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Abstract—Recently, we have analyzed the convergence 

properties and derived the objective functions of the weight 

noise injection-based algorithms. In this paper, we generalize 

our work to perturbed gradient systems (PGS). For original 

gradient systems (GS), the change of a vector x(t) at time t is 

defined as the gradient vector of a function F(x) times a small 

negative constant. For PGS, it is assumed that the vector x(t) is 

perturbed by mean zero Gaussian noise. The noise can either be 

multiplicative or additive. In this paper, the corresponding 

energy functions for both cases are derived. It is found that their 

energy functions are very difference from F(x). For the case of 

multiplicative noise, the energy function consists of three terms: 

(i) F(x), (ii) a regularization term and (iii) a de-regularization 

term. For the case of additive noise, the energy function consists 

of only two terms: (i) F(x) and (ii) a regularization term. Note 

that de-regularization could lead to divergence behavior while 

regularization will improve the convergence behavior of a 

system. Our results suggest that special caution should be done 

to a gradient system with multiplicative noise. 

 
Index Terms—Additive noise, energy function, gradient 

systems, multiplicative noise, noise effect. 

 

I. INTRODUCTION 

In this paper, we focus on a more general topic which is on 

the effect of noise on gradient systems. It is because many 

learning algorithms (like back propagation and PCA learning) 

and neural network models (like associative memory and 

kWTA) can be modeled as gradient systems. Their dynamical 

behaviors are equivalent to energy minimization. 

Understanding the effect of noise on gradient systems can 

aid to the understanding of the effect of noise on learning 

algorithms and neural dynamics. 

Research on the effect of noise on neural networks has been 

conducted for almost two decades. In particular in the 1990s, 

some researchers were actively in investigating the effect of 

noise on the learning algorithms for multilayer perceptrons 

[1]-[4], the effect of noise on recurrent neural network [5], 

and the effect of noise on the dynamical behaviors of 

associative networks [6]. While the aforementioned 

researches relied on simulation studies, some other 

researchers conducted theoretical analysis. But their research 

results are limited to the effect of additive input noise on the 

learning algorithms for multilayer perceptrons [7]-[11]. Until 
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recent years, the analysis on the effect of additive and 

multiplicative weight noise on the learning algorithms for 

multilayered perceptrons has been done [12]-[15]. Moreover, 

the analysis on the effect of noise on kWTA has been 

proceeded [16]. 

Since many neural network learning algorithms and the 

dynamical behavior of many recurrent networks can be 

modeled as gradient systems, analysis on the effect of noise in 

these learning algorithms and the dynamic behaviors from 

gradient systems perspective can provide a more general 

picture (and even a unified theory) for further investigation on 

other complex neural models and learning algorithms which 

have not yet studied. 

 

II. GRADIENT SYSTEMS WITH NOISE 

Let ( )
n

x t R and ( )F x R is a bounded scalar function of x. 

Besides, it is assumed that F(x) is differentiable up to third 

order. The general gradient system is defined as follows: 

( ( ))
( 1) ( ) ( )

F x t
x t x t t

x



  


                        (1) 

where ( )t > 0, ( )t →0 is the step size at the tth step and 

( ( )) ( )
( )

F x t F x
x x t

x x

 
 

 
 

With multiplicative noise, the vector x(t) in (1) is replaced 

by ( )x t , where 

( ) ( ) ( ) ( )x t x t b t x t                           (2) 

In (2), ( )
n

b t R  is a Gaussian random vector with mean 0 

and covariance matrix S n nb
I 

.   is a element-wise 

multiplication operator, i.e. 

1 1 2 2( ) ( ) ( ( ) ( ), ( ) ( ), ..., ( ) ( ))n n
T

b t x t b t x t b t x t b t x t   

The gradient system (1) is given as follows: 

( ( ))
( 1) ( ) ( )

F x t
x t x t t

x



  




                   (3) 

Here, we assume that E[bi (t)] = 0 for all i = 1,… , n 

and 0t  . E[bi (t)bj (t)] equals zero if i ≠ j; otherwise, Sb. And, 

E[bi(t1)bj(t2)]=0 if t1 ≠ t2.  

 

III. MAIN RESULTS  

Given x(t), we get the mean update of (3) that 

( ( ))
( 1) ( ) ( ) ( ) ( ) ( )

F x t
E x t x t E x t x t t E x t

x



  


         


   (4) 
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In (4), the expectation is taken over the probability space of 

( )x t . Since E[b(t)]=0, by (2) we get that ( ) ( )E x t x t    = x(t). 

Equation (4) can be rewritten as follows: 

( ( ))
( 1) ( ) ( ) ( ) ( ) ( )

F x t
E x t x t E x t x t t E x t

x



  


         


   (5) 

Next, we let )x(V  be a scalar function such that 

( ( ))
( 1) ( ) ( ) ( )

V x t
E x t x t x t t

x
 

  


                 (6) 

Then we can have the following theorem. 

