



Abstract—In this paper, we propose a model to predict

resource utilization matrix for a given workload by mining the

information residing in application as well as system logs for

resource utilization. Unlike regression based or queuing

network based approaches, our mechanism neither requires

estimating per-function resource utilization nor does it require

to benchmark individual business transactions in order to

derive resource utilization matrix for the desired workload. In

our experimental analysis, we have tried to predict the

utilization of server resources like cpu, memory, disk and

network usage based on several workload pattern. Across all

experiments, we find the average absolute error in predicting

utilization of all resources was less than 6%. This model

becomes particularly helpful in the scenario where there are

only few data-points available for system running with light

workload and it is essential to analyze the impact of any change

in workload pattern demanding heavy resource usage. Our

model is not only useful for resource provisioning and what-if

analysis to assess the impact of any workload change but also

can be used for bottleneck analysis and early alert generating

engine.

Index Terms—Resource utilization, system demand,

performance analytics, workload analysis.

I. INTRODUCTION

Evolution of distributed, parallel and virtualized systems,

where numerous components act in synergy to provide desire

functionality, has changed the face of traditional IT system.

In a service oriented world, performance plays a vital role for

the success of any IT system. Modeling workload dynamics

and performance of such complex system has become

essential not only to predict resource requirements and

capacity planning to handle the anticipated workload but also

to predict the impact of any planned or unplanned change in

workload and/or change in system configuration on the

performance of individual components or the entire system.

Such performance engineering analytics and building models

involve estimation of resource utilization, i.e., estimating

time spent by each system resource (cpu, memory, disks,

network, etc.) in serving a work unit. The nature of modern

age applications, however, makes modeling and analytics

difficult.

In this paper, we present a mechanism to cross-relate the

information from system as well as application logs to

estimate the overall resource utilization and to predict

performance of each individual components and thereby the

entire complex system for an anticipated workload. The idea

is to use such aggregate measurements (throughput and

resource utilization) in order to estimate the service times

using extended Utilization Law as follows.

Manuscript received September 23, 2013; revised November 10, 2013.

Mehul Vora is with Innovation Labs, PERC, TATA Consultancy Services

(TCS) Ltd., Mumbai, India (e-mail: mehul.vora@tcs.com).

𝑈 = 𝑢0 + 𝑥𝑐𝑢𝑐

𝐶

𝑐=1

 (1)

Here 𝐶 is the number of request classes (business

transactions, software functions, etc.); 𝑢𝑐 is the mean

resource consumption for class c requests; xc represents the

mean arrival rate for class c requests; 𝑢0 is the residual

utilization due to operating system activities and

non-modeled request classes. While the utilization law

expresses a linear relationship between resource utilization

and the workload submitted to a computing system and its

utilization, the analysis and performance modeling of real

world applications is far from trivial. Unfortunately, resource

usage measurements at class level are rarely available in real

systems and obtaining them might require invasive

techniques such as benchmarking, load testing, profiling,

application instrumentation or kernel instrumentation.

Moreover, such activities are often intrusive, time consuming

and not feasible in real production systems. On the other hand,

aggregate measurements such as the application throughput,

number of concurrent users and the overall resource

utilization are relatively easy to collect. We can obtain this

workload or throughput information from application logs

and resource usage measurements can be obtained from

system utilization logs.

Major challenge in predicting resource utilization is in

obtaining a proper training dataset. Accurate resource

utilization estimation requires the selection of the workload

mixes which better describe the system behavior.

Traditionally, for each business transaction or request class c,

resource utilization is estimated individually or benchmarked

independently and used for estimating overall resource

utilization. However in today’s dynamic world, a workload

mix does not contain truly independent request classes. These

multicollinearities among request classes and even system

enhancements (e.g. increased usage of caching) pose a

problem for such traditional performance models. Moreover,

the relative mix of those request classes in the overall

workload changes over time causing a change in system

resource usage pattern. As a result, models that incorporate a

mix of workload classes can accurately perform capacity

planning and predict impact of any change in workload

pattern.

The approach presented here for predicting resource

utilization exploits the fundamentals from the field of linear

algebra. Basically, for the system under investigation,

training data is obtained by collecting application and

resource utilization logs (primarily cpu, memory, disk and

network bandwidth usage logs) for several different

transaction mixes from all nodes. So each training sample

consists of different transaction mix and associated resource

utilization measurements serve as algebraic basis. Desired or

targeted workload is also a transaction mix that is very

different from the mix of any training data point. However

Predicting Utilization of Server Resources from Log Data

Mehul Nalin Vora

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

118DOI: 10.7763/IJCTE.2014.V6.848

the targeted transaction mix may be estimated as a linear

combination of the pre-existing transaction mixes of the

training data points. Thus by identifying linear weights of

each training data points in constructing targeted workload

mix, we can estimate total resource utilization for each

component of the system from individual training data-points.

