

Abstract—Operating System (OS) detection is one of the

main concerns for computer security. The previous works that

have been done on operating system detection, exploit some

features of TCP/IP traffic based on a single packet. In this

work, we built a system where TCP/IP communication is setup

between machines to capture and analyze TCP/IP packets for

more accurate and fine grained OS detection using our novel

packet correlation approach. We used existing signature

matching methods, extend it and employed machine learning

techniques to detect remote operating systems with improved

accuracy. We also employed mobile systems like smart phones

and tablets to perform mobile OS fingerprinting. The tools we

created also established encrypted communication using Secure

Socket Layer (SSL) network protocol to investigate the effect of

SSL communication on OS fingerprinting. The result of our

experimental work showed that fine grained OS detection can

be achieved for modern and mobile OSs using our approach.

Index Terms—OS fingerprinting, remote operating system

detection, vulnerability assessment, mobile operating system.

I. INTRODUCTION

Today everyone is connected to the internet so the need to

secure him from the intrusions is very important. What would

happen if a business company that sells its goods on the

internet went down for only one day? Or what happen if a

bank was hacked and taken down? This external threaten for

the companies trigger them to use multiple security

applications like firewalls/intrusion detection systems (IDSs)

in order to secure themselves from the hackers.

The operating system fingerprinting is a process of

remotely detecting and determining the identity of a target

system by observing the TCP/IP packets that are generated

by that system. The operating system detection can be viewed

from two sides. First, from the negative point of view for the

hackers needs. For example, the hackers detect OS in order to

exploit its vulnerabilities for their hacking purposes. Second,

from the positive side for the network administrators needs

because it is important for them to collect as much

information as possible about their networks. It is also

necessary for the system administrator to have certain

statistics about the components that they have in their

environment. For example, if there is a machine in the

network that runs an old version of operating system which

could be an easy target to be exploited by the hackers. By

using OS fingerprinting, network administrators can know

which machine‟s OS need an upgrade. Moreover, it is very

Manuscript received June 23, 2013; revised August 20, 2013.

The authors are with ICS department at King Fahd University of

Petroleum and Minerals, Dhahran 31261, Saudi Arabia (e-mail:

g200905290@kfupm.edu.sa, farrukhshahzad@kfupm.edu.sa).

difficult for the network administrators to have full control of

what are connected to the network especially for large

networks. For the system administrator, it‟s always important

to be one step ahead of the attacker. This way, the attacker

can‟t make use of the latest vulnerabilities. It is also

important for the network administrator to be sure that each

OS in the network satisfies the applied policies. For instance,

when a user formats his PC and reinstalls an old version

which violates the company policies. Detecting such

situation in an automated way is very important, especially

for large networks. “Having access to an up-to-date network

inventory could allow a company to save money by canceling

the license and support service for an OS that is no longer

used”[1].

Now a days, network administrators also want to know

which mobile devices, like smart phones and tablets, are

accessing his/her network. It may be more difficult to

respond to network attacks initiated by a wireless device. In

some cases, the mobile users may not be authorized and can

cause network overload as network load estimation might

have not included on-the-fly wireless users.

There are two basic method of performing OS

fingerprinting. The active detection is achieve by sending a

special packet to the target machine and get the response that

can be analyzed to identify the OS type of the target machine.

The main weakness of active OS fingerprinting method is

that it cannot be done if the target system has firewall and

intrusion detection systems (IDSs) [2]. On the other hand the

passive scheme of OS fingerprinting is done by sniffing the

network packets remotely instead of sending a crafted

packets to a target machine [3]. The idea of passive OS

fingerprinting is to analyze the headers of TCP SYN packets

(or other specific packets) to determine the operating system.

After the needed packets are sniffed they are compared with

predefined database that contains signatures of different

operating systems, and determine the type of the OS that

these packets come from. It is important for network

administrators to do OS fingerprinting in a passive way in

order to overcome the limitation of active method due to

firewalls/IDSs.

The three way handshake is the main step for the initiation

the TCP connection. First, the client initiates the connection

by sending a request with SYN flag set to a server. If server is

ready to open the connection, it replies with SYN+ACK

packet, or if it is not ready, it replies to the initiator with RST

packet. Then finally client replies with an ACK. The passive

OS detection can exploit some parameters in the TCP/IP

packets when SYN, SYN+ACK or RST flags are set [4].

