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Abstract—In this paper, we propose a model to predict 

resource utilization matrix for a given workload by mining the 

information residing in application as well as system logs for 

resource utilization. Unlike regression based or queuing 

network based approaches, our mechanism neither requires 

estimating per-function resource utilization nor does it require 

to benchmark individual business transactions in order to 

derive resource utilization matrix for the desired workload. In 

our experimental analysis, we have tried to predict the 

utilization of server resources like cpu, memory, disk and 

network usage based on several workload pattern. Across all 

experiments, we find the average absolute error in predicting 

utilization of all resources was less than 6%. This model 

becomes particularly helpful in the scenario where there are 

only few data-points available for system running with light 

workload and it is essential to analyze the impact of any change 

in workload pattern demanding heavy resource usage. Our 

model is not only useful for resource provisioning and what-if 

analysis to assess the impact of any workload change but also 

can be used for bottleneck analysis and early alert generating 

engine. 

 
Index Terms—Resource utilization, system demand, 

performance analytics, workload analysis. 

 

I. INTRODUCTION 

Evolution of distributed, parallel and virtualized systems, 

where numerous components act in synergy to provide desire 

functionality, has changed the face of traditional IT system. 

In a service oriented world, performance plays a vital role for 

the success of any IT system. Modeling workload dynamics 

and performance of such complex system has become 

essential not only to predict resource requirements and 

capacity planning to handle the anticipated workload but also 

to predict the impact of any planned or unplanned change in 

workload and/or change in system configuration on the 

performance of individual components or the entire system. 

Such performance engineering analytics and building models 

involve estimation of resource utilization, i.e., estimating 

time spent by each system resource (cpu, memory, disks, 

network, etc.) in serving a work unit. The nature of modern 

age applications, however, makes modeling and analytics 

difficult. 

In this paper, we present a mechanism to cross-relate the 

information from system as well as application logs to 

estimate the overall resource utilization and to predict 

performance of each individual components and thereby the 

entire complex system for an anticipated workload. The idea 

is to use such aggregate measurements (throughput and 

resource utilization) in order to estimate the service times 

using extended Utilization Law as follows. 
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𝑈 = 𝑢0 +  𝑥𝑐𝑢𝑐

𝐶

𝑐=1

 (1) 

Here 𝐶  is the number of request classes (business 

transactions, software functions, etc.); 𝑢𝑐  is the mean 

resource consumption for class c requests; xc  represents the 

mean arrival rate for class c  requests; 𝑢0  is the residual 

utilization due to operating system activities and 

non-modeled request classes. While the utilization law 

expresses a linear relationship between resource utilization 

and the workload submitted to a computing system and its 

utilization, the analysis and performance modeling of real 

world applications is far from trivial. Unfortunately, resource 

usage measurements at class level are rarely available in real 

systems and obtaining them might require invasive 

techniques such as benchmarking, load testing, profiling, 

application instrumentation or kernel instrumentation. 

Moreover, such activities are often intrusive, time consuming 

and not feasible in real production systems. On the other hand, 

aggregate measurements such as the application throughput, 

number of concurrent users and the overall resource 

utilization are relatively easy to collect. We can obtain this 

workload or throughput information from application logs 

and resource usage measurements can be obtained from 

system utilization logs. 

Major challenge in predicting resource utilization is in 

obtaining a proper training dataset. Accurate resource 

utilization estimation requires the selection of the workload 

mixes which better describe the system behavior. 

Traditionally, for each business transaction or request class c, 

resource utilization is estimated individually or benchmarked 

independently and used for estimating overall resource 

utilization. However in today’s dynamic world, a workload 

mix does not contain truly independent request classes. These 

multicollinearities among request classes and even system 

enhancements (e.g. increased usage of caching) pose a 

problem for such traditional performance models. Moreover, 

the relative mix of those request classes in the overall 

workload changes over time causing a change in system 

resource usage pattern. As a result, models that incorporate a 

mix of workload classes can accurately perform capacity 

planning and predict impact of any change in workload 

pattern. 