This model becomes particularly helpful in the scenario

where there are only few data-points available for system

running with light workload (typically consumption of all

system resources like cpus, disks etcetera below 50 to 60%)

and wants to analyze the impact of any change in workload

pattern demanding heavy resource usage (utilization of one

or more resources more than 50%).

Apart from capacity planning and workload based what-if

analysis; model described in this paper is very useful for

bottleneck identification and in many case it can be used for

early alert generating engine as well. Performance problems

often arise due to a resource bottleneck in the system.

Locating performance bottlenecks in modern systems can be

difficult because direct measurement is often not available.

Since the results from solving the model include the

utilization at all nodes in the system, model becomes handy in

identifying one or more components which are responsible

for causing bottlenecks and it can accordingly generate alert

so that system administrator may be able to take

precautionary actions and prevent a failure just in time. This

model can also be used to develop tests for load testing.

Instead of testing a wide variety of parameters in search of a

bottleneck, this model can direct a tester to concentrate on

those tests which focus on the identified bottlenecks.

Reducing the number of tests should speed up the testing

process and decrease the cost of testing.

Rest of the paper is organized as follows: Section II

describes the proposed model for resource utilization matrix

prediction from workload at great length. Section III covers

the experimental setup, process and analysis. Finally Section

IV relates our work with existing approaches followed by

final concluding Section V.

II. MODEL

One way to collect training data-points by running 

different transaction mix over the system under investigation

and collect the respective application as well as system logs

for the resource utilization. For a system already running in a

production environment, where running individual

transaction mix may not be possible, one can alternatively

collect the training data points by observing the system and

collecting these logs for a fairly long period of time. Then

training data is obtained by dividing these logs into  equal

partition of predetermined time interval length of . So each

training sample consists of different transaction mix and

associated resource utilization measurements.

Let  be the number of unique functions observed in

application logs for these  transaction mixes. Then,

calculate the workload matrix 𝑊 in terms of application

throughputs 𝑡𝑗 for each function 𝑗 1 ≤ 𝑗 ≤  identified

earlier as follows.

𝑊 =

 𝑡11 ⋯ 𝑡1𝜐

⋮ ⋱ ⋮
𝑡𝜂1 ⋯ 𝑡𝜂𝜐

 𝜂×𝜐

Here each row represents one data-point i.e. one

transaction-mix or one partition of the observed time period.

Similarly compose the resource utilization matrix R

corresponding to each row of 𝑊 as follows. Here 

represents the number of resources being measured.

𝑅 =

𝑟11 ⋯ 𝑟1𝜌

⋮ ⋱ ⋮
𝑟𝜂1 ⋯ 𝑟𝜂𝜌

 𝜂×𝜌

To perform what-if analysis, consider a vector T of desired

workload mix in terms of functional throughputs. Here we

assume that the mapping from user-defined functionality to

application function calls is already known so that for a given

desired workload of user-specific functionality, targeted

workload vector 𝑇 = 𝑡1 … 𝑡𝜐 1×𝜐 can be easily

computed in terms of application’s functional throughputs. In

extreme cases where this information is not available, one

can still use this approach by considering workload pattern in

terms of number of concurrent users executing diverse

business transactions. Let  be the number of different

business transaction available under current application

setup, then workload vector can be computed as 𝑇 =
𝑛1…𝑛𝜐1×𝜐 where 𝑛𝑗 represents the number of concurrent

users executing 𝑗𝑡ℎ 1 ≤ 𝑗 ≤  business transaction.

In either case, to estimate the resource utilization for this

desired workload T, first we need to estimate an influence

vector 𝑉 = 𝑣1 … 𝑣𝜂 1×𝜂 such that

𝑉 × 𝑊 = 𝑇 (2)

Once we have this influence vector V, we can obtain an

estimate for resource utilization matrix

𝑈 =
𝑟1 … 𝑟𝜌 1×𝜌

 as follows:

𝑈 = 𝑉 × 𝑅 (3)

Major challenge here is to obtain an estimate of the

influence vector V. There are numerous approaches and

algorithms have been proposed in the literature varying from

linear regression to iterative methods. Here we are going to

adopt the fundamentals from the linear algebra.