When communication is done, client terminates the

connection by sending the packet with FIN+ACK flag set.

Improving Operating System Fingerprinting using

Machine Learning Techniques

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

57DOI: 10.7763/IJCTE.2014.V6.837

Taher Al-Shehari and Farrukh Shahzad

The TCP header has multiple flags that are set indicating the

TCP connection status [5]. In the passive OS detection the

main focus is in the parameters of the packet headers which

are time to live (TTL), window size (WS), don‟t fragment bit

(DF), and TCP options/flags. The main advantage of passive

OS detection for the attackers is that they can detect the

remote host without leaving any traces [5].

There are few tools that were developed to perform OS

fingerprinting. These tools have limitations that need to be

solved. For example, the active OS fingerprinting tools face a

firewall or IDS in front of the target system which can be

detected only using passive OS fingerprinting tools. Also

passive tools have some limitations. The signature databases

need to be updated continuously otherwise the newer

operating systems will not be recognized on the internet any

more [5]. The establishment and maintaining a good

up-to-date fingerprint database requires some serious

research in the area of OS security. Many performance

measurements for evaluating passive and active OS

fingerprinting are described by Thomas and Greenwald [6].

The rest of the paper is organized as follows. Section II

presents the literature review. Section III demonstrates our

proposed framework and section IV provide details of

implementation. In Section V, the results of our experimental

work are analyzed and compared. Finally, conclusion and

future work are discussed in Section VI.

II. LITERATURE REVIEW

There is some research in the field of passive and active

OS fingerprinting in the last 10-12 years. In [7] Gordon Lyon

proposes several programs: checkos, sirc, and SS which are

capable of fingerprinting various types of OSs by using

TCP/IP traffic. The limitation of these tools is that they are

not be referenced anymore because the information that is

available by them is too limited.

Michal Zalewski [8] writes the first version of p0f tool for

doing passive OS fingerprinting. There are four

fingerprinting methods that are used in different scenarios as

follows:

1) What is the system that is connecting to yours?

2) What is the system that you are connecting to?

3) What is the system that is refusing your connection?

4) What systems do you have a connection with?

Only the first one is supported well because it detects OS

by analyzing the headers of the initial SYN packet.

Lanze Spitzner in [1] identifies what passive OS

fingerprinting is, how it works and how to use it. He also

compares between passive and active fingerprinting in terms

of differences and similarities. He also talked about knowing

your enemies and your assets, because when you know your

enemies it is much easier to protect yourself against danger.

Gerald A. Marin in [9] looks at the general network

security by covering the crucial basics of system security. He

describes different attacks such as Distributed Denial of

Service (DDos) attack, land attack and Smurf attack. Several

countermeasures are discussed in the paper like what IDS is

and how to stop malicious code, Trojans and worms.

Authors in [10] propose a masking approach to secure

systems from OS fingerprinting. The paper also discusses the

main steps that the operating system fingerprinting tools go

through in order to detect the remote OS. They describe some

active operating system fingerprinting tools like Xprobe2 and

Nmap. The paper also discusses the countermeasure for

preventing operating system detection.

Greg Taleck in [3] entitled paper Ambiguity Resolution

via Passive OS Fingerprinting looks at exploiting the

differences in the common OSs to evade intrusion detection

systems (IDSs) detection for attacking. He proposes an

approach that uses passive OS detection in order to resolve

the ambiguities between different networks stack

implementations in a correct way. A new technique that this

paper looks at is to increase the level of confidence of OS

detection by looking closer at the TCP connection

negotiations.

In [11] Vladimir Lifschitz identifies ASP as “representing

a given computational problem by a logic program whose

answer sets correspond to solutions, and then use an answer

set solver to find an answer set for this program”. The author

presents a scenario to claim that this approach is optimal and

the test results of this ASP fingerprinting is very promising.

The accuracy of recognizing 95 OSs tests is more than 80%.

Esfandiari, Bertossi, and Gagnon in [12] perform OS

fingerprinting using Answer Set Programming (ASP). The

main idea is that they do not consider just a single packet for

determining the target OS but they analyze more packets in

order to improve the accuracy of OS detection.

