

Abstract—Quantum Monte Carlo (QMC) methods are used

in many scientific computer simulation as their core kernels.

The implementation of QMC for distributed NUMA clusters

may have load balancing issues at petascale level because of its

random nature. We are studying on a simulation for

inhomogeneous ultra-cold atoms on optical lattice, for which we

developed a QMC algorithm with hybrid MPI+OpenMP

programming model. This hybrid model uses the nested

parallelism such that the outer loops are parallelized by MPI,

while the inner loop relies on OpenMP parallelism. In this

work, we presented an adaptive computing approach which

learns the system work load dynamically by using our Adaptive

Computing Library at run-time and then creates sufficient

amount of OpenMP threads based on the availability of the

system resources during the execution. The implementation

shows that our adaptive approach can get very good load

balancing without unnecessary overheads and can significantly

provide performance increases up to 20% increases in

comparison to MPI-only implementation on a XE6m Cray

super computer.

Index Terms—Hybrid parallel programming, load balancing,

QMC simulation.

I. INTRODUCTION

Many scientific simulations use quantum Monte Carlo

method (QMC) at their most time consuming kernels. QMC

method provides an accurate description of many-body

physics which can be applied to problems relevant to

chemistry, biology, physics, material science and even drug

design at molecular level. In our collaborative and

interdisciplinary work with physics department of George

Town University, we want to build scalable and efficient an

optical lattice simulator with ultra cold atoms by using

inhomogeneous dynamical-mean field theory (IDMFT) in

which again most time consuming portions of the simulation

are QMC methods [1], [2].

These calculations are computationally intensive and

require very large high performance computing systems to

able to study realistic simulations. Thus, the simulator is

originally written with FORTRAN+MPI programming

model to run distributed computer cluster with

manager-worker paradigm. However, we observed that load

balancing problem occurred since each MPI process

performing QMC which is random by nature. We

implemented the hybrid MPI+OpenMP programming to

overcome load balancing issues. However, this cause

Manuscript received September 25, 2013; revised January 3, 2014.

The authors are with the Department of Electrical and Computer

Engineering and the George Washington University (e-mail: {zbozkus,

anbar, tarek}@gwu.edu).

memory stalling problem on Cray XE6m, where each

compute node has non-uniform memory access (NUMA)

memory design. When the system is fully busy with MPI

processes [3] by launching new OpenMP threads [4] which

stresses the memory bandwidth, cause starvation to some

threads. To overcome this difficulty, we design Adaptive

Computing Library (ACL) which can be used to improve the

hybrid MPI+OpenMP or MPI+thread programming model.

The cluster system, which consists of shared memory

nodes with several multi-core CPUs connected to a high

speed network to comprise a distributed memory system, is

the most widely available hardware architecture for the

high-performance computing community. On these systems,

the hybrid parallel programming model with MPI internodes

communication with combination of a shared memory

programming model to manage intranode parallelism has

become a common approach to parallel programming. ACL

provides a library to help hybrid programmers to improve the

performance by managing the process vs. thread balance.

User of ACL will not create more threads than necessary so

that their NUMA or even SMP cluster will not cause memory

congestions with unwanted parallelism.

In this paper, we present our work to improve the

performance of a physics simulation (QMC application) for

ultra-cold atoms in optical lattice by using a hybrid

programming paradigm at very large scale high performance

computing cluster consists of NUMA nodes. We developed

ACL library to improve the hybrid parallel programming

further at this NUMA platform. We demonstrate the API of

ACL and how to use it for hybrid programming environment.

We compared the performance evaluation of MPI-only,

MPI+OpenMP and our adaptive hybrid model of the

inhomogeneous ultra-cold atoms simulation on a Cray XE6m

supercomputer.

Section II of the paper presents an overview description of

theory used in the simulation and briefly describing the main

QMC kernel, and Section III provides hardware view of the

NUMA platform. Section IV presents MPI parallelization of

the simulation, while Section V explains a hybrid

implementation of the simulation. Section VI presents our

adaptive hybrid approach, followed with a description of the

interface and implementation of our library. An evaluation of

three models in terms of load balancing and performance is in

Section VII. Related work and the conclusion are presented

in Section VIII and Section VIIII, respectively.