One trivial solution to the problem is 𝑉 = 𝑇 × 𝑊−1 if W is

a square, non-singular matrix. Often this is not the case. For

all practical purposes, W is a non-square (typically >) and

often a singular, non-invertible matrix. In this case, solution

for equation (2) is given by equation (4) [1].

𝑉 = 𝑇 × 𝐺 (4)

Here G is a generalized inverse matrix [2], [3]

(dimension 𝜐 × 𝜂) of the workload matrix W and it is

computed using Rank Factorization algorithm as follows:

Consider a factorization of the matrix W as W = AB where A

is a matrix made up of the pivot columns of the workload

matrix W while row reducing W to row-echelon form (in the

same order as they are in W) and matrix B is comprised of

non-zero rows of row-echelon form of the workload matrix

W. Then generalized inverse matrix G is calculated as

equation (5).

𝐺 = 𝐵𝑇 𝐵𝐵𝑇 −1 𝐴𝑇𝐴 −1𝐴𝑇 (5)

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

119

To validate equation (5), let’s verify if essential condition

for generalized inverse matrix (i.e. WGW = W) holds true.

Consider

𝑊 × 𝐺 × 𝑊 = 𝐴 × 𝐵 × 𝐵𝑇 𝐵𝐵𝑇 −1 𝐴𝑇𝐴 −1𝐴𝑇

× 𝐴 × 𝐵

Rearranging the order of right hand side, and considering

𝐵𝐵𝑇 𝐵𝐵𝑇 −1 = 𝐼 as well 𝐴𝑇𝐴 −1𝐴𝑇𝐴 = 𝐼 where I is an

identity matrix, right hand side simplifies to 𝐴 × 𝐼 × 𝐼 × 𝐵 =
𝐴 × 𝐵 = 𝑊 confirming to the essential condition for a

generalized inverse matrix.

Once we have a generalized inverse matrix G of workload

matrix W, we can conduct thorough what-if analysis and

assess the performance impact of any change in the workload

pattern. For a desired workload vector T, we can estimate the

influence vector V using equation (4) and subsequently

estimate overall resource utilization U using equation (3).

The model described here is based on the paradigm of build

once, reuse multiple times, making it very light on

computational resources.

In addition to what-if analysis engine and resource

provisioning estimator, this model can be used for bottleneck

analysis and alert generating engine as well. For a running

system, application and resource utilization logs can be

collected for a time interval of length . From the application

logs, we can calculate the input workload vector and this

vector can be used in the prescribed model as an input T.

Estimated resource utilization from equation (3) then can be

compared with the observed resource consumption. One can

trivially generate an alert when resource consumption crosses

the pre-set threshold. When resource consumption is well

within bound but error in resource utilization estimation is

greater than the pre-set limit, system can generate an alert

indicating an unforeseen change in environment or

application behavior and pin-pointing to a resource and a

component which has the largest contribution to the error and

causing the performance bottleneck. This model can also be

used to develop tests for load testing. Instead of testing a wide

variety of parameters in search of a bottleneck, this model can

direct a tester to concentrate on those tests which focus on the

identified bottlenecks. Reducing the number of tests should

speed up the testing process and decrease the cost of testing.

The most important advantage of this model is that data

used to build the model is obtained from the real system itself

and therefore all characteristics of application, system and

interactions between them are implicitly captured in the

model. Please note that same principles can be applied for a

system under development running workload proportionate

to the anticipated workload with random variations. This

estimated resource utilization matrix (𝑈) then becomes an

important precursor for the resource provisioning and

capacity planning exercise. One can also note that the

mechanism described here neither require per-function

demand estimations nor benchmarking of any individual

business logic or application functionality in deriving overall

system resource utilization estimate. This model does not

even require any code or kernel instrumentations as well.

III. RESULTS AND ANALYSIS

To demonstrate efficiency and efficacy of the proposed

model for predicting resource utilization for a given

workload input, we have chosen a customized server-client

application communicating using an in-house developed

messaging framework - Universal Message Communication

(UMC). The UMC is a high speed, reliable, messaging

framework for sending and receiving messages. It shields an

application from the complexities of underlying

communication technologies and intends to simplify the way

communication is done by an application.

A. Setup

Fig. 1. Experimental setup.