The approach presented here for predicting resource 

utilization exploits the fundamentals from the field of linear 

algebra. Basically, for the system under investigation, 

training data is obtained by collecting application and 

resource utilization logs (primarily cpu, memory, disk and 

network bandwidth usage logs) for several different 

transaction mixes from all nodes. So each training sample 

consists of different transaction mix and associated resource 

utilization measurements serve as algebraic basis. Desired or 

targeted workload is also a transaction mix that is very 

different from the mix of any training data point. However 
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the targeted transaction mix may be estimated as a linear 

combination of the pre-existing transaction mixes of the 

training data points. Thus by identifying linear weights of 

each training data points in constructing targeted workload 

mix, we can estimate total resource utilization for each 

component of the system from individual training data-points. 

This model becomes particularly helpful in the scenario 

where there are only few data-points available for system 

running with light workload (typically consumption of all 

system resources like cpus, disks etcetera below 50 to 60%) 

and wants to analyze the impact of any change in workload 

pattern demanding heavy resource usage (utilization of one 

or more resources more than 50%). 

Apart from capacity planning and workload based what-if 

analysis; model described in this paper is very useful for 

bottleneck identification and in many case it can be used for 

early alert generating engine as well. Performance problems 

often arise due to a resource bottleneck in the system. 

Locating performance bottlenecks in modern systems can be 

difficult because direct measurement is often not available. 

Since the results from solving the model include the 

utilization at all nodes in the system, model becomes handy in 

identifying one or more components which are responsible 

for causing bottlenecks and it can accordingly generate alert 

so that system administrator may be able to take 

precautionary actions and prevent a failure just in time. This 

model can also be used to develop tests for load testing. 

Instead of testing a wide variety of parameters in search of a 

bottleneck, this model can direct a tester to concentrate on 

those tests which focus on the identified bottlenecks. 

Reducing the number of tests should speed up the testing 

process and decrease the cost of testing. 

Rest of the paper is organized as follows: Section II 

describes the proposed model for resource utilization matrix 

prediction from workload at great length. Section III covers 

the experimental setup, process and analysis. Finally Section 

IV relates our work with existing approaches followed by 

final concluding Section V. 

 

II. MODEL 

One way to collect training data-points by running  

different transaction mix over the system under investigation 

and collect the respective application as well as system logs 

for the resource utilization. For a system already running in a 

production environment, where running individual 

transaction mix may not be possible, one can alternatively 

collect the training data points by observing the system and 

collecting these logs for a fairly long period of time. Then 

training data is obtained by dividing these logs into  equal 

partition of predetermined time interval length of . So each 

training sample consists of different transaction mix and 

associated resource utilization measurements. 

Let  be the number of unique functions observed in 

application logs for these  transaction mixes. Then, 

calculate the workload matrix 𝑊  in terms of application 

throughputs 𝑡𝑗  for each function 𝑗  1 ≤ 𝑗 ≤   identified 

earlier as follows. 

𝑊 =  

  𝑡11 ⋯ 𝑡1𝜐

⋮ ⋱ ⋮
𝑡𝜂1 ⋯ 𝑡𝜂𝜐

 

 𝜂×𝜐 

 

Here each row represents one data-point i.e. one 

transaction-mix or one partition of the observed time period. 

Similarly compose the resource utilization matrix R 

corresponding to each row of 𝑊  as follows. Here  

represents the number of resources being measured. 

