set_num_threads() 

of OpenMP library [4] can specify the number of threads. If 

the ACL_Acquire return 1, the subsequent OpenMP parallel 

region will be executed master only without any parallelism. 

Otherwise, it will be executed with a varying number of 
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threads depending of the workload of the system.  

 
Algorithm 3: The Hybridized pseudo code with ACL usage in QMC 

kernel.  

c a l l  A C _ I n i t (A C L _ N U M A _ N OD E )  

. . . .  

D O  g  =  1  to N_generations 

n c o r e s  =  A C L _ A c q u i r e (my r a n k)  

c a l l  o mp _ s e t_ n u m_ th r s ( n c o r e s )   

! $ o mp  p a r a l l e l  d o  p r i v a te ( . . . . )  d e fa u l t ( s h a r e d )   

D O  w  =  1 t o  N_w a l k e r s  

D O  p  =  1 t o  N_p a r t i c l e s  

Move p a r t i c l e  n e w  r a n d o m 

p o s i t i o n  

Compute Wave and G re e n ' s  f u n c t i o n  r a t i o s   

A c c e p t / r e j e c t  move w i t h  Me t ro p o l i s  

C a l c u l a t e  n e w  e n e rg y  o f  w a l k e r   

C a l c u l a t e  s  =  b a s e  o n  w a l k e r  e n e rg y   

! $ o mp  c r i t i c a l  

i f  s  = =  0  r e mo v e  w a l k e r   

i f  s  = =  1  d o  n o t h i n g  

i f  s  >  1  c r e a t e  s — 1  a d d i t i o n a l  w a l k e r s  

! $ o mp  c r i t i c a l  e n d  

E N D  D O  

E N D  D O  

!$ o mp  p a r a l l e l  d o  e n d   

c a l l  A C L _ R e l e a s e (my r a n k)  

E N D  D O  

. . .  

A C L _ S l e e p (my r a n k)  

c a l l  M PI _ B a r r i e r ( )   

…  

c a l l  A C L_ F i n a l i z e ( )  

 

ACL library works for only intra node cores. It will not 

give core availability information for remote nodes. The 

reason is that there are many internal data structures and large 

tables for QMC which cannot redistributed for this 

simulation. If the redistribution capability is added to the 

simulation, that will increase MPI communication heavily. In 

addition, it requires more programming effort to restructure 

source code of the whole simulation. OpenMP can allow 

incremental parallelization where you can improve as you 

needed. However, MPI parallelization requires data domain 

decomposition which cannot be done incrementally.   

Unfortunately, many FORTRAN programmers use too 

many COMMON blocks with SAVE keyword where they 

make many variables global even though some of these 

variables can be thread private variables. This is the problem 

of FORTRAN legacy code. When we make some of these 

false global variables back to local, it helps performance 

tremendously to the NUMA memory architecture.  

 

VII. PERFORMANCE EVALUATION 

This section will illustrate the impact of our proposed 

hybrid MPI+OpenMP approaches through several 

experiments by running three different implementations of 

the QMC algorithm in the simulation on a 66-nodes Cray 

XE6 cluster located at George Washington University with 

total 1584 cores. This SMP cluster consists of 2.2 GHz AMD 

Opteron CPUs with a total of 6-Cores with 4 NUMA nodes 

for total 24 processing cores per node running Linux 2.6.2 

connected with a state-of-the art Gemini 2D torus 

interconnect. All the codes are compiled with Cray 

FORTRAN compiler. We only tested our approach at Cray 

XE6 platform. This is a limitation in this work. 

We show the performance for a baseline MPI-only version 

and compare with the regular hybrid MPI+OpenMP version 

and our adaptive version with ACL_NUMA_NODE enabled. 

The experiment results are obtained with an average of 5 

runs. We report the timing of total simulation not only QMC 

timing. The simulation size is the optical lattice size where 

the lattice has size N3 and we choose N to be odd, so the lattice 

runs from –(N-1)/2  <  x, y, z  <  (N-1)/2 coordinate space.   

The first experiment objective is to find the load imbalance 

percentage. We used CrayPat performance analyzer tool 

which gives minimum time and maximum time consumed to 

execute the code at total number of cores. Table II 

demonstrated that MPI-only implementation has the highest 

load imbalance percentage. Our adaptive solution improved 

the load imbalance around 7% points. The regular hybrid 

looks like improved imbalance percentage over MPI-only but 

this did not helped the runtime because of memory 

congestion created by more threads than available cores.  