II. THEORY: INHOMOGENEOUS QUANTUM MECHANICAL

SYSTEMS

The inhomogeneous quantum mechanics is one of the most

important fields used to solve difficult problems in physics.

Adaptive Computing Library for Quantum Monte Carlo

Simulations

Zeki Bozkus, Ahmad Anbar, and Tarek El-Ghazawi

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

200DOI: 10.7763/IJCTE.2014.V6.862

This project is to build an optical lattice simulator which

models inhomogeneous mixture of Boson and Fermion atoms

moving on the optical lattice at ultra-cold temperature. The

model is restricted to the case where only the Fermion atoms

can move from site to site and the Bosons are stationary but

have an interaction with the Fermions if they exist on the

same site. Furthermore, we look at only nearest neighbour

hopping for the Fermions. The system, because it is at the

atomic scale, is governed by quantum mechanics; more

precisely it is a many body quantum mechanical problem

subject to the differential equation (i.e. the equation of

motion) [1], [2]:

() ()

ik ik kj ijH G t
t

 (1)

where the indices i,j denote discrete indices that label space

points on the optical lattice. t is the time variable and the

matrix Hij is a complicated function of space time points

given by the following Eq. 2:

†

†

† †

† †

†

c

1
1

2

((

c

()

))

i

ij ij i j

i i i

b

i i i b i i

bf i i i i
ij i

bb i
i

i i

t U c b b

U b b b b

V V b b

H c +

c c E

 (2)

Each term in the above equation exhibits some type of

interaction between the two types of atoms. The important

thing to note is that only the first term has terms that connect

two lattice points i and j. Because we restrict ourselves to

only nearest neighbor interaction we see that the matrix Hij is

sparse. This is the important observation of the above

equation the other terms simply add to the diagonal

components of H.

Returning back to Eq. l our ultimate goal is to compute the

matrix Gij. It turns out that the physical quantities of interest

depend only on the diagonal elements of Gij, i.e. Gii. The

system uses QMC solver to calculate for this quantity for

each Gii. The QMC part is the most expensive part of the

simulation.

Algorithm 1: The pseudo code of QMC method.

Generate initial random configurations

DO g = 1 to N_generations

DO w = 1 to N_walkers

DO p = 1 to N_particles

Move particle new random position

Compute Wave and Green's function ratios

Accept/reject move with Metropolis

Calculate new energy of walker

Calculate s = base on walker energy

if s == 0 remove walker

if s == 1 do nothing

if s > 1 create s—1 additional walkers

END DO

END DO

END DO

The QMC method is summed up in the Algorithm 1. The

algorithm is simply comprised of three main loops. The first

loop is going on the number of Monte Carlo cycle and the

second and third loops go through walkers (parallel instances

of systems) and particles respectively. Finally, we also have

the branching part where some walkers are removed; some

are untouched, while others breed new walkers by spawning

new copies. Since the randomness natural of QMC algorithm,

we can only know at run-time how expensive each QMC

becomes. This becomes the source of load imbalance at the

simulation.

III. NUMA CLUSTER ARCHITECTURE

Any realistic scientific simulations which employ QMC

methods requires to a usage of distributed memory high

performance system to enable calculation to complete in a

reasonable amount of time with a good accuracy. These

distributed systems consists of many shared memory

multi-core nodes connected to each other with a high speed

interconnect. However, the share memory multi-core nodes

have two different memory architectures. The first

architecture is called the Symmetric Multiprocessor (SMP)

architecture which has many identical processors and all of

processors have equal access times to all memory regions of

the system. The second architecture is called Non-Uniform

Memory Access (NUMA) architecture [5] as shown Fig. 1.

Fig. 1. NUMA architecture at Cray XE6 nodes.