We found no published work that fingerprint operating

systems based on correlation of multiple packets during the

same communication session. Our main contribution in this

work includes:

1) We build a client-server system which makes capturing,

the appropriate packets for fingerprinting, simplified and

automated. This is a „hybrid‟ approach as active

communication is initiated (but no special packets were

injected) to perform passive fingerprinting.

2) The system also implemented packet capturing over

Secure Socket Layer (SSL) encrypted communication

network to analyze the effect of SSL on OS

fingerprinting.

3) Due to exponential rise of mobile computing, we also

captured packets from mobile devices for fingerprinting

using third party socket client apps.

4) We used the latest p0f signature database [13] and

convert it into a relational table to improve the

performance of signature matching algorithm.

5) We found that by correlating the SYN and FIN+ACK

packets during the same communication session leads to

more accurate OS fingerprinting.

6) For new OS releases and Mobile OS, we employed

machine learning techniques on extended p0f datasets.

III. PROPOSED FRAMEWORK

In Our framework, OS fingerprinting is achieved in

multiple phases. The main components of our framework are

shown in Fig. 1. The first phase is to capture relevant TCP/IP

packets from network traffic. Then these samples are passed

to a matching component to compare with the existing

fingerprint database. If the exact match is found the process

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

58

ends. Otherwise, the data is processed using machine

learning techniques by trained classifier which tries to find

the closest match. In our framework, we are only interested in

the SYN and FIN packets.

Fig. 1. Framework for OS fingerprinting architecture.

A. Data Extraction

Extracting the relevant information from packets stream is

the first step in our model which can be captured live or from

stored traffic. The most important information of TCP/IP

headers that are interesting for our fingerprint is TCP SYN

segments. The collected headers are transformed into p0f

format for matching and classification phases.

Table I shows an example of p0f database format where

TTL is the initial time to live, D is do not fragment flag either

1=true/0=false, WSS is the window size that represents the

whole size of TCP/IP headers. As explained earlier, these

parameters are OS dependent which makes it possible to

perform OS detection.

TABLE I: AN EXAMPLE OF P0F FINGERPRINT

OS WSS TTL D size options

Linux S4 64 1 60 M*,S,T,N,W7

B. Fingerprint Matching

The next step is to match p0f fingerprint with p0f signature

database. If there is an exact match the target OS is identified.

If there is no exact match the newer system will be

considered as unknown so this fingerprint will be passed

through a trained classifier for OS detection.

C. Machine Learning Classifier

In case there is no exact match, the classifier is triggered

and the heuristics are exploited to find a match between the

target fingerprint and the extensive predefined operating

systems database. In this phase many classification

algorithms can be used to find the closest match among the

known classes. It has been noted that some training

algorithms are better suited for OS fingerprinting [14]. We

utilize C4.5 algorithm which is based on decision tree-based

approach.

This classification problem can be stated as follows:

Consider a set P of TCP/IP packets and a set of client

machines M, where each machine m M has a known,

labeled operating system OS(m). Each machine m sent SYN

packet pSYN P to server machine. The data collector records

the packet pSYN,, the server response pSYN+ACK for each pSYN,

and corresponding pFIN+ACK (on socket close). This yields a

set of samples S for the classifier C.

A classifier C takes as input the set of samples S and

produces a fingerprinting detection tool Dt. The tool Dt takes

as input a sample s and returns the best OS label for the

sample‟s machine s(m). The tool is a function f such that f(s)

= OS(s(m)) for all s S.

To solve the OS classification problem, this tool Dt should

not only correctly return the OS of all samples in S, but it

should also correctly return the OS of previously encountered

samples not in S.

D. Preprocessing Step for Data Classification

Before the classification step the data must be transformed

into the format that is compatible with WEKA tool which

called Attribute-Relation File Format (ARFF). This format

starts with a header for its description. Then all events are

stored in ARFF file with comma separated values each on

their own row. The ARFF format is based on p0f format rules

so for each field in p0f fingerprint, a specific attribute is

defined. The order in ARFF format is not considered but it is

important in TCP options so it is necessary to encode the

order in ARFF file. To tackle this issue ten separate attributes

are specified for each option in order to allow them to have

any of the options. The result of the classification (detected

OS) is the final attribute in the ARFF file which represents

the target system that generates the transformed p0f

fingerprints.

E. Defining Relevant Parameters

Determining the most relevant information from TCP/IP

headers is an important step for OS system detection. These

relevant parameters are chosen dynamically for the classifier

because there may be a new OS fingerprint contains some

header fields that are not considered before in the database to

be able to match it with the predefined OS classes.

