


Abstract—Multi-hop wireless networks have evolved as a key

and promising wireless technology for a large variety of

applications ranging from home networking to transportation

systems, defense and medical systems. Transmission Control

Protocol (TCP) is a widely deployed transport protocol and its

congestion control mechanisms guarantee reliable delivery of

data and efficient allocation of network resources. Congestion

control mechanisms implemented in TCP have evolved

significantly to better the performance of TCP on different

types of communication networks. Recently, a lot of research

has focused on improving the performance of TCP connections

with large congestion windows, resulting in new variants called

“high-speed” TCP variants. In this paper, we study the

performance of high-speed TCP variants in multi-hop wireless

networks in terms of network throughput. Another metric,

expected throughput is used for comparison of throughput when

nodes are mobile.

Index Terms—Multi-hop wireless networks, TCP congestion

control, high-speed TCP variants.

I. INTRODUCTION

Wireless internet has become popular in recent years due

to the tremendous growth in the number of mobile computing

devices and high demand for continuous network

connectivity regardless of physical locations. Multi-hop

wireless networks such as Wireless Mesh Networks (WMNs),

Mobile Ad-hoc Networks (MANETs), etc have emerged as a

promising wireless technology for a large variety of

applications. Applications of multi-hop wireless networks

range from broadband home networking, community

networking and enterprise networking to medical systems,

security surveillance systems, transportation systems,

defense and building automation [1].

TCP has been widely adopted as a reliable data transfer

protocol for most of the communication networks. However,

effectively and fairly allocating resources of a network (e.g.

bandwidth) among a collection of competing users are major

issues for all types of communication network.

A network is said to be congested when the traffic offered

to it exceeds the available capacity [2]. Van Jacobson [3] laid

the cornerstone for congestion control research. He proposed

a new principle called “Conservation of Packets”, which

means that a new packet is not injected into the network until

an old packet leaves the network. This principle leads to the

formation of a key mechanism called “Self-Clocking”, which

means that the source uses acknowledgements (ACKs) as a

clock to determine when to send new packets into the

network.

Van Jacobson proposed three algorithms for congestion

avoidance and control: Slow-Start, Congestion Avoidance

and Fast Retransmit. Slow-Start algorithm is designed to start

the Self-Clocking mechanism. This algorithm quickly fills

the empty pipeline (network is viewed as a pipeline) at the

beginning of transmission or after a retransmission timeout to

bring the connection towards its equilibrium (a connection is

said to be in equilibrium if it is running stably with a full

window of data in transit). Congestion Avoidance algorithm,

also known as Additive Increase/Multiplicative Decrease

(AIMD) algorithm, closely obeys the “Conservation of

Packets” principle once the connection is in equilibrium. Fast

Retransmit algorithm considers duplicate acknowledgements

[4] as a sign of packet loss in the network and retransmits the

lost packet without waiting for a retransmission timer to

expire. Since then, TCP congestion control mechanisms have

undergone several modifications to improve the performance

of TCP on different types of communication networks [5].

Recent work in the area of congestion control focuses on

improving the performance of TCP connections with large

congestion windows (cwnd) [6]. The improvements are

focused on enhancing the basic mechanism of AIMD to

efficiently maintain the connection at equilibrium. In AIMD

mechanism, TCP sender updates the congestion window

(cwnd) if an ACK is received or if the congestion is detected.

For each ACK received, cwnd is updated as

cwnd ← cwnd +
1

𝑐𝑤𝑛𝑑
 

This is known as Additive Increase phase of the AIMD

algorithm. When congestion is detected either through

timeout or duplicate acknowledgements (dupacks) [4] or

Selective Acknowledgements (SACK) [4], cwnd is updated

as

cwnd ←
𝑐𝑤𝑛𝑑

2
 

This is known as Multiplicative Decrease phase of the

AIMD algorithm. In large congestion windows, the time

taken to reach the same sending rate following the detection

of congestion may be in orders of minutes [2]. This

conservative approach of AIMD may lead to under utilization

of the available resources and hence result in significant

performance degradation in the network.

