

Abstract—Graph coloring problem (GCP) is of great interest

to the researchers in the area of soft computing. To solve GCP,

we present a memetic algorithm (MA) that uses classical

crossover operation as the main variation operator and a

deterministic local improvement technique. For the first time in

the literature, we use binary encoded chromosomes for GCP,

which makes both the crossover and the local improvement

easier. In the traditional evolutionary algorithm (EA) for GCP,

k-coloring is used and the EA is run repeatedly until the lowest

possible k is reached. In our MA, we start with the theoretical

upper bound of chromatic number (maximum out-degree + 1)

and in the process of evolution some of the colors are made

unused to dynamically reduce the number of color. Thus, the

solution is found in a single run of the MA reducing the total

execution time in comparison to running k-coloring for several

times. We experiment with 23 datasets taken from standard

DIMACS benchmark and compare the result with several recent

works. For all but one dataset, we obtain the minimum

chromatic number stated in the DIMACS benchmark. For the

remaining one dataset (queen10_10.col), we obtain better

solution than others.

Index Terms—Binary encoding, dynamicity, graph coloring,

local improvement, memetic algorithm, metaheuristics.

I. INTRODUCTION

Graph coloring problem (GCP) assigns different colors to

the adjacent vertices of a graph using minimum number of

colors. The GCP is illustrated with a simple graph in Fig. 1,

where six colors are needed to color eleven vertices. In Fig. 1,

the vertex number is shown within the circle and the color

number is shown outside the circle. The GCP is a well known

NP-hard problem [1]. The notable applications of GCP are

seen in pattern recognition [2], map coloring [3], radio

frequency assignment [4], bandwidth allocation [5], and

timetable scheduling [6].

5

8

10

2
1

3

6

4

9

7

11

6

3

3

6

3

2

2
5

1

4 1

Fig. 1. Example of graph coloring.

Assume that a graph G = (V, E) is to be colored with n

Manuscript received February 10, 2013; revised April 15, 2013.

H. A. R. Chowdhury, T. Farhat, and M. H. A. Khan are with Department

of Computer Science and Engineering, East West University, Aftabnagar,

Dhaka 1212, Bangladesh (e-mail: hrcrabat@gmail.com, lvuplf@gmail.com,

mhakhan@ewubd.edu).

numbers of colors. Our objective is to color all the vertices

reducing n dynamically so that minimum chromatic number,

denoted by x(G), is found, that is, n = x(G) is reached. It has

been an established fact that metaheuristic approaches such as

evolutionary algorithms (EA) are best suited for this class of

optimization problem. In this paper, we propose a memetic

algorithm (MA) that uses binary encoding of the

chromosomes, classical crossover as the main variation

operator, and a deterministic local improvement technique of

the solution population.

II. PRIOR WORK

One of the most recent works on GCP [7] combines

wisdom of artificial crowds approach with the genetic

algorithm (GA) and k-coloring approach is used. In this

approach, multiple parent selection and multiple mutations

based on the closeness of the solution to the global optima are

used. The algorithm is run several times for several

decreasing values of k and the minimum possible k value is

taken as the minimum chromatic number. Another work used

hierarchical parallel genetic algorithm for GCP [8], where the

authors extended genetic algorithm with genetic modification

operator introduced by them. A guided genetic algorithm for

GCP called MSPGCA is reported in [9], where the authors

finetuned the initial chromosomes using a simple genetic

algorithm and then the deterministic MSPGCA algorithm is

run to dynamically reduce the chromatic number. Tabu

Search as a GCP solving approach was used in [10]. A hybrid

immune algorithm is also applied in GCP [11]. All the above

mentioned approaches used integer encoding for the

chromosomes.

III. PROPOSED CHROMOSOME ENCODING SCHEME

Integer encoding is used in the previous works on GCP.

However, binary encoding has dominating success in the

evolutionary computing for describing solution structure in

depth. On the other hand, in a dynamic learning system, it is

more feasible to understand learning progress and to improve

quality of population at any point. Considering these facts, we

use a binary encoding scheme for chromosomes in our MA,

which allows us to implement the crossover operator easily

and to deterministically improve the solution quality

dynamically. The encoding scheme is illustrated in Fig. 2 for

the undirected graph of Fig. 1. The used encoding is a

two-dimensional array, where each row corresponds to a

color and each column corresponds to a vertex. Let the jth

vertex be colored using the ith color, then the (i, j)th element

of the array will be 1 and the other elements will be 0. Thus, in

a valid chromosome, every column must have a single 1 and a

row will have one or more than one 1s placed on non-adjacent

Memetic Algorithm to Solve Graph Coloring Problem

Hasin Al Rabat Chowdhury, Tasneem Farhat, and Mozammel H. A. Khan

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

890DOI: 10.7763/IJCTE.2013.V5.817

mailto:hrcrabat@gmail.com
mailto:lvuplf@gmail.com
mailto:mhakhan@ewubd.edu

vertices columns. A row may also have all 0s, in which case

the color is not used in the solution. If a column has all 0s (the

vertex is not colored) or more than one 1s (more than one

color is assigned to that vertex), then the encoding is invalid.