Theorem 1: For a gradient system defined as (1) and x(t) 

is corrupted by multiplicative noise as stated in (2), 

2
2

1

( )
( ) ( )

2

n
b

j
j

j j

S F x
E F x x F x x

x x


  

 
                (7) 

and 
2

2

1

( )
( ) ( )

2

n
b

j
j

j j

S F x
V x F x x

x x





  

 
 

  ( )bS x H x dx   diag                   (8) 

where ∫is the line integral, H(x) is the Hessian matrix of F 

(x),  i.e. H(x) = ( )F xx and 

  
2 2 2

2 2 2

1 2

( ) ( ) ( )
( ) , , ...,

T

n

F x F x F x
H x

x x x

  


  

 
 
 

diag  

Proof: Consider (5) and let 
( )F x

xi





 be the i
th

 element 

of ( )F x

x





  

2

1

( ) ( ) ( )
( )

n

j j
j

i i j i

F x F x F x
b x

x x x x

  
  

   


 

 
3

1 1

1 ( )

2

n n

k j k j
k j

k j i

F x
b b x x

x x x 


  

  
               (9) 

therefore 

3
2

1

( )( ) ( )

2

n
b

j
ji i j j i

S F xF x F x
E x x

x x x x x


  

    

 
  


      (10) 

On the other hand, 

1

( )
( ) ( )

n

i i
i

i

F x
F x F x b x

x


  


  

2

1 1

1 ( )

2

n n

j i j i
j i

j i

F x
b b x x

x x 


  

 
               (11) 

thus 
2

2

1

( )
( ) ( )

2

n
b

j
j

j j

S F x
E F x x F x x

x x


  

 
               (12) 

and  

3
2

1

( )( )
( )

2

n
b

j
ji i i j j

S F xF x
E F x x x

x x x x x

 
  

    
    

2 ( )
b i

i i

F x
S x

x x




 
                            (13) 

Based on the fact that 

3 3
( ) ( )

j j i i j j

F x F x

x x x x x x

 


     
                   (14)  

and F(x) is differentiable up to the third degree. Comparing 

(10) and (13), we get that 

 
2

( )( )
( ) i

i i i i

F xF x
E x E F x x S x

bx x x x


 

   

 
  


      (15) 

Further, by (5) and (6), we get that 

   ( ) ( ) ( )bV x E F x x S x H x dx     diag       (16) 

In other words, 

2
2

1

( )
( ) ( )

2

n
b

j
j

j j

S F x
V x F x x

x x





  

 
 

 ( )bS x H x dx   diag                  (17) 

Then, the proof is completed Q.E.D. 

Let us write that ( ) ( ) ( )bV x F x S R x   , where R(x) 

corresponds to a regularizer. From (8), it is given by 

 
2

2

1

( )1
( ) ( )

2

n

j
j

j j

F x
R x x x H x dx

x x


   

 
 diag      (18) 

The effect of the first term is to bring x closer to the zero 

vector while the second term is to push it away from the zero 

vector. Therefore, the existence of multiplicative noise in a 

gradient system would lead to both regularization effect and 

de-regularization effect. This effect does not exist if the noise 

is additive (see below). 

It should be noted that H(x) is a constant matrix (say H ) if F 

(x) is quadratic. One can easily show that R(x) = 0. Thus, we 

can state without proof the following corollary. 

Corollary 1: For a gradient system defined as (1) in which 

x(t) is corrupted by multiplicative noise as stated in (2) and F 

(x) is quadratic, ( ) ( )V x F x  . 

For the system which is corrupted by additive noise, 

( ) ( ) ( )x t x t b t                             (19) 

where ( )
n

b t R is a Gaussian random vector with mean 0 and 

covariance matrix
b n nS I 

. Then, we can have the following 

theorem. 

Theorem 2: For a gradient system defined as (1) and x(t) 

is corrupted by addit ive  noise 

2

1

( )
( ) ( )

2

n
b

j
j j

S F x
V x F x

x x





  

 
                (20) 

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

842



Proof: For additive noise, the noisy x in (3) is given 

by x x b  . Similarly, we consider (5) and let ( )

i

F x

x





  be the 

i
th 

element of ( )F x

x





. 