𝑅 =  

𝑟11 ⋯ 𝑟1𝜌

⋮ ⋱ ⋮
𝑟𝜂1 ⋯ 𝑟𝜂𝜌

 

 𝜂×𝜌 

 

To perform what-if analysis, consider a vector T of desired 

workload mix in terms of functional throughputs. Here we 

assume that the mapping from user-defined functionality to 

application function calls is already known so that for a given 

desired workload of user-specific functionality, targeted 

workload vector 𝑇 =  𝑡1 … 𝑡𝜐  1×𝜐  can be easily 

computed in terms of application’s functional throughputs. In 

extreme cases where this information is not available, one 

can still use this approach by considering workload pattern in 

terms of number of concurrent users executing diverse 

business transactions. Let  be the number of different 

business transaction available under current application 

setup, then workload vector can be computed as 𝑇 =
𝑛1…𝑛𝜐1×𝜐 where 𝑛𝑗 represents the number of concurrent 

users executing 𝑗𝑡ℎ 1 ≤ 𝑗 ≤  business transaction.  

In either case, to estimate the resource utilization for this 

desired workload T, first we need to estimate an influence 

vector 𝑉 =  𝑣1 … 𝑣𝜂   1×𝜂  such that 

𝑉 × 𝑊 = 𝑇 (2) 

Once we have this influence vector V, we can obtain an 

estimate for resource utilization matrix 

𝑈 =  
𝑟1 … 𝑟𝜌   1×𝜌 

 as follows: 

𝑈 = 𝑉 × 𝑅 (3) 

Major challenge here is to obtain an estimate of the 

influence vector V. There are numerous approaches and 

algorithms have been proposed in the literature varying from 

linear regression to iterative methods. Here we are going to 

adopt the fundamentals from the linear algebra.  

One trivial solution to the problem is 𝑉 = 𝑇 × 𝑊−1 if W is 

a square, non-singular matrix. Often this is not the case. For 

all practical purposes, W is a non-square (typically >) and 

often a singular, non-invertible matrix. In this case, solution 

for equation (2) is given by equation (4) [1]. 

𝑉 = 𝑇 × 𝐺 (4) 

Here G is a generalized inverse matrix [2], [3] 

(dimension  𝜐 × 𝜂 ) of the workload matrix W and it is 

computed using Rank Factorization algorithm as follows: 

Consider a factorization of the matrix W as W = AB where A 

is a matrix made up of the pivot columns of the workload 

matrix W while row reducing W to row-echelon form (in the 

same order as they are in W) and matrix B is comprised of 

non-zero rows of row-echelon form of the workload matrix 

W. Then generalized inverse matrix G is calculated as 

equation (5). 

 

𝐺 = 𝐵𝑇 𝐵𝐵𝑇 −1 𝐴𝑇𝐴 −1𝐴𝑇 (5) 
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To validate equation (5), let’s verify if essential condition 

for generalized inverse matrix (i.e. WGW = W) holds true. 

Consider 

𝑊 × 𝐺 × 𝑊 =  𝐴 × 𝐵 ×  𝐵𝑇 𝐵𝐵𝑇 −1 𝐴𝑇𝐴 −1𝐴𝑇 

×  𝐴 × 𝐵  

Rearranging the order of right hand side, and considering 

𝐵𝐵𝑇 𝐵𝐵𝑇 −1 = 𝐼 as well  𝐴𝑇𝐴 −1𝐴𝑇𝐴 = 𝐼 where I is an 

identity matrix, right hand side simplifies to 𝐴 × 𝐼 × 𝐼 × 𝐵 =
𝐴 × 𝐵 = 𝑊  confirming to the essential condition for a 

generalized inverse matrix. 

Once we have a generalized inverse matrix G of workload 

matrix W, we can conduct thorough what-if analysis and 

assess the performance impact of any change in the workload 

pattern. For a desired workload vector T, we can estimate the 

influence vector V using equation (4) and subsequently 

estimate overall resource utilization U using equation (3). 

The model described here is based on the paradigm of build 

once, reuse multiple times, making it very light on 

computational resources. 

In addition to what-if analysis engine and resource 

provisioning estimator, this model can be used for bottleneck 

analysis and alert generating engine as well. For a running 

system, application and resource utilization logs can be 

collected for a time interval of length . From the application 

logs, we can calculate the input workload vector and this 

vector can be used in the prescribed model as an input T. 