The cores of NUMA architectures can access local

memory faster than at non-local remote memory but still can

access all memory region supported by the hardware. The

NUMA architecture can scale better than SMP architecture

after a number of processors. Thus, modern high

performance hardware such as Cray XE6 which is used in

this study has 4 NUMA nodes where each has 6 cores. That

makes the total number of cores in the node 24. We believe

that our ACL library will provide a support for NUMA aware

programming to reduce memory contentions.

IV. IMPLEMENTATION OF MPI PARALLELIZATION

The original parallel version of the simulation code was

developed using FORTRAN+MPI programming with

master-slave model where the master processor dispatches

work to the slave processors, who perform the work and

return the results back to the master. The master-slave model

fairly balances workloads among the slaves. However, in this

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

201

simulation, every slave performs many QMC algorithms

which create load imbalances during the later stages of the

simulation. To overcome this issue, we considered blending

coarse grain MPI parallelism with fine grain OpenMP

parallelism at the shared memory nodes of the cluster.

The simulation pays importance to eliminate many-to-one

communications which is very common at master-slave

model that can lead to a bottleneck affecting scaling to large

number of nodes. The code chooses many-to-many

communications that slave nodes communicate directly

amongst themselves to accumulate a final answer.

V. IMPLEMENTATION OF HYBRID MPI+OPENMP

Hybrid MPI+OpenMP model mainly used at nested

parallelism applications [6], [7]. MPI portion of the hybrid

can parallelize the outside loop by distributing the iteration

space among the nodes of the cluster. On the other hand,

OpenMP portion of the hybrid model enable shared memory

parallelism among cores inside a compute node. The

requirement of two different programming models increases

the programming complexity at this parallel programming.

However, this model fits nicely with today high performance

computing architecture. Programmer uses MPI to perform

domain decomposition of data explicitly. However, OpenMP

can handle shared tables and data structures among threads

by locking the critical sections.

The hybrid programming can be designed with different

structures. The most common one is to share the number of

processors among the MPI process and OpenMP threads. We

did not choose this approach because our simulation requires

P3 configuration for the number of processors. This limits the

experiment configurations. In this implementation, we

choose that every MPI process will have fixed 4 threads each

as shown Algorithm 2 where show QMC methods of each

MPI slaves parallelized by OpenMP.

Algorithm 2: The Hybridized pseudo QMC method.

G e n e ra t e i n i t i a l random c o n f i g u ra t i o n s

D O g = 1 to N_generations

! $ o mp p a r a l l e l d o p r i v a te (. . . .) d e fa u l t (s h a r e d)

D O w = 1 t o N_w a l k e r s

D O p = 1 t o N_p a r t i c l e s

Move p a r t i c l e n e w r a n d o m

p o s i t i o n

Compute Wave and G re e n ' s f u n c t i o n r a t i o s

A c c e p t / r e j e c t move w i t h Me t ro p o l i s

C a l c u l a t e n e w e n e rg y o f w a l k e r

C a l c u l a t e s = b a s e o n w a l k e r e n e rg y

! $ o mp c r i t i c a l

i f s = = 0 r e mo v e w a l k e r

i f s = = 1 d o n o t h i n g

i f s > 1 c r e a t e s — 1 a d d i t i o n a l w a l k e r s

! $ o mp c r i t i c a l e n d

E N D D O

E N D D O

!$ o mp p a r a l l e l d o e n d

E N D D O

. . .

C a l l M PI _ B a r r i e r ()

In addition, MPI supports two different thread safety levels

for hybrid programming. MPI_THREAD_MULTIPLE

allows multiple threads can call MPI library. This feature can

enable to overlapping communication with computation

optimization. The other alternative is

MPI_THREAD_FUNNELED support in which an MPI

application may be multithreaded but only one thread at a

time can call MPI library. We choose this support level since

our MPI calls are outside of OpenMP parallel region.

VI. ADAPTIVE HYBRID METHOD

In our simulation, MPI-only approach performs very well

at the beginning stage of the simulation by keeping the

system busy. The problem of load imbalance appears at the

later stage of the simulation. We designed a new library

where it will help the programmer to decide the number of

OpenMP threads adaptively. The system will run MPI-only

style until some of MPI processes start waiting for the

synchronization barriers or blocking communications. Our

library can tell the system to use more OpenMP threads for

the inner node parallelism instead of MPI processes as time

progress. Our first regular hybrid implementation suffered

from memory congestion. However, the adaptive approach

can solve this problem with the help of the programmer.