This situation may arise after crossover operation as

discussed later, where two 1s may be present in one column.

On the other hand, if a row has 1s in adjacent vertices columns

(same color is assigned to adjacent vertices), then the

encoding is invalid. This situation may arise during

initialization as discoursed in the next section. When a

chromosome becomes invalid, then the chromosome will be

corrected as explained in Section IV of this paper. If a row has

all 0s, then that color is not used in the vertex coloring. Thus,

the number of rows having at least one 1 is the number of used

colors and is used as the fitness function in our MA. As

discussed in Section IV, this binary encoding technique will

allow us to deterministically improve the quality of the

solution.

0 0 0 101

0 0 0 0 0 1 0

0

1 0 0 0

0 0 0 1 0 0 1 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0 0

0

1

0

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

colors
vertices

Fig. 2. Chromosome encoding of graph of Fig. 1.

IV. PROPOSED MEMETIC ALGORITHM FOR GRAPH COLORING

Our proposed memetic algorithm (MA) for graph coloring

problem (GCP) is shown below and each step of the MA is

discussed separately.

1) Memetic Algorithm for GCP ()

2) population = initialization ()

3) population = correction (population)

4) fitness = evaluation (population)

5) while (termination condition not reached) do

6) parents = parentSelection (population)

7) offsprings = crossover (parents)

8) offsprings = correction (offsprings)

9) offsprings = improvement (offsprings)

10) offsprings_fitness = evaluation (offsprings)

11) population = replacement (population, offsprings)

12) end

13) end

The initialization procedure of line 2 generates the

chromosomes of the initial population. Chromosomes are

initialized with m + 1 colors, where m is the maximum

out-degree of the graph. The theoretical upper bound of the

chromatic number is m + 1. The initial chromosome is

generated by putting a single 1 under each column at a

randomly selected row and filling up the remaining elements

by 0s. During the initialization, a chromosome for the graph

of Fig. 1 may be as shown in Fig. 3(a). In this chromosome,

adjacent vertices 7 and 11 are colored by color 1 and adjacent

vertices 4 and 6 are colored by color 2, which is an invalid

chromosome. Therefore, correction is needed to make it a

valid chromosome. For the correction procedure of line 3, one

of the conflicting 1s is chosen randomly and then the chosen 1

is placed randomly in another row under the same column

such that no conflict is created in that row. This technique is

repeated until all color clusters become non-conflicting. The

corrected chromosome corresponding to the invalid

chromosome of Fig. 3 (a) is shown in Fig 3 (b). In the initial

population of chromosomes, no duplicate chromosomes are

allowed.

0 0 0 101

0 0 0 0 0 1 0

0

1 0 0 0

0 0 0 1 0 0 1 0 1 0

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0 0

0 0 0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

0 0 0 101

0 0 0 1 0 1 0

0

1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0 0

0

1

0

0

0

10

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

 (a)invalid

 (b)corrected

1

0

0

Fig. 3. Invalid chromosome during initialization and its correction.

The evaluation procedure of line 4 determines the fitness of

each chromosome. The fitness of a chromosome is equal to

the number of used colors in the chromosome.

In the termination condition of line 5, if both average and

best fitness remain constant for a pre-determined number of

generations then the algorithm is terminated.

parent 2

parent 1

0 0 0 010

0 0 0 0 0 0 1

0

0 0 0 0

0 1 0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 1 0 0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1 0

0

0

0

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

100

0 0 0 101

0 0 0 0 0 1 0

0

1 0 0 0

0 0 0 1 0 0 1 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0 0

0

1

0

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

crossover

point

crossover

point

 offspring 2

offspring 1

0 0 0 010

0 0 0 0 0 0 1

0

0 0 0 0

0 1 0 1 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0 0

0

1

0

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

100

0 0 0 101

0 0 0 0 0 1 0

0

1 0 0 0

0 0 0 1 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1 0

0

0

0

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

Fig. 4. The crossover operation.