In Weka, the complete set of samples is partitioned into

subsets. A single subset is used to validate the model, while

the other subsets are used to train the model. We choose a

ten-fold cross-validation, so ten subsets are created. The

complete process is repeated ten times, each time with a

different subset used as the validation subset and the rest as

the training data for the model.

F. Decision Tree/C 4.5 Classification Algorithm

In our experiments we select C4.5 classification algorithm

[14] because it is well known with its high accuracy of

classification. This algorithm goes over samples of training

set many times in order to build an optimal classification

model. This algorithm handles the continuous and discrete

attributes where the continuous are supported by using

thresholds. Furthermore, the training set with missed

attribute values can be handled using this algorithm. The

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

59

algorithm goes up the tree when it counters an instance of a

new class. Then the algorithm creates a decision node in the

tree for the attribute that will give the highest information

gain. After that it will recurs down the tree and removes the

sub-trees that are not needed by replacing them with leaves.

The pruning feature of this algorithm makes it possible to

create the model in seconds and classifies with better

accuracy.

IV. IMPLEMENTATION

To evaluate our proposed framework, we built a Java

package edu.kfupm.ccse.osfp with several classes to process

and transform relevant packets from pcap format to p0f and

ARFF (for Weka learning tool) format.

The p0f is one of the commonly used signature format for

SYN based OS fingerprinting (Table I). We converted the

most recent p0f signature data file [13] into MySQL

relational table which makes matching and adding new

signature easier and streamlined. We also extended p0f to

include other fields as discussed in later section. The original

p0f SYN signature can classify the remote OS into genre like

Linux, BSD, Windows, etc. It can also distinguish some older

OS versions accurately. But most of the newer OS can't be

classified at the version level. We found that our approach

can lead to more accurate and fine grained OS detection.

A. Packet Capturing and Extraction

We developed two sets of client/server Java socket

applications. One set used normal java socket API and other

used SSL socket API. The server runs on a certain machine

and multiple client applications connect to the server

simultaneously (from other machines). The client application

binds to the server (SYN) and then disconnects (FIN+ACK).

There was no actual data communication. Therefore only 3

types of packets were captured namely SYN, SYN+ACK and

FIN+ACK as it is shown in Fig. 2. The wireshark, Windows

network monitor and/or network miner tools are used to

capture the packets on the server machines. The captured

packets are saved in the tcpdump's pcap format. For mobile

devices, third party TCP/IP client apps were utilized.

Although above setup basically performed passive

fingerprinting as no special packets were injected, but one

can argue that only specific packets between selected

machines (which are executing custom made applications)

are captured. Therefore we can call it 'hybrid' fingerprinting.

Fig. 2. Normal vs. Extended OS fingerprinting Accuracy (%).

To extract the right information from TCP/IP headers we

build a Java application based on JnetPcap library, which is a

Java wrapper for native libcap library [15], to generate

fingerprint entries in p0f format.

B. C4.5 Classifier

The Weka classification tool needs the training dataset to

be in the ARFF format. For this purpose, we build a converter

that converts p0f fingerprints into ARFF format. This dataset

is fed to the Weka application for classification. For normal

p0f based classification, we have total of 31 attributes.

C. Extended P0f

Now we present how we correlate packets from same

communication session to extend the p0f signature format.

Basically, we link SYN packet and FIN+ACK packet using

hash map. The key used for hashing is the contacted string

containing source IP, destination IP, source port and

destination port from the SYN packet. This key is matched

with the same concatenated string from the few succeeding

FIN+ACK packets. Our capturing model dictates that those

two packets should not be far apart in the pcap file.

We also use Weka tool to classify OS‟s using extended p0f

format. The idea is that with more attributes, a more accurate

classification can be achieved. Table II shows an example of

extended p0f.

TABLE II: AN EXAMPLE OF EXTENDED P0F FINGERPRINT

OS WSS TTL D size options FIN-

WSS

FIN-

TTL

FIN-

D

FIN-

size

Win-8 8192 128 1 52 M*,N,W8,N,N,S 260 128 1 40

V. EXPERIMENTAL EVALUATION AND ANALYSIS

TABLE III: PLATFORM SPECIFICATIONS

OS Hardware Spec Network

Windows 8 Pro

(2 machines on

separate network)

Intel(R) Core(TM) 2 Quad

CPU Q9400 @ 2.67 GHz, 4/8

GB RAM

Ethernet/LAN

Windows 8 32 bit
Intel core 2 CPU 2.13 GHz, 4

GB RAM
Wi-Fi

Windows 7 Ent.