Recently, different approaches have been proposed to

address this drawback. One class of approaches optimizes the

increase/decrease parameters of AIMD algorithm. These

approaches are known as loss-based approaches [7] since

Comparative Study of High-Speed TCP Variants in

Multi-Hop Wireless Networks

Mohit P. Tahiliani, K. C. Shet, and T. G. Basavaraju

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

802DOI: 10.7763/IJCTE.2013.V5.800

Manuscript received November 18, 2012; revised March 8, 2013.

Mohit P. Tahiliani and K. C. Shet are with the National Institute of

Technology Karnataka, Surathkal, Mangalore, 575025, India (e-mail:

tahiliani.nitk@gmail.com, kcshet@nitk.ac.in).

T. G. Basavaraju is with the Govt. SKSJ Technological Institute,

Bangalore, 560001, India (e-mail: tg.braju@gmail.com).

they use packet loss as the indication of congestion, e.g.,

HighSpeed TCP (HSTCP) [8], Scalable TCP (STCP) [2],

Binary Increase Congestion Control (BIC) TCP [9] and

CUBIC TCP [10]. Another class of approaches uses Round

Trip Time (RTT) variations as network congestion estimator

and accordingly reduces the transmission rate. These

approaches are known as delay-based approaches [7], e.g.,

FAST [11]. Loss-based approaches are aggressive as

compared to delay-based approaches because the latter

approach reduces the sending rate to avoid self-induced

packet losses [7]. Compound TCP (CTCP) is a synergy of

loss-based and delay-based approach [7].

The characteristics of wireless networks largely differ

from those of a wired network. Data transfer rate in wireless

networks is still restricted to a few mega bits per second

(Mbps). Moreover, non-congestion packet losses due to

reasons such as transmission errors, collisions, link failures

and handoffs further complicate the design and development

of congestion control mechanisms.

In this paper we study the performance of HSTCP, STCP,

CUBIC and CTCP in multi-hop wireless networks.

CUBIC-TCP, an enhanced version of BIC-TCP, is used as

the default TCP in modern Linux operating systems [10],

including Android. It overcomes the RTT unfairness problem

[9] in HSTCP and STCP. CTCP, though disabled by default,

is implemented in Microsoft Windows Vista and Windows 7

[12].

We analyze the performance of above mentioned

high-speed TCP variants by varying the routing protocols in

static as well as mobile topologies. The performance is

measured in terms of overall network throughput. In mobile

topologies, a metric called expected throughput [13] is used

to analyze the performance of TCP variants.

The remainder of the paper is organized as follows. In

Section II we discuss the congestion control mechanisms of

each high-speed TCP variant. In Section III we brief about

the wireless routing protocols. Section IV presents different

simulation environment designed for multi-hop wireless

networks and describes the performance metrics in detail.

Section V discusses the simulation results. Section VI gives

conclusion and possible future directions.

II. HIGH-SPEED TCP VARIANTS

A. High Speed TCP (HSTCP)

High speed TCP is proposed in [8] to improve the

performance of TCP connections with large congestion

windows. HSTCP introduces a relation between an average

congestion window and packet drop rate. If packet drop rates

are more than 10
-3

 HSTCP follows the basic AIMD algorithm

by increasing cwnd as in (1) and by decreasing cwnd as in (2).

However, for packet drop rates less than 10
-3

, HSTCP adopts

a more aggressive increase/decrease algorithm: When an

ACK received, cwnd is updated as

cwnd ← cwnd +
𝑎(𝑐𝑤𝑛𝑑)

𝑐𝑤𝑛𝑑
 

and when congestion is detected, cwnd is updated as

cwnd ← cwnd – b(cwnd)cwnd 

The canonical values for a and b are 1 and 0.5 respectively.

As the cwnd size increases beyond certain threshold, the

value of b decreases from 0.5 to 0.1, while the value of a

increases accordingly [7]. A detailed study of HSTCP is

presented in [14].