TABLE I: ADAPTIVE COMPUTING LIBRARY

Interface Description

void ACL_Init(Boolean flag)
ACL_NUMA_NODE/ACL_C

OMPUTE _NODE

int ACL_Acquire(int myrank) Return available cores

boolean ACL_Check(int myrank) Quick check

void ACL_Release(int myrank) Release cores

void ACL_Sleep(int myrank) Inform the blocking

void ACL_Finalize(int myrank)
Free all ACL resources

Table I gives the number of routines in our Adaptive

Computing Library (ACL) which is implemented with MPI

one-sided communication. The ACL library supports two

policies. It may give the number of cores availability at the

NUMA nodes or at the larger COMPUTE nodes. Each MPI

process will keep information about the avalibility of the

nodes where they affine. The ACL_Init will initialize library

and allocate internal data structures with

ACL_NUMA_NODE or ACL_COMPUTE_NODE flag.

ACL_Acquire routine will grant the number of cores the

caller process where the appropriate threads will be created

for the shared memory OpenMP. ACL_Check will return

Boolean value whether the system should be

MASTERONLY execution with quick system check without

any ACL overhead such as internal locks. ACL_Release will

return cores to the system which may be used other process in

the same node. ACL_Final will free all internal data

structures and all the recourses such as locks back to the

system.

Algorithm 3 is giving the example of ACL usage for the

hybrid QMC method. In this code, omp_set_num_threads()

of OpenMP library [4] can specify the number of threads. If

the ACL_Acquire return 1, the subsequent OpenMP parallel

region will be executed master only without any parallelism.

Otherwise, it will be executed with a varying number of

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

202

threads depending of the workload of the system.

Algorithm 3: The Hybridized pseudo code with ACL usage in QMC

kernel.

c a l l A C _ I n i t (A C L _ N U M A _ N OD E)

. . . .

D O g = 1 to N_generations

n c o r e s = A C L _ A c q u i r e (my r a n k)

c a l l o mp _ s e t_ n u m_ th r s (n c o r e s)

! $ o mp p a r a l l e l d o p r i v a te (. . . .) d e fa u l t (s h a r e d)

D O w = 1 t o N_w a l k e r s

D O p = 1 t o N_p a r t i c l e s

Move p a r t i c l e n e w r a n d o m

p o s i t i o n

Compute Wave and G re e n ' s f u n c t i o n r a t i o s

A c c e p t / r e j e c t move w i t h Me t ro p o l i s

C a l c u l a t e n e w e n e rg y o f w a l k e r

C a l c u l a t e s = b a s e o n w a l k e r e n e rg y

! $ o mp c r i t i c a l

i f s = = 0 r e mo v e w a l k e r

i f s = = 1 d o n o t h i n g

i f s > 1 c r e a t e s — 1 a d d i t i o n a l w a l k e r s

! $ o mp c r i t i c a l e n d

E N D D O

E N D D O

!$ o mp p a r a l l e l d o e n d

c a l l A C L _ R e l e a s e (my r a n k)

E N D D O

. . .

A C L _ S l e e p (my r a n k)

c a l l M PI _ B a r r i e r ()

…

c a l l A C L_ F i n a l i z e ()

ACL library works for only intra node cores. It will not

give core availability information for remote nodes. The

reason is that there are many internal data structures and large

tables for QMC which cannot redistributed for this

simulation. If the redistribution capability is added to the

simulation, that will increase MPI communication heavily. In

addition, it requires more programming effort to restructure

source code of the whole simulation. OpenMP can allow

incremental parallelization where you can improve as you

needed. However, MPI parallelization requires data domain

decomposition which cannot be done incrementally.