(Multiple units)

Intel(R) Core(TM) 2Quad

CPU Q9400 @ 2.67 GHz, 4

GB RAM

Ethernet/LAN

Linux Red hat 5.4 Ethernet/LAN

Windows XP 2002

SP2

Intel Pentium 1.86 GHz, 512

MB RAM

Ethernet/LAN

Android 2.2.2 Sharp-AD51, Kernal 2.6 Wi-Fi

iOS 5.1.1 iPad 3 Wi-Fi

Win CE 6.0 AMTEL, T7A HMI panel Ethernet/LAN

TABLE IV: TOOLS AND LIBRARIES

Tool/Library Version

JAVA for programming 1.7

Wireshark for capturing 1.8.6

Network Miner 1.4.1

Microsoft network Monitor 3.4

WEKA for classification 3.6

SSL protocol for encryption Java Keytool (RSA)

JnetPcap library 1.3

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

60

For our experiment, we select two different environments.

In the university setting, we select few machines running

windows-8 or windows-7 as servers and we setup our client

application on few window machines, one Linux machine

and one android smart phone. In home setup, we use two

windows-8 machines (64 bit and 32 bit), windows XP

machine, one android device, one win-CE device and an iPad

(Table III). The tools used are specified in Table IV.

A. Results and Analysis

We captured TCP/IP packets on different networks for 10

days. First we ran p0f matching algorithm on some sample

pcap files. Table V shows the summary of result. As

discussed earlier, we utilize relational table for p0f signature

matching. About 30% of packets in sample 1 were not

matched to any OS. Furthermore, the matching is very coarse

as the existing p0f database mapped multiple OS releases to

same signature.

TABLE V: P0F DATABASE MATCHING

OS matched Sample 1 Sample 2

Total SYN packets captured/processed 30060 1259

Windows Vista SP1, 7 SP1 1099 100

Windows Vista SP0/SP2, 7 SP0+, 2008

SP0

16161 658

Windows 2000 SP4, XP SP1+, 2003 1931 491

Windows 2000 SP2+, XP SP1+ (seldom

98), Vista SP1, 7 SP1, 2008 SP2

650 10

Linux and Others 724 0

Unknown 9495 0

TABLE VI: NORMAL VS. EXTENDED OS FINGERPRINTING COMPARISON

Parameters Normal p0f Extended p0f

Instances 2078 2078

Attributes 31 35

No. of leaves 10 11

Size of tree 13 15

Correctly Classified Instances 1745 1888

Accuracy 83.97% 90.86%

Next, we employed our Java application to generate p0f

and ARFF files from 8 raw pcap files. These files were

captured as describe in Section III. Similarly, we use a

separate Java application to generate extended p0f and ARFF

files from same 8 raw pcap files.

Finally, we execute the Weka tool with combined ARFF

dataset separately for p0f and extended p0f based instances.

We use J48 (an implementation of C4.5 algorithm) with

10-fold cross-validation test mode.

The results for two classifications are compared in Table

VI. With four more attributes, the extended p0f classifier

creates 15 trees as compared to 13. The detection accuracy

for extended p0f based classification is about 91% as

compared 84% for normal p0f based classification (Fig. 2).

This result shows higher accuracy when compared to related

work [14], [16] especially with extended p0f based

classification.

VI. CONCLUSION

In this paper, we presented a hybrid approach for

automated and more accurate OS fingerprinting. Several Java

tools were built to capture, process, transform, match,

analyze and classify appropriate TCP/IP packets. Our

research showed that by correlating packets from same TC/IP

session, fine-grained OS detection can be achieved for

modern operating systems and mobile devices. We also noted

that SSL TCP/IP communication doesn‟t show any

significant differences which can effect fingerprinting.

We believe that we can achieve even finer OS detection if

we have resources like computers/devices running different

releases of operating system. This means we may be able to

distinguish between Windows-8 64 bit and Windows-8 32 bit

or iOS 5.1 and iOS 6.x. Since we have tons of smart devices

in the market today, including smart phones, tablets, game

consoles, consumer electronics etc., more research is needed

to remotely detect the OSs running on these devices.