The major drawbacks of HSTCP are: Round Trip Time

(RTT) unfairness problem and TCP unfariness problem. RTT

unfairness is defined as the ratio of cwnd in terms of RTT

ratio of multiple TCP connections [9]. Moreover, the

performance of regular TCP flows is largely affected by the

aggressiveness of HSTCP. This is known as TCP-unfairness

[15].

B. Scalable TCP (STCP)

Scalable TCP is quite similar to HSTCP’s aggressive

increase/decrease algorithm. However, the increase/decrease

parameters in STCP are constant rather than HSTCP’s

parameterization by the current congestion window [2].

When an ACK received, cwnd is updated as

cwnd ← cwnd + 𝑎 

and when congestion is detected, cwnd is updated as

cwnd ← cwnd – (bcwnd) 

The values of a and b are fixed to 0.01 and 0.125

respectively. The motivation behind the choice of values 0.01

and 0.125 is described in [2]. The authors in [2] claim that the

time taken by STCP source to double its sending rate is about

70 RTTs for any rate and hence the proposed algorithm is

scalable. However, like HSTCP, RTT unfairness problem

and TCP-unfairness problem are major drawbacks in STCP

as well [9].

C. CUBIC TCP

CUBIC TCP is an enhanced version of Binary Increase

Congestion Control (BIC) TCP. BIC TCP, proposed in [9],

focuses on solving the RTT unfairness problem. It combines

two algorithms called additive increase and binary search

increase. Additive increase ensures linear RTT fairness when

cwnd is large and binary search increase ensures

TCP-friendliness when cwnd is small. Binary search increase

algorithm is described in detail in [9].

CUBIC further improves the performance of BIC TCP

with respect to RTT unfairness problem by incrementing

cwnd independent of RTT [10]. During steady state, CUBIC

increases cwnd size aggressively if it is far from equilibrium

and slowly when it is close to equilibrium [10]. However,

TCP-unfairness problem is not addressed by CUBIC TCP.

D. Compound TCP (CTCP)

Compound TCP is a synergy of loss-based and

delay-based congestion avoidance approaches [7][12]. It

addresses the RTT unfairness problem and TCP-unfairness

problem by adding a new scalable delay-based component to

the standard TCP. This delay-based component acts as an

auto-tuning knob [7] by rapidly increasing cwnd when the

network is under-utilized and gracefully decreases cwnd once

the congestion is detected.

CTCP retains the basic Slow Start and Congestion

Avoidance phases. During congestion avoidance phase, the

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

803

update of cwnd is based on (1) and (2). However, CTCP may

send (cwnd + dwnd) packets in one RTT (instead of 1 packet)

where dwnd represents the delay window which controls

delay-based component. Therefore, the update of cwnd when

an ACK is received is modified accordingly:

cwnd ← cwnd +
1

(𝑐𝑤𝑛𝑑 + 𝑑𝑤𝑛𝑑)
 

A detailed explanation regarding the delay-based

component is provided in [2].

III. ROUTING PROTOCOLS IN WIRELESS NETWORKS

Routing protocols in multi-hop wireless networks are

mainly classified as:

A. Table Driven Routing Protocols

These protocols maintain consistent, up-to-date routing

information from each node to every other node in the

network. These nodes maintain routing tables and respond to

the changes in the network topology by propagating updates

throughout the network to maintain a consistent view of the

network.

Different table-driven routing protocols differ in the

number of routing tables and the methods by which changes

in the network topology are broadcasted. Examples of table

driven routing protocols are: Destination Sequenced Distance

Vector (DSDV), Optimized Link State Routing (OLSR), etc.

In DSDV routing protocol, each node in the network

maintains a routing table that consists of available

destinations and the number of hops needed to get to each of

them. Each entry in the route table is tagged with a sequence

number that is originated by the destination node. These

sequence numbers distinguish the stale routes from the new

ones and thus avoid routing loops. A more detailed

description about DSDV is presented in [16].