In the parent selection procedure of line 6, two parents are

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

891

randomly selected from the population. In the crossover

procedure of line 7, a crossover point is randomly selected

and the rows above the crossover point are interchanged

between the two parents. Two parent chromosomes for the

graph of Fig. 1 and the generated offsprings are shown in Fig.

4. In our MA, the crossover operation is applied with high

probability. The crossover operation may produce invalid

offsprings. Two possible problems may occur – 1) a column

may have two 1s or 2) a column may have all 0s. In Fig. 4,

both the generated offsprings are invalid and both have the

two possible problems. In the correction procedure of line 8,

the invalid offsprings are corrected. For case 1), one of the

two 1s is randomly deleted. For the case 2), a 1 is inserted at a

randomly selected row among used color clusters so that no

conflict is created at that row. If such a used color row is not

available, then a 1 is inserted at a randomly selected row

among unused color clusters. An invalid offspring and its

corrected version are shown in Fig. 5.

(b)corrected

0 0 0 101

0 0 0 0 0 0 0

0

1 0 0 0

0 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0 0

0

0

1

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

0 0 0 101

0 0 0 0 0 1 0

0

1 0 0 0

0 0 0 1 0 0 1 0 1 0 0

0 0 1 0 0 0 0 0 1 0 0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1 0

0

0

0

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

(a)invalid

Fig. 5. Correction of invalid offspring.

(a)original chromosome

0 0 0 101

0 0 0 0 0 0 0

0

1 0 0 0

0 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0 0

0

0

1

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

(a)improved chromosome

0 0 0 101

0 0 0 0 0 0 0

0

0 0 0 0

0 0 0 1 0 0 1 0 0 0 0

0 0 1 0 0 0 0 1 1 0 0

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0 0

0

0

1

0

0

00

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 1110

000

Selected lowest

used color

Selected lowest

used color

Fig. 6. Local improvement of a chromosome.

Improvement procedure of line 9 deterministically

improves the quality of the offsprings. For each offsprings, a

lowest used color cluster is selected randomly. Then 1s of that

selected color cluster are moved to other rows of the used

color clusters so that no conflict is created at that row. If any 1

of the selected color cluster cannot be moved to any of the

rows of the used color clusters, then it is left in the original

color cluster. This local improvement procedure makes a

color unused improving the fitness of the offspring. The

improvement procedure is applied with a low probability.

One possible chromosome for the graph of Fig. 1 and its

improved version is shown in Fig. 6. In Fig. 6 (a), colors 2 is

the lowest used. The 1 of the 2
nd

 row can be moved to row 2, 3,

4, or 6 without conflict. It is moved to row 4 to produce the

improved chromosome of Fig. 6 (b). The fitness of the

chromosome of Fig. 6 (a) is six and that of the Fig. 6 (b) is

five.

V. EXPERIMENTAL RESULTS

Datasets used to test our memetic algorithm for GCP are

taken from Center for Discrete Mathematics and Theoretical

Computer Science (DIMACS) benchmarking graph

collection [12]. Instances ending in .col are in DIMACS

standard format. Instances in .col.b are in compressed format.

We have used datasets ending with .col extension. The top of

the dataset heading resembling “p edge 11 20” means that

graph has 11 vertices and 20 edges, where p denotes vertices.

After that number of lines like “e 1 2” represent connection

between two edges.

The proposed memetic algorithm for GCP is written in Java

utilizing JDK 1.7 64bit, random numbers are generated using

commons-math-2.0 and tests were run on a desktop PC having

following configuration:

