
  

 

Abstract—Graph coloring problem (GCP) is of great interest 

to the researchers in the area of soft computing. To solve GCP, 

we present a memetic algorithm (MA) that uses classical 

crossover operation as the main variation operator and a 

deterministic local improvement technique. For the first time in 

the literature, we use binary encoded chromosomes for GCP, 

which makes both the crossover and the local improvement 

easier. In the traditional evolutionary algorithm (EA) for GCP, 

k-coloring is used and the EA is run repeatedly until the lowest 

possible k is reached. In our MA, we start with the theoretical 

upper bound of chromatic number (maximum out-degree + 1) 

and in the process of evolution some of the colors are made 

unused to dynamically reduce the number of color. Thus, the 

solution is found in a single run of the MA reducing the total 

execution time in comparison to running k-coloring for several 

times. We experiment with 23 datasets taken from standard 

DIMACS benchmark and compare the result with several recent 

works. For all but one dataset, we obtain the minimum 

chromatic number stated in the DIMACS benchmark. For the 

remaining one dataset (queen10_10.col), we obtain better 

solution than others. 

 
Index Terms—Binary encoding, dynamicity, graph coloring, 

local improvement, memetic algorithm, metaheuristics. 

 

I. INTRODUCTION 

Graph coloring problem (GCP) assigns different colors to 

the adjacent vertices of a graph using minimum number of 

colors. The GCP is illustrated with a simple graph in Fig. 1, 

where six colors are needed to color eleven vertices. In Fig. 1, 

the vertex number is shown within the circle and the color 

number is shown outside the circle. The GCP is a well known 

NP-hard problem [1]. The notable applications of GCP are 

seen in pattern recognition [2], map coloring [3], radio 

frequency assignment [4], bandwidth allocation [5], and 

timetable scheduling [6]. 
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Fig. 1. Example of graph coloring. 

 

Assume that a graph G = (V, E) is to be colored with n 
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numbers of colors. Our objective is to color all the vertices 

reducing n dynamically so that minimum chromatic number, 

denoted by x(G), is found, that is, n = x(G) is reached. It has 

been an established fact that metaheuristic approaches such as 

evolutionary algorithms (EA) are best suited for this class of 

optimization problem. In this paper, we propose a memetic 

algorithm (MA) that uses binary encoding of the 

chromosomes, classical crossover as the main variation 

operator, and a deterministic local improvement technique of 

the solution population. 

 

II. PRIOR WORK 

One of the most recent works on GCP [7] combines 

wisdom of artificial crowds approach with the genetic 

algorithm (GA) and k-coloring approach is used. In this 

approach, multiple parent selection and multiple mutations 

based on the closeness of the solution to the global optima are 

used. The algorithm is run several times for several 

decreasing values of k and the minimum possible k value is 

taken as the minimum chromatic number. Another work used 

hierarchical parallel genetic algorithm for GCP [8], where the 

authors extended genetic algorithm with genetic modification 

operator introduced by them. A guided genetic algorithm for 

GCP called MSPGCA is reported in [9], where the authors 

finetuned the initial chromosomes using a simple genetic 

algorithm and then the deterministic MSPGCA algorithm is 

run to dynamically reduce the chromatic number. Tabu 

Search as a GCP solving approach was used in [10]. A hybrid 

immune algorithm is also applied in GCP [11]. All the above 

mentioned approaches used integer encoding for the 

chromosomes. 

 

III. PROPOSED CHROMOSOME ENCODING SCHEME 

Integer encoding is used in the previous works on GCP. 

However, binary encoding has dominating success in the 

evolutionary computing for describing solution structure in 

depth. On the other hand, in a dynamic learning system, it is 

more feasible to understand learning progress and to improve 

quality of population at any point. Considering these facts, we 

use a binary encoding scheme for chromosomes in our MA, 

which allows us to implement the crossover operator easily 

and to deterministically improve the solution quality 

dynamically. The encoding scheme is illustrated in Fig. 2 for 

the undirected graph of Fig. 1. The used encoding is a 

two-dimensional array, where each row corresponds to a 

color and each column corresponds to a vertex. Let the jth 

vertex be colored using the ith color, then the (i, j)th element 

of the array will be 1 and the other elements will be 0. Thus, in 

a valid chromosome, every column must have a single 1 and a 

row will have one or more than one 1s placed on non-adjacent 
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vertices columns. A row may also have all 0s, in which case 

the color is not used in the solution. If a column has all 0s (the 

vertex is not colored) or more than one 1s (more than one 

color is assigned to that vertex), then the encoding is invalid. 