Unfortunately, many FORTRAN programmers use too

many COMMON blocks with SAVE keyword where they

make many variables global even though some of these

variables can be thread private variables. This is the problem

of FORTRAN legacy code. When we make some of these

false global variables back to local, it helps performance

tremendously to the NUMA memory architecture.

VII. PERFORMANCE EVALUATION

This section will illustrate the impact of our proposed

hybrid MPI+OpenMP approaches through several

experiments by running three different implementations of

the QMC algorithm in the simulation on a 66-nodes Cray

XE6 cluster located at George Washington University with

total 1584 cores. This SMP cluster consists of 2.2 GHz AMD

Opteron CPUs with a total of 6-Cores with 4 NUMA nodes

for total 24 processing cores per node running Linux 2.6.2

connected with a state-of-the art Gemini 2D torus

interconnect. All the codes are compiled with Cray

FORTRAN compiler. We only tested our approach at Cray

XE6 platform. This is a limitation in this work.

We show the performance for a baseline MPI-only version

and compare with the regular hybrid MPI+OpenMP version

and our adaptive version with ACL_NUMA_NODE enabled.

The experiment results are obtained with an average of 5

runs. We report the timing of total simulation not only QMC

timing. The simulation size is the optical lattice size where

the lattice has size N3 and we choose N to be odd, so the lattice

runs from –(N-1)/2 < x, y, z < (N-1)/2 coordinate space.

The first experiment objective is to find the load imbalance

percentage. We used CrayPat performance analyzer tool

which gives minimum time and maximum time consumed to

execute the code at total number of cores. Table II

demonstrated that MPI-only implementation has the highest

load imbalance percentage. Our adaptive solution improved

the load imbalance around 7% points. The regular hybrid

looks like improved imbalance percentage over MPI-only but

this did not helped the runtime because of memory

congestion created by more threads than available cores.

TABLE II: ADAPTIVE COMPUTING LIBRARY COMPARING LOAD IMBALANCE

PERCENTAGE BETWEEN MAXIMUM AND MINIMUM TIME DIFFERENCES

MEASURED BY CRAYPAT PROFILER

Data Size 193 233 253 273

MPI Imbl. 34.00 37.00 38.00 38.00

Hybrid Imbl. 31.00 33.00 32.00 33.00

Adaptive Imbl. 28.00 30.00 31.00 30.00

The second experiment was designed to reveal how well

the proposed hybrids perform compared to plain MPI

version. Fig. 2 shows the total execution time on the vertical

axis, and the horizontal axis denotes the problem size. The

CPU times of regular hybrid are about 10% percentage worse

than MPI-only implementation for every data sizes in the

experiment. Adaptive solution consistently obtains better

performance than MPI-only with about 20% performance

gain.

Fig. 2. Execution time of the simulation on 128+1 CPUs with varying

problem sizes.

VIII. RELATED WORK

A cluster system with multiple SMP or NUMA nodes is

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

203

the most commonly available high performance computing

hardware. MPI programming can be used both within a node

and among cluster’s nodes. However, the other programming

model for this platform is a hybrid programming model, in

which a parallel program is written using a thread

programming library such as Portable Operating System

Interface (POSIX) threads within a node and MPI

programming among nodes simultaneously. The MPI-2

Standard has clearly defined the interaction between MPI and

user-created threads in an MPI program. However, Gropp

and Thakur [8] have pointed out the issues involved in

developing an efficient thread-safe MPI implementation

without sacrificing too much performance.

The other hybrid programming with MPI as outer level

parallelism and OpenMP as inner level parallelism has been

extensively studied for an SMP cluster system [6], [7]. The

shared address space within each SMP node is suitable for

OpenMP parallelization and MPI can be employed within

and across the nodes of a cluster. The MPI/OpenMP hybrid

programming model is easy to apply via automatic

parallelization of the compilers with some directives for loop

level parallelism. Rabenseifner et al. have shown the relation

between the MPI/OpenMP hybrid programming model and

hardware architecture.

A manager-worker-based parallelization algorithm for

Quantum Monte Carlo (QMC-MW) is presented at [9] on

heterogeneous parallel computers and they compared with

the pure iterative parallelization algorithm (QMC-PI).