Furthermore, new tools need to be built, if these devices use

communication protocol other than TCP/IP.

REFERENCES

[1] L. Spitzner, Passive fingerprinting, vol. 3, pp. 1–4, May 2003.

[2] L. G. Greenwald and T. J. Thomas, “Understanding and preventing

network device fingerprinting,” Bell Lab. Tech. J., vol. 3, pp. 149–166,

2007.

[3] G. Taleck, “Ambiguity resolution via passive OS fingerprinting,” in

Proc. the 6th International Symposium on Recent Advances in

Intrusion Detection, 2003, pp. 192–206.

[4] P. B. Falch, “Investigating passive operating system detection,” M. S.

thesis, University of Oslo, May 24, 2011.

[5] G. Francois and E. Babak, "A hybrid approach to operating system

discovery based on diagnosis theory," in Proc. Network Operations

and Management Symposium, 2012 IEEE, pp.860–865, 2012.

[6] G. G. Lloyd, and T. J. Thomas, “Method and system for evaluating tests

used in operating system fingerprinting,” US patent 11/888,925, Jan. 8,

2013.

[7] G. Lyon, “Remote OS detection via TCP/IP Stack Finger-Printing,”

Phrack Magazine, vol. 8, no. 54, December 1998.

[8] M. Zalewski, p0f 2, README, 2006.

[9] G. A. Marin, “Network security basics,” Security & Privacy, IEEE ,

vol. 3, no. 6, pp. 68,72, Nov.-Dec. 2005.

[10] S. Kalia and M. Singh, “Masking approach to secure systems from

operating system fingerprinting,” TENCON 2005 2005 IEEE Region

10 , vol. 1, no. 6, pp. 21-24, Nov. 2005.

[11] V. Lifschitz, “Answer set programming and plan generation,” Artificial

Intelligence, vol. 138, issues 1–2, pp. 39-54, June 2002.

[12] G. Francois, E. Babak, and L. Bertossi, "A hybrid approach to

operating system discovery using answer set programming," Integrated

Network Management, pp. 391- 400, May 21, 2007.

[13] Software Engineering Institute Carnegie Mellon. [Online]. Available：
https://www.tools.netsa.cert.org/confluence/display/tt/p0f+fingerprint

s

[14] J. Schwartzenberg, “Using machine learning techniques for advanced

passive operating system fingerprinting,” MS thesis, 2010

[15] TCPDUMP/LIBPCAP team. (2010). [Online]. Available:

http://wwww.TCPDUMP/LIBPCAP public repository

[16] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

61

Taher Al-Shehari is a master student at King Fahd University of Petroleum

and Minerals. He got his B.Sc. degree in Computer Science from King

Khalid University in 2007. He granted the Upper Second Class Honour by

the rector of the university. His research interests include plagiarism

detection, wireless video streaming, website and OS fingerprinting on

anonymity protocols. His 2012 paper, "Wireless video streaming over Data

http://www.kfupm.edu.sa/
http://www.kfupm.edu.sa/
http://www.kku.edu.sa/
http://www.kku.edu.sa/
http://www.kku.edu.sa/

Distribution Service middleware" (with Al-madani, B.; Al-Roubaiey, A.),

published in Software Engineering and Service Science (ICSESS), was

invited for presentation in the IEEE 3rd International Conference on June

2012.

Farrukh Shahzad was born in Karachi, Pakistan. He did his BE(Electrical

Eng..) from the NED University of Engineering & Technology, Karachi,

Pakistan in 1992 and his MSEE from King Fahd University of Petroleum &

Minerals (KFUPM), Dhahran, Saudi Arabia in 1996. He is currently a Ph.D.

student and lecturer at KFUPM.

In 1996, he moved to USA. He has 16 years field experience in product

design, software development, engineering, and implementation of many

M2M and satellite based remote monitoring systems. His current interests

include Cloud storage security, Big Data analytics, Data sciences, Machine

learning and business intelligence. He is US copyright holder of four

Engineering softwares. His research activities resulted in publication of more

than 10 technical papers in IEEE and other journals.

International Journal of Computer Theory and Engineering, Vol. 6, No. 1, February 2014

62