Fig. 1 shows a typical setup where several clients

communicate concurrently over a network using TCP to a

remote application server via UMC framework [4]. The

application server here consists of a custom application

containing mainly four functions. Each function is written in

such a way that it consumes one of the resources (vizcpu,

memory, disk and network) more than any others. Cpu

intensive function simply loops over a square root functions.

Memory intensive function uses malloc function calls. Disk

intensive function reads a random block of large size from a

sufficiently large text file and writes it to a file. And finally

network intensive function sends and receives large size

network packets over UMC framework to crate the network

load. Host server is an AMD opteron 2.19 GHz 4 core, 4GB

RAM machine whereas clients were hosted on an Intel Xeon

3.2 GHz 2 core, 2 GB RAM machine. Both machines were

connected via 1 Gbps Ethernet network.

B. Process

To validate the proposed model, we have collected the

server data (number of concurrent users, application

throughput and utilization of server resources) for about 250

different transaction mixes. The execution process for each

transaction mix can be summarized as follows: 1) For each

functionality 𝑖, (1 ≤ 𝑖 ≤ 4) , choose random number of

clients 𝑛𝑖 . Maximum number of concurrent clients for

cpu-intensive function was 95; 115 for memory-intensive

function; 115 for disk-intensive function and 50 for

network-intensive function. 2) During the predetermined

length of an experiment, all clients are executing

concurrently and each client sequentially submits their

respective functionality request to the server via UMC

framework. 3) Upon receiving a client’s request, server

executes respective functionality and then sends a response

via UMC framework back to that particular client. 4) On

completion of an experiment, calculate the functional

throughputs from the application logs and average utilization

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

120

of server resources (vizcpu, memory, disk and network) from

the system logs ignoring the initial period of instability.

Utilization of system resources is measured using atop utility

with a sampling interval of 2 seconds.

TABLE I: RANGE OF SERVER RESOURCE UTILIZATION (AVERAGE)

 CPU MEM DSK NET

Training Set

(50 samples)

Min 27.79% 3.39% 7.29% 8.86%

Max 54.16% 52.45% 52.24% 52.01%

Prediction Set

(200 samples)

Min 33.80% 2.69% 7.19% 8.39%

Max 81.54% 63.27% 84.46% 74.75%

C. Analysis

Validation of the proposed model was done in two ways:

by cross-validation and by the way of prediction set. To do

so, out of 250 data points for varied transaction mix, 50 data

points of relatively light workload (such that all measured

system resource utilization is below 55%) were chosen for

training dataset. Remaining 200 data points for relatively

heavy workload (such that utilization for one or more system

resource is greater than 55%) were set aside as prediction set.

Table I describes the range of average server resource

utilization for training and prediction datasets.

Cross-validation study was carried out as follows: 1) First

workload matrix (W) and resource utilization (R) matrix were

derived for 49 data points from the 50 data-point training set

leaving one sample out. 2) Subsequently generalized inverse

matrix (G) was computed using equation 5 followed by the

computation of an influence vector (V) using equation 4 3)

Using workload of the remaining one data point as an input

workload vector (T), resource utilization matrix (U) for that

particular data point was computed using equation 3. 4)

Finally, the error is computed as an absolute difference

between the measured and estimated utilization of server

resources. Such exercise was repeated 50 times, once for each

data point in the training set. Table II describes the average

absolute error for each resource across the 50 data points

whereas Fig. 2 shows the percentile distribution of the

absolute error in this cross-validation study.

Second and practical way of validating the proposed model

is using the prediction set. The generalized inverse matrix (G)

and thereby the influence vector (V) were calculated using

entire training dataset (50 data points). Then resource

utilization matrix (U) was computed using the throughput

vectors (T) of each prediction set sample. Absolute error was

then computed using this estimated matrix (U) and utilization

matrix (R) of the prediction set.

TABLE II: AVERAGE ERROR IN RESOURCE UTILIZATION PREDICTION USING

APPLICATION THROUGHPUTS

 CPU MEM DSK NET

Cross-Validation 1.21% 1.67% 0.75% 0.01%

Prediction Set 2.20% 3.32% 2.42% 0.03%

Table II also describes the average absolute error for each

measured resource across the 200 data points from the

prediction set study whereas Fig. 3 shows the percentile

distribution of the absolute error in this study.Table II, Fig. 2

and Fig. 3 are the strong indicators for the success of the

proposed model for the prediction of resource utilization

matrix. Across all experiments, the average absolute error in

predicting utilization of all four resources is less than 6%.