A new hybrid model is developed by using MPI+MPI by

[10]. In this model, they used the new MPI extension at MPI

3.0 for shared memory programming at the node level

parallelism [11]. They demonstrated an average performance

improvement %40 at a QMC implementation with

MPI+MPI.

The developers of popular QMCpack [12] and QWalk [13]

have invested time and effort into hybridizing MPI-only code

with shared memory libraries, such as OpenMP to get

node-level parallelism for SMP nodes. However, our QMC

implementation is more NUMA-aware implementation by

using ACL library.

IX. CONCLUSION

Through this study we developed a hybrid parallel

programming model that combined the strength of MPI’s

coarse grain parallelism with the strength of OpenMP’s fine

grain approach to overcome load imbalance problem

occurred MPI-only implementation at a Physics simulation

for inhomogeneous ultra-cold atoms on an optical lattice

problem. Since the simulation spends 90% of time on QMC

algorithm, we used three different implementation codes of

QMC’s algorithm employing three different parallelization

paradigms: MPI-only, a hybrid MPI+OpenMP and the

adaptive hybrid which is optimized with our Adaptive

Computing Library (ACL) on a cluster of NUMA nodes.

Each implementation employed the advanced features of the

underlining programming model to achieve the best possible

performance gains.

We evaluated the scalability of the proposed hybrid

MPI+OpenMP model and the Adaptive hybrid model on the

QMC code in the simulation by comparing the baseline

MPI-only implementations on up to 128 cores. We found that

hybrid MPI+OpenMP implementation cannot provide

improvement over MPI-only implementation. Furthermore, it

even degraded the performance 10% ranges because of

memory congestions created by more threads than available

cores. On the other hand, our adaptive hybrid solution with

our ACL library demonstrated a 20% performance gain on

some configurations in comparison to MPI-only

implementation by improving load balancing problem.

ACKNOWLEDGMENT

We would like to thank Prof. Jim Freericks at George

Town University Physics department for developing the

theory of the simulation as well as providing us MPI-only

implementation of the simulation. We thank Michael Lujan at

George Washington University Physics department to

understand the simulation mathematics. This work was

supported in part by the National Science Foundation under

grant number OCI-0904887.

REFERENCES

[1] J. K. Freericks, ―Transport in multilayered nanostructures: The

dynamical mean-field theory-approach,‖ Imperial College Press,

London, 2006.

[2] J. K. Freericks, ―Modeling mixtures of different mass ultracold atoms

in optical lattices: An illustration of high efficiency and linear scaling

on the cray xt4 via a capability applications project at erdc,‖ in Proc.

the HPCMP Users Group Conference, Seattle, WA, IEEE Computer

Society, Los Alamitos, CA, July 14–17, 2008, pp. 424-430.

[3] M. Forum, "MPI: A message-passing interface standard," University of

Tennessee Knoxville, TN, USA UT-CS-94-230, 1994.

[4] OpenMP Architecture Review Board. (May 2008). OpenMP

Application Program Interface Version 3.0. [Online]. Available:

http://www.openmp.org/mp-documents/spec30.pdf

[5] T. H. Dunigan, J. S. Vetter, J. B. W. Iii, and P. H. M. Worley,

"Performance evaluation of the Cray X1 distributed shared-memory

architecture," IEE Micro., pp. 30-40, 2005.

[6] L. Smith and M. Bull, "Development of mixed mode MPI / OpenMP

applications," Sci. Program., vol. 9, pp. 83-98, 2001.

[7] R. Rabenseifner et al., "Hybrid MPI/OpenMP parallel programming on

clusters of multi-core SMP nodes," presented at the 2009 17th

Euromicro International Conference on Parallel, Distributed and

Network-based Processing, 2009.

[8] W. Gropp and R. Thakur, "Issues in developing a thread-safe MPI

implementation," in Recent Advances in Parallel Virtual Machine and

Message Passing Interface. vol. 4192, B. Mohr et al., Eds. pp. 12-21,

2006.