Estimated resource utilization from equation (3) then can be 

compared with the observed resource consumption. One can 

trivially generate an alert when resource consumption crosses 

the pre-set threshold. When resource consumption is well 

within bound but error in resource utilization estimation is 

greater than the pre-set limit, system can generate an alert 

indicating an unforeseen change in environment or 

application behavior and pin-pointing to a resource and a 

component which has the largest contribution to the error and 

causing the performance bottleneck. This model can also be 

used to develop tests for load testing. Instead of testing a wide 

variety of parameters in search of a bottleneck, this model can 

direct a tester to concentrate on those tests which focus on the 

identified bottlenecks. Reducing the number of tests should 

speed up the testing process and decrease the cost of testing. 

The most important advantage of this model is that data 

used to build the model is obtained from the real system itself 

and therefore all characteristics of application, system and 

interactions between them are implicitly captured in the 

model. Please note that same principles can be applied for a 

system under development running workload proportionate 

to the anticipated workload with random variations. This 

estimated resource utilization matrix (𝑈) then becomes an 

important precursor for the resource provisioning and 

capacity planning exercise. One can also note that the 

mechanism described here neither require per-function 

demand estimations nor benchmarking of any individual 

business logic or application functionality in deriving overall 

system resource utilization estimate. This model does not 

even require any code or kernel instrumentations as well. 

 

III. RESULTS AND ANALYSIS 

To demonstrate efficiency and efficacy of the proposed 

model for predicting resource utilization for a given 

workload input, we have chosen a customized server-client 

application communicating using an in-house developed 

messaging framework - Universal Message Communication 

(UMC). The UMC is a high speed, reliable, messaging 

framework for sending and receiving messages. It shields an 

application from the complexities of underlying 

communication technologies and intends to simplify the way 

communication is done by an application. 

A. Setup 

 

 
Fig. 1. Experimental setup. 

 

Fig. 1 shows a typical setup where several clients 

communicate concurrently over a network using TCP to a 

remote application server via UMC framework [4]. The 

application server here consists of a custom application 

containing mainly four functions. Each function is written in 

such a way that it consumes one of the resources (vizcpu, 

memory, disk and network) more than any others. Cpu 

intensive function simply loops over a square root functions. 

Memory intensive function uses malloc function calls. Disk 

intensive function reads a random block of large size from a 

sufficiently large text file and writes it to a file. And finally 

network intensive function sends and receives large size 

network packets over UMC framework to crate the network 

load.  Host server is an AMD opteron 2.19 GHz 4 core, 4GB 

RAM machine whereas clients were hosted on an Intel Xeon 

3.2 GHz 2 core, 2 GB RAM machine. Both machines were 

connected via 1 Gbps Ethernet network. 

B. Process 

To validate the proposed model, we have collected the 

server data (number of concurrent users, application 

throughput and utilization of server resources) for about 250 

different transaction mixes. The execution process for each 

transaction mix can be summarized as follows: 1) For each 

functionality 𝑖, (1 ≤ 𝑖 ≤ 4) , choose random number of 

clients 𝑛𝑖 . Maximum number of concurrent clients for 

cpu-intensive function was 95; 115 for memory-intensive 

function; 115 for disk-intensive function and 50 for 

network-intensive function. 2) During the predetermined 

length of an experiment, all clients are executing 

concurrently and each client sequentially submits their 

respective functionality request to the server via UMC 

framework. 3) Upon receiving a client’s request, server 

executes respective functionality and then sends a response 

via UMC framework back to that particular client. 4) On 

completion of an experiment, calculate the functional 

throughputs from the application logs and average utilization 
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of server resources (vizcpu, memory, disk and network) from 

the system logs ignoring the initial period of instability. 

Utilization of system resources is measured using atop utility 

with a sampling interval of 2 seconds. 