 
TABLE II: ADAPTIVE COMPUTING LIBRARY COMPARING LOAD IMBALANCE 

PERCENTAGE BETWEEN MAXIMUM AND MINIMUM TIME DIFFERENCES 

MEASURED BY CRAYPAT PROFILER 

Data Size 193 233 253 273 

MPI Imbl. 34.00 37.00 38.00 38.00 

Hybrid Imbl. 31.00 33.00 32.00 33.00 

Adaptive Imbl. 28.00 30.00 31.00 30.00 

 

The second experiment was designed to reveal how well 

the proposed hybrids perform compared to plain MPI 

version. Fig. 2 shows the total execution time on the vertical 

axis, and the horizontal axis denotes the problem size. The 

CPU times of regular hybrid are about 10% percentage worse 

than MPI-only implementation for every data sizes in the 

experiment. Adaptive solution consistently obtains better 

performance than MPI-only with about 20% performance 

gain. 

 

 
Fig. 2. Execution time of the simulation on 128+1 CPUs with varying 

problem sizes. 

 

VIII. RELATED WORK 

A cluster system with multiple SMP or NUMA nodes is 
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the most commonly available high performance computing 

hardware. MPI programming can be used both within a node 

and among cluster’s nodes. However, the other programming 

model for this platform is a hybrid programming model, in 

which a parallel program is written using a thread 

programming library such as Portable Operating System 

Interface (POSIX) threads within a node and MPI 

programming among nodes simultaneously. The MPI-2 

Standard has clearly defined the interaction between MPI and 

user-created threads in an MPI program. However, Gropp 

and Thakur [8] have pointed out the issues involved in 

developing an efficient thread-safe MPI implementation 

without sacrificing too much performance. 

The other hybrid programming with MPI as outer level 

parallelism and OpenMP as inner level parallelism has been 

extensively studied for an SMP cluster system [6], [7]. The 

shared address space within each SMP node is suitable for 

OpenMP parallelization and MPI can be employed within 

and across the nodes of a cluster. The MPI/OpenMP hybrid 

programming model is easy to apply via automatic 

parallelization of the compilers with some directives for loop 

level parallelism. Rabenseifner et al. have shown the relation 

between the MPI/OpenMP hybrid programming model and 

hardware architecture. 

A manager-worker-based parallelization algorithm for 

Quantum Monte Carlo (QMC-MW) is presented at [9] on 

heterogeneous parallel computers and they compared with 

the pure iterative parallelization algorithm (QMC-PI).  

A new hybrid model is developed by using MPI+MPI by 

[10]. In this model, they used the new MPI extension at MPI 

3.0 for shared memory programming at the node level 

parallelism [11]. They demonstrated an average performance 

improvement %40 at a QMC implementation with 

MPI+MPI. 

The developers of popular QMCpack [12] and QWalk [13] 

have invested time and effort into hybridizing MPI-only code 

with shared memory libraries, such as OpenMP to get 

node-level parallelism for SMP nodes. However, our QMC 

implementation is more NUMA-aware implementation by 

using ACL library. 

 

IX. CONCLUSION 

Through this study we developed a hybrid parallel 

programming model that combined the strength of MPI’s 

coarse grain parallelism with the strength of OpenMP’s fine 

grain approach to overcome load imbalance problem 

occurred MPI-only implementation at a Physics simulation 

for inhomogeneous ultra-cold atoms on an optical lattice 

problem. Since the simulation spends 90% of time on QMC 

algorithm, we used three different implementation codes of 

QMC’s algorithm employing three different parallelization 

paradigms: MPI-only, a hybrid MPI+OpenMP and the 

adaptive hybrid which is optimized with our Adaptive 

Computing Library (ACL) on a cluster of NUMA nodes. 

Each implementation employed the advanced features of the 

underlining programming model to achieve the best possible 

performance gains.  

We evaluated the scalability of the proposed hybrid 

MPI+OpenMP model and the Adaptive hybrid model on the 

QMC code in the simulation by comparing the baseline 

MPI-only implementations on up to 128 cores. We found that 

hybrid MPI+OpenMP implementation cannot provide 

improvement over MPI-only implementation. Furthermore, it 

even degraded the performance 10% ranges because of 

memory congestions created by more threads than available 

cores. On the other hand, our adaptive hybrid solution with 

our ACL library demonstrated a 20% performance gain on 

some configurations in comparison to MPI-only 

implementation by improving load balancing problem.  
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