[9] M. T. Feldmann, J. C. Cummings, D. R. Kent, R. P. Muller, and W. A.

Goddard, ―Manager–Worker-Based model for the parallelization of

quantum Monte Carlo on heterogeneous and homogeneous networks,‖

Journal of Computational Chemistry, vol. 29, issue 1, pp. 8–16, 15

January 2008.

[10] T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell,

W. Gropp, V. Kale, and R. Thakur, "MPI+MPI: A new, hybrid

approach to parallel programming with MPI plus shared memory

computing," Computing, 2013.

[11] V. Tipparaju et al., "Investigating high performance RMA interfaces

for the MPI-3 standard," presented at the 2009 International

Conference on Parallel Processing, 2009.

[12] K. P. Esler, J. Kim, D. M. Ceperley et al., "Quantum monte carlo

algorithms for electronic structure at the petascale; the endstation

project, "Journal of Physics: Conference Series, vol. 125, no. 1, 2008,

012057.

[13] L. K. Wagner, M. Bajdich, and L. Mitas, "Qwalk: A quantum monte

carlo program for electronic structure," Journal of Computational

Physics, vol. 228, no. 9, pp. 3390 - 3404, 2009.

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

204

Zeki Bozkus received the M.S. and the Ph.D. degrees in

computer science from Syracuse University, NY, USA,

in 1990 and 1995, respectively. He worked as a senior

compiler engineer at the Portland Group, Inc. for six

years. He worked as a senior software engineer at

Mentor Graphics for the parallelization of Calibre

product line for 11 years. He is now an assistant

professor at the Computer Engineering Department of

Kadir Has University since 2008. His primary research

interests are in the parallel programming algorithms, parallel programming

languages, and compilers. He is in sabbatical at George Washington

University as a visiting professor.

Ahmad Anbar graduated from the Faculty of

Computer and Information Sciences (FCIS), Ain Shams

University, Egypt in year 2000. He worked in teaching

in the university since then. He also worked as an

information analyst in Electronic Data Systems (EDS),

Cairo branch for three years. Ahmad got his masters

degree from Ain Shams University in 2006. His master

was about resources management in Grid environments.

Since Fall 2008, Ahmad started his Ph.D. in The George Washington

University. He joined the High Performance Computing Lab (HPCL) as a

research assistant. His main research in HPCL is targeting the support of

UPC on many-core architectures.

Tarek El-Ghazawi is a professor in the Department of

Electrical and Computer Engineering at The George

Washington University, where he leads the

university-wide Strategic Program in

High-Performance Computing. He is the founding

director of The GW Institute for Massively Parallel

Applications and Computing Technologies (IMPACT)

and a founding co-director of the NSF

Industry/University Center for High-Performance Reconfigurable

Computing (CHREC). El-Ghazawi’s research interests include high9

performance computing, computer architectures, reconfigurable, embedded

computing and computer vision. He is one of the principal co-authors of the

UPC parallel programming language and the first author of the UPC book

from John Wiley and Sons. He has received his Ph.D. degree in Electrical

and Computer Engineering from New Mexico State University in 1988.

El-Ghazawi has published about 200 refereed research publications in this

area. Dr. El-Ghazawi has served in many editorial roles and is currently an

Associate Editor for the IEEE Transactions on Computers. He has chaired

and co-chaired many international conferences and symposia including the

2009 Conference on Partitioned Global Address Space (PGAS)

Programming Models and Languages (PGAS2009), The 10th IEEE

International Conference on Scalable Computing and Communications

(ScalCom-10), 2010, and the 9th ACS/IEEE Conference on Computer

Systems and Applications, AICCSA2011. Dr. El-Ghazawi’s research has

been frequently supported by Federal agencies and industry. He serves or has

served on many advisory boards including the Science Advisory Panel of the

Arctic Region Supercomputing Center. Professor El-Ghazawi was elected to

a Fellow of the IEEE with the citation ―for contributions to reconfigurable

computing and parallel programming‖.

International Journal of Computer Theory and Engineering, Vol. 6, No. 3, June 2014

205