The 95th percentile of the absolute error in predicting cpu

utilization is about 5.4%; whereas for memory utilization is

about 8.6%; for disk utilization is about 5.7% and finally for

network utilization is about 0.1%.

Further data was also analyzed by considering number of

concurrent users instead of application throughput as desired

workload pattern. In other words, both studies namely

cross-validation and prediction set analysis were carried out

using 𝑛𝑖𝑗 instead of 𝑡𝑖𝑗 as workload matrix entries where

𝑛𝑖𝑗 represents number of concurrent users for the business

transaction 𝑖 in the 𝑗𝑡ℎ experiment. Table III describes the

average absolute error for each resource across the 50 data

points. Fig. 4 shows the percentile distribution of the absolute

error in cross-validation study and Fig. 5 represents the

percentile distribution of the absolute error in predictions set

analysis using concurrent users as desired workload

pattern.Although one can argue that prediction accuracy is

less for this approach compare to application throughput

approach, the average absolute error is still less than 6%.

Nonetheless, this provides an alternative way of deriving

system resource utilization matrix from the desired workload

pattern.

TABLE III: AVERAGE ERROR IN RESOURCE UTILIZATION PREDICTION

USING NUMBER OF CONCURRENT USERS

 CPU MEM DSK NET

Cross-Validation 1.27% 1.67% 0.77% 0.26%

Prediction Set 4.62% 2.44% 2.60% 5.61%

Fig. 2. Percentile distribution for absolute error in cross-validation study.

using application throughputs.

Fig. 3. Percentile distribution for absolute error in prediction set analysis

using application throughputs.

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

121

Fig. 4. Percentile distribution for absolute error in cross-validation study

using number of concurrent users.

Fig. 5. Percentile distribution for absolute error in prediction set analysis

using number of concurrent users.

IV. RELATED WORK

Performance plays very important role in establishing the

success of any IT system and hence performance engineering

analytics and performance modeling is always an active

research area. Performance modeling and workload

characterization are traditionally performed using either by

direct data measurement or by using analytical models. First

approach involves direct measurement of performance

parameters by mean of code instrumentation, benchmarking

and load testing. Method presented in [5], automatically

extracts system workload characteristics using low-overhead

code and kernel instrumentation. The monitor first records

fine-grained events generated by kernel, middleware, and

applications. Then, it correlates these events to the control

flow and to the resource consumption of the requests.

Although effective, these approaches are either unfeasible,

time consuming or very intrusive for production systems,

thus analytical models such as queuing networks, regression

analysis etc., is often preferred.

Queuing network models are a powerful framework to

analyze performance of complex systems [6]-[8]. In

[6],authors use this approach to analyze multi-component

web applications with a simple queuing model. In [7], authors

use more sophisticated product-form queuing network

models to predict application performance for dynamic

provisioning and capacity planning. However, their

parameterization is often a challenging task. It involves

identifying the meaningful business workload and estimating

the resource utilization placed by requests at each resource.

Although regression analysis is vastly used in the literature

[9]-[11] and [12] to support resource utilization prediction by

estimating per-function demands, some fundamental

drawbacks of these approaches are also cited in the literature

[13], [14]. Common drawbacks for any regression based

methods are: a) sensitive to outliers; b) multicollinearlity

among the transactions mix; c) sensitive to any change in

hardware/software configuration; d) non inclusion of

secondary activities like OS calls; and e) unreliable or very

low confidence of interval for parameter estimation. Ridge

regression technique proposed in [13] tries to answer the

problem of multicollinearlity but analysis is very sensitive to

the selected ridge parameter value. Alternative to regression

based approach has been suggested in [14], which requires

profiling each benchmark representing one business

transaction or application functionality in isolation, which

may not be possible in many cases where system is already in

production. In that case, it may not possible to conduct any

detailed what-if analysis and assess the impact of any

hardware and/or environment change on the system.

V. CONCLUSION

In this paper, we present a framework to predict system

resource utilization by inferring information from application

and system utilization logs without any need for

instrumentation, benchmarking or load testing, which can be

either unfeasible, time consuming or very intrusive. Unlike

regression based or queuing network based approaches,

mechanism presented here neither requires to estimate

per-function resource utilization nor it requires to benchmark

individual business transactions in order to derive overall

resource utilization for the desired throughput. In our

experimental analysis, we find maximum average error in

estimating resource utilization matrix is below 6% and the

90th percentile of error for any resource is below 10% for

application throughput approach and below 15% for

concurrent users approach. Model presented here is not only

useful for resource provisioning and what-if analysis to

assess the impact of any workload change but also can be

used for bottleneck analysis and early alert generating engine.