2

1

( ) ( ) ( )n

j
j

i i j i

F x F x F x
b

x x x x

  
  

   


 

3

1 1

1 ( )

2

n n

k j
k j

k j i

F x
b b

x x x 


  

  
                 (21) 

therefore 

3

1

( )( ) ( )

2

n
b

ji i j j i

S F xF x F x
E x

x x x x x


  

    

 
  


             (22) 

On the other hand, 

1

( )
( ) ( )

n

i
i

i

F x
F x F x b

x


  


  

2

1 1

1 ( )

2

n n

j i
j i

j i

F x
b b

x x 


  

 
                   (23) 

thus 
2

1

( )
( ) ( )

2

n
b

j
j j

S F x
E F x x F x

x x


  

 
                  (24) 

and 

3

1

( )( )
( )

2

n
b

ji i i j j

S F xF x
E F x x

x x x x x

 
  

    
               (25) 

By (14) and comparing (22) with (25), we get that 

 
( )

( )
i i

F x
E x E F x x

x x




 

 
  


                   (26) 

As a result, 

 ( ) ( )V x E F x x    

2

1

( )
( )

2

n
b

j
j j

S F x
F x

x x


  

 
          (27) 

The additional term has the effect that brings the solution 

closer to the zeros vector. The proof is completed Q.E.D. 

 

IV. ILLUSTRATIVE EXAMPLES  

In this section, we illustrate by two examples the 

application of Theorem 1. 

A. Simple Gradient System with Multiplicative Noise 

Consider a simple example that x R . Let a gradient 

system is with objective function F (x) given by 

4 3 2
( ) 3 3 5F x x x x x                     (28) 

Its shape is shown in Fig. 1. The noise-free update can then 

be expressed as follows 

'
( 1) ( ) ( ) ( ( ))x t x t t F x t                        (29) 

where ' 3 2
( ) 4 9 6 5F x x x x    . The update of x(t) is given 

by 

3 2
( 1) ( ) ( )(4 ( ) 9 ( ) 6 ( ) 5)x t x t t x t x t x t               (30) 

where ( ) ( ) ( ) ( )x t x t b t x t  and b(t) is a mean zero Gaussian 

noise with variance Sb. For Sb is small, we can get from (7) 

that 

4 3 2
( ) ( ) (6 9 3 )bE F x x F x S x x x                   (31) 

The de-regularization term in (8) will be given by 

2
4 3 2

2

( )
(3 6 3 )b b

d F x
S x dx S x x x

dx
               (32) 

 

Fig. 1. The shape of F (x). 

Thus, the objective function of (30) is that 

2
( ) ( ) 3 ( 3)bV x F x S x x                          (33) 

Fig. 2 shows the locations of the minimums of the functions 

F(x), ( )E F x x    and V(x) for Sb=0.01. It is clear that the 

minimum points of V(x) lie in between the minimum points of 

F(x) and ( )E F x x   . 

B. Stochastic Wang’s kWTA with Multiplicative Noise 

Stochastic Wang’s kWTA is defined as follows [13]: 

 
1

( ) ( ) ( ) ( ( ))
n

i
i

x t x t t f u x t k 


                 (34) 

where u1,…,un are the inputs to the network, k is a positive 

integer and β is the step size. In (34), 

1
( ( ))

1 exp( ( ( ))
i

i

f u x t
u x t

 
  

                (35) 

which is the firing rate of the i
th

 neuron. Moreover, we have 

shown that (34) is a gradient system, 

( ( ))
( ) ( ) ( )

dF x t
x t x t t

dx
                         (36) 

with energy function 

1

1

( ) log(1 exp( ( )))
n

i
i

F x kx u x 




             (37) 
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Now, suppose the state variable x(t) is corrupted by 

multiplicative noise, i.e. ( ) ( ) ( ) ( )x t x t b t x t  . The state-space 

model for this stochastic Wang’s kWTA is given by 

 
1

( ) ( ) ( ) ( ( ))
n

i
i

x t x t t f u x t k 


                 (38) 

By Theorem 1, the energy function of (38) can be obtained. 

 
(a) Positive solutions 

 
(b) Negative solutions 

Fig. 2. Solution points of the functions F(x) (solid), ( )E F x x   (dash) and 

V (x) (dot-dash). 

 

From (34) and (36), we can get that 

2

2
1

( )( ) n
i

i

df u xd F x
n

dx dx


    

1

( )(1 ( ))
n

i i
i

f u x f u x


         (39) 

Besides 
2

2

( ) ( )
( )

d F x dF x
x dx x F x

dxdx
   

Therefore, the energy function of (38) is given as follows: 

( ) (1 ) ( )bV x S F x   

2

1

( )(1 ( ))
2

n
b

i i
i

S
x f u x f u x





     

 
1

( )
n

b i
i

S x k f u x


                        (40) 

where F(x) in (40) is the same as the one given by (37). 

V. CONCLUSION  

In this paper, we have introduced gradient systems which 

are corrupted by either additive or multiplicative noise. 

Given that the energy function  of the original gradient 

system is F (x),  we have shown that the energy function of 

the noise corrupted gradient system  (denoted  by  V (x))   is  

given  by  V (x)   = F (x)  + Sb R(x),  where  R(x) is  the  

regularizer  as  stated  in  (18). Applications of the analytical 

results are illustrated by a simple gradient descent system and 

the stochastic Wang’s kWTA. 
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