This situation may arise after crossover operation as 

discussed later, where two 1s may be present in one column. 

On the other hand, if a row has 1s in adjacent vertices columns 

(same color is assigned to adjacent vertices), then the 

encoding is invalid. This situation may arise during 

initialization as discoursed in the next section. When a 

chromosome becomes invalid, then the chromosome will be 

corrected as explained in Section IV of this paper. If a row has 

all 0s, then that color is not used in the vertex coloring. Thus, 

the number of rows having at least one 1 is the number of used 

colors and is used as the fitness function in our MA. As 

discussed in Section IV, this binary encoding technique will 

allow us to deterministically improve the quality of the 

solution. 
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Fig. 2. Chromosome encoding of graph of Fig. 1. 

 

IV. PROPOSED MEMETIC ALGORITHM FOR GRAPH COLORING 

Our proposed memetic algorithm (MA) for graph coloring 

problem (GCP) is shown below and each step of the MA is 

discussed separately. 

1) Memetic Algorithm for GCP () 

2) population = initialization () 

3) population = correction (population) 

4) fitness = evaluation (population) 

5) while (termination condition not reached) do 

6) parents = parentSelection (population) 

7) offsprings = crossover (parents) 

8) offsprings = correction (offsprings) 

9) offsprings = improvement (offsprings) 

10) offsprings_fitness = evaluation (offsprings) 

11) population = replacement (population, offsprings) 

12) end 

13) end 

The initialization procedure of line 2 generates the 

chromosomes of the initial population. Chromosomes are 

initialized with m + 1 colors, where m is the maximum 

out-degree of the graph. The theoretical upper bound of the 

chromatic number is m + 1. The initial chromosome is 

generated by putting a single 1 under each column at a 

randomly selected row and filling up the remaining elements 

by 0s. During the initialization, a chromosome for the graph 

of Fig. 1 may be as shown in Fig. 3(a). In this chromosome, 

adjacent vertices 7 and 11 are colored by color 1 and adjacent 

vertices 4 and 6 are colored by color 2, which is an invalid 

chromosome. Therefore, correction is needed to make it a 

valid chromosome. For the correction procedure of line 3, one 

of the conflicting 1s is chosen randomly and then the chosen 1 

is placed randomly in another row under the same column 

such that no conflict is created in that row. This technique is 

repeated until all color clusters become non-conflicting. The 

corrected chromosome corresponding to the invalid 

chromosome of Fig. 3 (a) is shown in Fig 3 (b). In the initial 

population of chromosomes, no duplicate chromosomes are 

allowed. 
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Fig. 3. Invalid chromosome during initialization and its correction. 

 

The evaluation procedure of line 4 determines the fitness of 

each chromosome. The fitness of a chromosome is equal to 

the number of used colors in the chromosome. 

In the termination condition of line 5, if both average and 

best fitness remain constant for a pre-determined number of 

generations then the algorithm is terminated. 
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Fig. 4. The crossover operation.  

In the parent selection procedure of line 6, two parents are 
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randomly selected from the population. In the crossover 

procedure of line 7, a crossover point is randomly selected 

and the rows above the crossover point are interchanged 

between the two parents. Two parent chromosomes for the 

graph of Fig. 1 and the generated offsprings are shown in Fig. 