 
TABLE I: RANGE OF SERVER RESOURCE UTILIZATION (AVERAGE) 

  CPU MEM DSK NET 

Training Set 

(50 samples) 

Min 27.79% 3.39% 7.29% 8.86% 

Max 54.16% 52.45% 52.24% 52.01% 

Prediction Set 

(200 samples) 

Min 33.80% 2.69% 7.19% 8.39% 

Max 81.54% 63.27% 84.46% 74.75% 

 

C. Analysis 

Validation of the proposed model was done in two ways: 

by cross-validation and by the way of prediction set. To do 

so, out of 250 data points for varied transaction mix, 50 data 

points of relatively light workload (such that all measured 

system resource utilization is below 55%) were chosen for 

training dataset. Remaining 200 data points for relatively 

heavy workload (such that utilization for one or more system 

resource is greater than 55%) were set aside as prediction set. 

Table I describes the range of average server resource 

utilization for training and prediction datasets. 

Cross-validation study was carried out as follows: 1) First 

workload matrix (W) and resource utilization (R) matrix were 

derived for 49 data points from the 50 data-point training set 

leaving one sample out. 2) Subsequently generalized inverse 

matrix (G) was computed using equation 5 followed by the 

computation of an influence vector (V) using equation 4 3) 

Using workload of the remaining one data point as an input 

workload vector (T), resource utilization matrix (U) for that 

particular data point was computed using equation 3. 4) 

Finally, the error is computed as an absolute difference 

between the measured and estimated utilization of server 

resources. Such exercise was repeated 50 times, once for each 

data point in the training set. Table II describes the average 

absolute error for each resource across the 50 data points 

whereas Fig. 2 shows the percentile distribution of the 

absolute error in this cross-validation study. 

Second and practical way of validating the proposed model 

is using the prediction set. The generalized inverse matrix (G) 

and thereby the influence vector (V) were calculated using 

entire training dataset (50 data points). Then resource 

utilization matrix (U) was computed using the throughput 

vectors (T) of each prediction set sample. Absolute error was 

then computed using this estimated matrix (U) and utilization 

matrix (R) of the prediction set.  

TABLE II: AVERAGE ERROR IN RESOURCE UTILIZATION PREDICTION USING 

APPLICATION THROUGHPUTS 

 CPU MEM DSK NET 

Cross-Validation 1.21% 1.67% 0.75% 0.01% 

Prediction Set 2.20% 3.32% 2.42% 0.03% 

 

Table II also describes the average absolute error for each 

measured resource across the 200 data points from the 

prediction set study whereas Fig. 3 shows the percentile 

distribution of the absolute error in this study.Table II, Fig. 2 

and Fig. 3 are the strong indicators for the success of the 

proposed model for the prediction of resource utilization 

matrix. Across all experiments, the average absolute error in 

predicting utilization of all four resources is less than 6%. 

The 95th percentile of the absolute error in predicting cpu 

utilization is about 5.4%; whereas for memory utilization is 

about 8.6%; for disk utilization is about 5.7% and finally for 

network utilization is about 0.1%. 

Further data was also analyzed by considering number of 

concurrent users instead of application throughput as desired 

workload pattern. In other words, both studies namely 

cross-validation and prediction set analysis were carried out 

using 𝑛𝑖𝑗  instead of 𝑡𝑖𝑗  as workload matrix entries where 

𝑛𝑖𝑗 represents number of concurrent users for the business 

transaction 𝑖  in the 𝑗𝑡ℎ  experiment. Table III describes the 

average absolute error for each resource across the 50 data 

points. Fig. 4 shows the percentile distribution of the absolute 

error in cross-validation study and Fig. 5 represents the 

percentile distribution of the absolute error in predictions set 

analysis using concurrent users as desired workload 

pattern.Although one can argue that prediction accuracy is 

less for this approach compare to application throughput 

approach, the average absolute error is still less than 6%. 

Nonetheless, this provides an alternative way of deriving 

system resource utilization matrix from the desired workload 

pattern. 

 
TABLE III: AVERAGE ERROR IN RESOURCE UTILIZATION PREDICTION 

USING NUMBER OF CONCURRENT USERS 

 CPU MEM DSK NET 

Cross-Validation 1.27% 1.67% 0.77% 0.26% 

Prediction Set 4.62% 2.44% 2.60% 5.61% 

 

 
Fig. 2. Percentile distribution for absolute error in cross-validation study. 

using application throughputs. 