CPU: Intel Core2Quad 2.66 GHz

Memory: 4 GB DDR3 1333MHz

Operating System: Windows 7 64-bit

TABLE I: COMPARISON OF TESTED DATASETS RESULTS

Dataset |V| |E| x(G) [7] [8] [9] MA

myciel2.col 5 5 3 - - - 3

myciel3.col 11 20 4 4 4 - 4

myciel4.col 23 71 5 5 5 - 5

myciel5.col 47 236 6 6 6 - 6

myciel6.col 95 755 7 - - - 7

myciel7.col 191 2360 8 - 8 - 8

games120.col 120 638 9 9 9 9 9

huck.col 74 301 11 11 11 11 11

jean.col 80 254 10 10 10 10 10

david.col 87 406 11 11 11 11 11

queen5_5.col 25 160 5 5 5 5 5

queen6_6.col 36 290 7 7 8 8 7

queen7_7.col 49 476 7 7 8 7 7

queen10_10.col 100 2940 ? - 15 14 13

miles250.col 128 387 8 8 8 - 8

miles500.col 128 1170 20 - - - 20

miles750.col 128 4226 31 - - 31 31

miles1000.col 128 3216 42 42 42 42 42

miles1500.col 128 5198 73 - 73 73 73

anna.col 138 493 11 11 11 11 11

homer.col 561 1629 13 13 13 13 13

mulsol.i.1.col 197 3925 49 - 49 49 49

zeroin.i.1.col 211 4100 49 - - - 49

We experimented with 23 datasets. The tested datasets are

heterogeneous consisting of big graph like homer.col having

561 vertices, highly dense graph like miles1500.col, highly

complex graph like queen10_10.col, and even simple graphs.

Results of our algorithm are compared with those of three

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

892

most recent works in Table I. The table has eight columns,

where dataset is the name of the DIMACS dataset, |V| and |E|

are the number of vertices and edges of the datasets

respectively from [12], x(G) denotes expected chromatic

number as found in [12], the next three columns show the

found chromatic number of three recent works, and the last

column shows the chromatic number found in our

experiments denoted by MA. A “?” mark in the fourth column

indicates that no expected chromatic number is reported in

[12]. A “” mark in fifth to seventh columns means that no

result is reported in the corresponding work. For 22 datasets,

except queen10_10.col dataset, we found the expected

chromatic number as mentioned in [12]. For queen10_10.col

dataset, no expected chromatic number is mentioned in [12].

For this dataset, the found chromatic number of [8] and [9] are

15 and 14, respectively. The work of [7] did not report any

result for this dataset. In our experiment, we found 13 as the

chromatic number of this dataset, which is a major

achievement of our algorithm over the previous works.

In the previous works such as that of [7] used k-coloring

technique and the algorithm is run for several decreasing k

values. The minimum possible k value is taken as the found

chromatic number. Unlike this technique, our memetic

algorithm starts with m + 1 colors, where m is the maximum

out-degree of the graph, and dynamically reduces the used

colors to find out the chromatic number. The value m + 1 is

the theoretical upper bound of chromatic number of a graph.

Thus, our memetic algorithm

For GCP starts with theoretical upper bound of chromatic

number and dynamically reduces the used colors to reach at

the minimum chromatic number. Fig. 7 shows the average

fitness (number of used color) and minimum fitness over

successive generation for queen5_5 dataset indicating the

dynamicity of our algorithm.

0 1000 2000 3000 4000 5000 6000 7000

44

5

6

7

8

9

10

11

12

13

14

15

Generations

F
it
n
e
s
s

Average Fitness

Best Fitness

Fig. 7. Average and best (minimum) fitness over generation for queen5_5

dataset.

In our experiments, we found that crossover probability of

0.7 performs better for all datasets. However, the probability

of local improvement depends on graph density. If the number

of edges is less than 10, than an improvement probability of

0.1 works better, otherwise a probability of 0.25 works better.

The termination condition also depends on the graph

complexity. As stated earlier, if both the average fitness and

the best fitness do not change for a specified number of

generations, then the algorithm is terminated. This number of

generations depends on the graph complexity. For

queen5_5.col dataset this number was 5000 and for

myciel7.col dataset it was 40000.

VI. CONCLUSION

In this paper, we propose a memetic algorithm (MA) for

graph coloring problem (GCP). Unlike the previous works,

we use a binary encoding scheme for the first time for GCP.

The main variation operator of our MA is the classical

crossover operator of the genetic algorithm (GA). That means

the population of the solutions is updated mainly using

crossover operator. We select two parents randomly and

apply the crossover operator with a high probability. Due to

the nature of the encoding, the generated offsprings may

become invalid and in that case the offsprings are corrected to

valid solutions. Then a deterministic improvement technique

is applied on the corrected offsprings with low probability to

locally improve the solution quality. If the generated offspring

is better than the worst solution of the population and if it is

also not duplicate of any other solution of the population, then

the worst solution is replaced by the offspring. The binary

encoding makes the local improvement procedure easy. The

combination of the genetic operation and the deterministic

improvement makes the algorithm a MA.

We start with m + 1 colors, where m is the maximum

out-degree of the graph. The number m + 1 is the upper bound

of chromatic number. That means, we start with upper bound

of the chromatic number and the MA dynamically reduces the

chromatic number to the possible minimum chromatic

number in a single run.