4. In our MA, the crossover operation is applied with high 

probability. The crossover operation may produce invalid 

offsprings. Two possible problems may occur – 1) a column 

may have two 1s or 2) a column may have all 0s. In Fig. 4, 

both the generated offsprings are invalid and both have the 

two possible problems. In the correction procedure of line 8, 

the invalid offsprings are corrected. For case 1), one of the 

two 1s is randomly deleted. For the case 2), a 1 is inserted at a 

randomly selected row among used color clusters so that no 

conflict is created at that row. If such a used color row is not 

available, then a 1 is inserted at a randomly selected row 

among unused color clusters. An invalid offspring and its 

corrected version are shown in Fig. 5. 
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Fig. 5. Correction of invalid offspring.  

 

(a)original chromosome
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(a)improved chromosome
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Fig. 6. Local improvement of a chromosome.  

 

Improvement procedure of line 9 deterministically 

improves the quality of the offsprings. For each offsprings, a 

lowest used color cluster is selected randomly. Then 1s of that 

selected color cluster are moved to other rows of the used 

color clusters so that no conflict is created at that row. If any 1 

of the selected color cluster cannot be moved to any of the 

rows of the used color clusters, then it is left in the original 

color cluster. This local improvement procedure makes a 

color unused improving the fitness of the offspring. The 

improvement procedure is applied with a low probability. 

One possible chromosome for the graph of Fig. 1 and its 

improved version is shown in Fig. 6. In Fig. 6 (a), colors 2 is 

the lowest used. The 1 of the 2
nd

 row can be moved to row 2, 3, 

4, or 6 without conflict. It is moved to row 4 to produce the 

improved chromosome of Fig. 6 (b). The fitness of the 

chromosome of Fig. 6 (a) is six and that of the Fig. 6 (b) is 

five. 

 

V. EXPERIMENTAL RESULTS 

Datasets used to test our memetic algorithm for GCP are 

taken from Center for Discrete Mathematics and Theoretical 

Computer Science (DIMACS) benchmarking graph 

collection [12]. Instances ending in .col are in DIMACS 

standard format. Instances in .col.b are in compressed format. 

We have used datasets ending with .col extension. The top of 

the dataset heading resembling “p edge 11 20” means that 

graph has 11 vertices and 20 edges, where p denotes vertices. 

After that number of lines like “e 1 2” represent connection 

between two edges. 

The proposed memetic algorithm for GCP is written in Java 

utilizing JDK 1.7 64bit, random numbers are generated using 

commons-math-2.0 and tests were run on a desktop PC having 

following configuration: 

CPU: Intel Core2Quad 2.66 GHz 

Memory: 4 GB DDR3 1333MHz 

Operating System: Windows 7 64-bit 
 

TABLE I: COMPARISON OF TESTED DATASETS RESULTS  

Dataset |V| |E| x(G) [7] [8] [9] MA 

myciel2.col 5 5 3 - - - 3 

myciel3.col 11 20 4 4 4 - 4 

myciel4.col 23 71 5 5 5 - 5 

myciel5.col 47 236 6 6 6 - 6 

myciel6.col 95 755 7 - - - 7 

myciel7.col 191 2360 8 - 8 - 8 

games120.col 120 638 9 9 9 9 9 

huck.col 74 301 11 11 11 11 11 

jean.col 80 254 10 10 10 10 10 

david.col 87 406 11 11 11 11 11 

queen5_5.col 25 160 5 5 5 5 5 

queen6_6.col 36 290 7 7 8 8 7 

queen7_7.col 49 476 7 7 8 7 7 

queen10_10.col 100 2940 ? - 15 14 13 

miles250.col 128 387 8 8 8 - 8 

miles500.col 128 1170 20 - - - 20 

miles750.col 128 4226 31 - - 31 31 

miles1000.col 128 3216 42 42 42 42 42 

miles1500.col 128 5198 73 - 73 73 73 

anna.col 138 493 11 11 11 11 11 

homer.col 561 1629 13 13 13 13 13 

mulsol.i.1.col  197 3925 49 - 49 49 49 

zeroin.i.1.col 211 4100 49 - - - 49 

 

We experimented with 23 datasets. The tested datasets are 

heterogeneous consisting of big graph like homer.col having 

561 vertices, highly dense graph like miles1500.col, highly 

complex graph like queen10_10.col, and even simple graphs. 