This model can also be used to develop tests for load testing.

Instead of testing a wide variety of parameters in search of a

bottleneck, this model can direct a tester to concentrate on

those tests which focus on the identified bottlenecks.

Reducing the number of tests should speed up the testing

process and decrease the cost of testing. Further ahead other

facets of modeling paradigm like periodic validation and

recalibration of the model based on change in dynamics is

required to be explored.

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

122

REFERENCES

[1] C. R. Rao and M. B. Rao, Matrix Algebra and Its Applications to

Statistics and Econometrics, Singapore, World Scientific Publishing

Co. Pte. Ltd., 1998.

[2] J. Parks-Gornet and I. N. Imam, “Using rank factorization in

calculating the Moore-Penrose generalized inverse,” in Proc. Energy

and Information Technologies in the Southeast (IEEE Southeastcon),

1989, pp. 427-431.

[3] P. Gómez, B. Lacruz, and R. E. Pruneda, “Generalized inverse

computation based on an orthogonal decomposition methodology,”

Advances in Mathematical and Statistical Modeling, Statistics for

Industry and Technology, pp. 305-315, 2008.

[4] N. Agrawal, H. K. Kumar, and M. K. Nambiar, “Performance scaling

analysis of messaging application,” presented at the 2011 CMG

International Conference, Washington DC, December 5-9, 2011.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie for

request extraction and workload modeling,” in Proc. Sixth USENIX

Symposium on Operating Systems Design and Implementation (OSDI),

2004, pp. 259–272

[6] C. Stewart and K. Shen, “Performance modeling and system

management for multicomponent online services,” in Proc. Second

Symposium on Networked Systems Design & Implementation (NSDI),

2005, pp. 71-84.

[7] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi,

“An Analytical Model for Multi-tier Internet Services and Its

Applications,”in Proc. the International Conference on Measurement

and Modeling of Computer Systems (ACM SIGMETRICS), 2005, pp.

291-302.

[8] A. Mizan and G. Franks, “Automated performance model construction

through event log analysis,” in Proc. 2012 IEEE Fifth International

Conference on Software Testing, Verification and Validation,

Montreal, Canada, April 17-21, 2012, pp. 636-641.

[9] P. Desnoyers, T. Wood, P. Shenoy, R. Singh, S. Patil, and H. Vin,

“Modellus: Automated modeling of complex internet data center

applications,” ACM Transactions on the Web (TWEB), vol. 6, no. 2, pp.

8:1-8:29, May 2012.

[10] Q. Zhang, L. Cherkasova, N. Mi and E. Smirni, “A Regression-Based

Analytic Model for Capacity Planning of Multi-Tier Applications,”

Cluster Computing, vol. 11, no. 3, pp. 197-211, September 2008.

[11] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi, “CPU

demand for web serving: measurement analysis and dynamic

estimation,” Performance Evaluation, vol. 65, no. 6/7, pp. 531-553,

June 2008.

[12] C. Stewart, T. Kelly, and A. Zhang, “Exploiting Nonstationarity for

Performance Prediction,” in Proc. of the Second ACM

SIGOPS/EuroSys European Conference on Computer Systems, 2007,

pp. 31-44.

[13] T. Kubokawa and M. Srivastava, “Improved empirical bayes ridge

regression estimators under multicollinearity,” Communications in

Statistics - Theory and Methods, vol. 33, no. 8, pp. 1943-1973, 2004.

[14] A. Kalbasi, D. Krishnamurthy, J. Rolia, and S. Dawson, “DEC:

resource utilization estimation with confidence,” IEEE Transactions

on Software Engineering, vol. 38, no. 3, pp. 561-578, May-June 2012.

Mehul Vora has received B.E. degree in Chemical

Engineering from University of Mumbai, India in

2000, and M.S. in Computer Science & Ph.D. degrees

from the Clarkson University, NY (USA) in 2003 and

2007, respectively. Since 2008, Mehul has been

associated with Tata Consultancy Services (TCS)

Limited, Mumbai, India. He has served diverse roles

like measurement science analyst and business analyst.

In his current role as a R&D scientist at Innovation

Labs, TCS, he is associated with performance engineering research center.

International Journal of Computer Theory and Engineering, Vol. 6, No. 2, April 2014

123