We experiment with 23 DIMACS dataset [12]. For 22

datasets, except queen10_10.col dataset, we found expected

chromatic number as stated in [12]. For queen10_10.col

dataset, no expected chromatic number is stated. In our

experiment we found this number to be 13, whereas this

number found in [8] and [9] are 15 and 14, respectively. Thus,

our MA outperforms the previous works for a very complex

dataset. Moreover, unlike the previous techniques, our MA

finds the minimum chromatic number in a single run reducing

the total run time significantly.

REFERENCES

[1] M. Kubale, “Graph colorings,” American Mathematical Society, 2004.

[2] C. W. K. Chen and D. Y. Y. Yun, “Unifying graph-matching problem

with a practical solution,” in Proc. International Conf. on Systems,

Signals, Control, Computers, September 1998.

[3] B. H. Gwee, M. H. Lim, and J. S. Ho, “Solving four-colouring map

problem using genetic algorithm,” in Proc. Artificial Neural Networks

and Expert Systems, 1993.

[4] W. K. Hale, “Frequency assignment: theory and applications,” in Proc.

IEEE, 1980, vol. 12, pp. 1497-1514.

[5] A. Gamst, “Some lower bounds for class of frequency assignment

problems,” IEEE Trans. on Vehicular Technology, vol. 35, no. 1, pp.

8-14, 1986.

[6] N. K. Cauvery, “Timetable scheduling using graph coloring,”

International Journal of P2P Network Trends and Technology, vol. 1,

issue 2, pp. 57-62, 2011.

[7] M. M. Hindi and R. V. Yampolskiy, “Genetic algorithm applied to the

graph coloring problem,” in Proc. 23rd Midwest Artificial Intelligence

and Cognitive Science Conf., April 2012, pp. 61-66.

[8] R. Abbasian and M. Mouhoub, “An efficient hierarchical parallel

genetic algorithm for graph coloring problem,” in Proc. 13th annual

conf. on Genetic and evolutionary computation, 2011, pp. 521-528.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

893

[9] B. Ray, A. J. Pal, D. Bhattacharyya, and T. Kim, “An efficient GA with

multipoint guided mutation for graph coloring problems,”

International Journal of Signal Processing, Image Processing and

Pattern Recognition, vol. 3, no. 2, pp. 51-58, 2010.

[10] A. Lim, Y. Zhu, Q. Lou, and B. Rodrigues, “Heuristic methods for

graph coloring problems,” in Proc. Symposium on Applied Computing,

2005.

[11] V. Cutello, G. Nicosia, and M. Pavone, “A hybrid immune algorithm

with information gain for the graph coloring problem,” in Proc.

GECCO 2003, pp. 171-182, 2003.

[12] M. Trick. (2013, March 1). Graph coloring instances. Michael Trick's

Operations Research Page. [Online]. Available:

http://mat.gsia.cmu.edu/COLOR/instances.html

Hasin Al Rabat Chowdhury was born in Khulna,

Bangladesh. He is a final year student of Computer

Science and Engineering at East West University,

Aftabnagar, Dhaka 1212, Bangladesh. His research

interests include Evolutionary Algorithms and Machine

Learning.

Tasneem Farhat was born in Dhaka, Bangladesh. She is

a final year student of Computer Science and

Engineering at East West University, Aftabnagar, Dhaka

1212, Bangladesh. Her research interest is in

Evolutionary Algorithms.

Mozammel H. A. Khan was born in Kushtia, Bangladesh.

He received B. Sc. Engg. degree in Electrical and Electronic

Engineering, M. Sc. Engg. degree in Computer

Engineering, and Ph.D. degree in Computer Science and

Engineering in 1984, 1986, and 1998, respectively, all from

Bangladesh University of Engineering and Technology

(BUET), Dhaka, Bangladesh.

He has served as faculty member at Bangladesh Institute

of Technology (BIT), Rajshahi, Bangladesh and Khulna University, Khulna,

Bangladesh. He is currently a full Professor of Department of Computer

Science and Engineering at East West University, Aftabnagar, Dhaka 1212,

Bangladesh. His research interests include Logic Synthesis, Reversible

Logic, Multiple-Valued Logic, Quantum Computing, and Evolutionary

Algorithms. He is an author or co-author of about 75 papers published in

international and national journals and conferences. He also authored two

textbooks.

H. A. Khan is a senior member of IEEE and a life fellow of Institution of

Engineers, Bangladesh.

International Journal of Computer Theory and Engineering, Vol. 5, No. 6, December 2013

894