Results of our algorithm are compared with those of three 
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most recent works in Table I. The table has eight columns, 

where dataset is the name of the DIMACS dataset, |V| and |E| 

are the number of vertices and edges of the datasets 

respectively from [12], x(G) denotes expected chromatic 

number as found in [12], the next three columns show the 

found chromatic number of three recent works, and the last 

column shows the chromatic number found in our 

experiments denoted by MA. A “?” mark in the fourth column 

indicates that no expected chromatic number is reported in 

[12]. A “” mark in fifth to seventh columns means that no 

result is reported in the corresponding work. For 22 datasets, 

except queen10_10.col dataset, we found the expected 

chromatic number as mentioned in [12]. For queen10_10.col 

dataset, no expected chromatic number is mentioned in [12]. 

For this dataset, the found chromatic number of [8] and [9] are 

15 and 14, respectively. The work of [7] did not report any 

result for this dataset.  In our experiment, we found 13 as the 

chromatic number of this dataset, which is a major 

achievement of our algorithm over the previous works. 

In the previous works such as that of [7] used k-coloring 

technique and the algorithm is run for several decreasing k 

values. The minimum possible k value is taken as the found 

chromatic number. Unlike this technique, our memetic 

algorithm starts with m + 1 colors, where m is the maximum 

out-degree of the graph, and dynamically reduces the used 

colors to find out the chromatic number. The value m + 1 is 

the theoretical upper bound of chromatic number of a graph. 

Thus, our memetic algorithm 

For GCP starts with theoretical upper bound of chromatic 

number and dynamically reduces the used colors to reach at 

the minimum chromatic number. Fig. 7 shows the average 

fitness (number of used color) and minimum fitness over 

successive generation for queen5_5 dataset indicating the 

dynamicity of our algorithm. 
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Fig. 7. Average and best (minimum) fitness over generation for queen5_5 

dataset. 

 

In our experiments, we found that crossover probability of 

0.7 performs better for all datasets. However, the probability 

of local improvement depends on graph density. If the number 

of edges is less than 10, than an improvement probability of 

0.1 works better, otherwise a probability of 0.25 works better. 

The termination condition also depends on the graph 

complexity. As stated earlier, if both the average fitness and 

the best fitness do not change for a specified number of 

generations, then the algorithm is terminated. This number of 

generations depends on the graph complexity. For 

queen5_5.col dataset this number was 5000 and for 

myciel7.col dataset it was 40000. 

 

VI. CONCLUSION 

In this paper, we propose a memetic algorithm (MA) for 

graph coloring problem (GCP). Unlike the previous works, 

we use a binary encoding scheme for the first time for GCP. 

The main variation operator of our MA is the classical 

crossover operator of the genetic algorithm (GA). That means 

the population of the solutions is updated mainly using 

crossover operator. We select two parents randomly and 

apply the crossover operator with a high probability. Due to 

the nature of the encoding, the generated offsprings may 

become invalid and in that case the offsprings are corrected to 

valid solutions. Then a deterministic improvement technique 

is applied on the corrected offsprings with low probability to 

locally improve the solution quality. If the generated offspring 

is better than the worst solution of the population and if it is 

also not duplicate of any other solution of the population, then 

the worst solution is replaced by the offspring. The binary 

encoding makes the local improvement procedure easy. The 

combination of the genetic operation and the deterministic 

improvement makes the algorithm a MA. 

We start with m + 1 colors, where m is the maximum 

out-degree of the graph. The number m + 1 is the upper bound 

of chromatic number. That means, we start with upper bound 

of the chromatic number and the MA dynamically reduces the 

chromatic number to the possible minimum chromatic 

number in a single run. 

We experiment with 23 DIMACS dataset [12]. For 22 

datasets, except queen10_10.col dataset, we found expected 

chromatic number as stated in [12]. For queen10_10.col 

dataset, no expected chromatic number is stated. In our 

experiment we found this number to be 13, whereas this 

number found in [8] and [9] are 15 and 14, respectively. Thus, 

our MA outperforms the previous works for a very complex 

dataset. Moreover, unlike the previous techniques, our MA 

finds the minimum chromatic number in a single run reducing 

the total run time significantly. 
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