 
Fig. 3. Percentile distribution for absolute error in prediction set analysis 

using application throughputs. 
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Fig. 4. Percentile distribution for absolute error in cross-validation study 

using number of concurrent users. 

 
Fig. 5. Percentile distribution for absolute error in prediction set analysis 

using number of concurrent users. 

IV. RELATED WORK 

Performance plays very important role in establishing the 

success of any IT system and hence performance engineering 

analytics and performance modeling is always an active 

research area. Performance modeling and workload 

characterization are traditionally performed using either by 

direct data measurement or by using analytical models. First 

approach involves direct measurement of performance 

parameters by mean of code instrumentation, benchmarking 

and load testing. Method presented in [5], automatically 

extracts system workload characteristics using low-overhead 

code and kernel instrumentation. The monitor first records 

fine-grained events generated by kernel, middleware, and 

applications. Then, it correlates these events to the control 

flow and to the resource consumption of the requests. 

Although effective, these approaches are either unfeasible, 

time consuming or very intrusive for production systems, 

thus analytical models such as queuing networks, regression 

analysis etc., is often preferred. 

Queuing network models are a powerful framework to 

analyze performance of complex systems [6]-[8]. In 

[6],authors use this approach to analyze multi-component 

web applications with a simple queuing model. In [7], authors 

use more sophisticated product-form queuing network 

models to predict application performance for dynamic 

provisioning and capacity planning. However, their 

parameterization is often a challenging task. It involves 

identifying the meaningful business workload and estimating 

the resource utilization placed by requests at each resource. 

Although regression analysis is vastly used in the literature 

[9]-[11] and [12] to support resource utilization prediction by 

estimating per-function demands, some fundamental 

drawbacks of these approaches are also cited in the literature 

[13], [14]. Common drawbacks for any regression based 

methods are: a) sensitive to outliers; b) multicollinearlity 

among the transactions mix; c) sensitive to any change in 

hardware/software configuration; d) non inclusion of 

secondary activities like OS calls; and e) unreliable or very 

low confidence of interval for parameter estimation. Ridge 

regression technique proposed in [13] tries to answer the 

problem of multicollinearlity but analysis is very sensitive to 

the selected ridge parameter value. Alternative to regression 

based approach has been suggested in [14], which requires 

profiling each benchmark representing one business 

transaction or application functionality in isolation, which 

may not be possible in many cases where system is already in 

production. In that case, it may not possible to conduct any 

detailed what-if analysis and assess the impact of any 

hardware and/or environment change on the system. 

 

V. CONCLUSION 

In this paper, we present a framework to predict system 

resource utilization by inferring information from application 

and system utilization logs without any need for 

instrumentation, benchmarking or load testing, which can be 

either unfeasible, time consuming or very intrusive. Unlike 

regression based or queuing network based approaches, 

mechanism presented here neither requires to estimate 

per-function resource utilization nor it requires to benchmark 

individual business transactions in order to derive overall 

resource utilization for the desired throughput. In our 

experimental analysis, we find maximum average error in 

estimating resource utilization matrix is below 6% and the 

90th percentile of error for any resource is below 10% for 

application throughput approach and below 15% for 

concurrent users approach. Model presented here is not only 

useful for resource provisioning and what-if analysis to 

assess the impact of any workload change but also can be 

used for bottleneck analysis and early alert generating engine. 

This model can also be used to develop tests for load testing. 

Instead of testing a wide variety of parameters in search of a 

bottleneck, this model can direct a tester to concentrate on 

those tests which focus on the identified bottlenecks. 

Reducing the number of tests should speed up the testing 

process and decrease the cost of testing. Further ahead other 

facets of modeling paradigm like periodic validation and 

recalibration of the model based on change in dynamics is 

required to be explored. 
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