The disadvantages of table driven routing protocols are:

such protocols require more memory to maintain the routing

information and they react very slowly on restructuring or

route failure in the network.

B. Demand Driven Routing Protocols

These protocols create routes only when desired by the

source. There are two main phases in demand driven routing

protocols: route discovery and route maintenance. The source

node initiates route discovery when it requires a route to the

destination. This process is completed when a route is found

or when all the possible routes are examined. The process of

route maintenance is carried out to maintain the established

routes until either the destination becomes unavailable or

when the route is no longer required. Examples of demand

driven routing protocols are: Ad hoc on demand Distance

Vector (AODV), Dynamic Source Routing (DSR), etc. We

choose both AODV and DSR since they are widely accepted

as the standard demand driven routing protocols.

AODV routing protocol as described in [16] is a modified

version of the DSDV and aims at reducing system wide

broadcasts that are a feature in DSDV. Routes are discovered

only when there is a demand and are maintained only as long

as they are necessary. Each node maintains monotonically

increasing sequence numbers and this number increases as it

learns about a change in the topology of its neighborhood.

This sequence number ensures that the most recent route is

selected whenever route discovery is initiated. This protocol

is used for unicast, multicast and broadcast communication.

DSR is a simple and efficient routing protocol [16] similar

to AODV except that in DSR, each data packet sent carries in

its header, the complete ordered list of nodes through which

the packet must pass to reach destination. Since the source

route is included in the header, other nodes hearing this

transmission can cache this information in their routing table

for future use.

The disadvantages of demand driven routing protocols are:

they incur initial delay in establishing the route before

sending the actual data packets and they induce more control

overhead in scenarios where route failures are not frequent.

IV. SIMULATION SETUP AND METHODOLOGY

The results in this paper are based on the simulations done

on ns-2, a discrete event simulator [17]. We have chosen

static as well as mobile topologies for the study.

A. Static Topologies

We have designed a linear string topology of 8 nodes,

similar to that in [15]. We consider a single TCP connection

that covers a variable number of hops, from 1 to 7. The nodes

are configured to use 802.11 MAC protocol. The distance

between two nodes is equal to the transmission range which

is by default set to 250 meters. The channel data rate is 11

Mbps. TCP packet size is fixed to 1500 bytes. Keeping all the

above mentioned parameters fixed we switch TCP variant

and the routing protocol. Simulation results are discussed in

Section V.

B. Mobile Topologies

In mobile topologies we designed a network model

consisting of 30 nodes in a 1500  300 meter flat, rectangular

area. Our network model is analogous to the one in [8]. The

mobility patterns are generated using the mobility pattern

generator provided in ns-2. This generator is designed based

on random waypoint mobility model. The mean speed with

which nodes move is 10 m/s. We generate 25 such mobility

patterns and our simulation results are based on the average

throughput of these 25 mobility patterns. Other parameters

are same as mentioned above for static topologies.

Simulation results are discussed in Section V.

C. Performance Metric

The performance metric used in our study is throughput. In

static topologies we measure the throughput of TCP

connection and compare the changes observed on increasing

the number of hops (from 1 to 7).

But in mobile topologies the distance between the source

and destination keeps varying. The number of hops on the

path from source to destination may increase or decrease.

Hence, we use another performance metric called expected

throughput as defined in [13]. It is calculated as follows:

Let Ti denote the throughput obtained for the string

topology, where i denotes the number of hops and 1 ≤ i ≤ ∞.

When i = ∞ it means that the network is partitioned and hence

throughput T∞ = 0. Let ti be the duration for which the shortest

distance between source and destination in mobile topology

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

804

is i hops (1 ≤ i ≤ ∞). The expected throughput is then

calculated as:

 

The throughput measure obtained by simulations is called

actual throughput. This actual throughput is then compared

with the expected throughput.

V. RESULTS AND ANALYSIS

A. Static Topologies

Table I shows the throughput (in Kbps) obtained for each

high-speed TCP variant with DSDV routing protocol. Table

II and Table III show the throughput obtained for each

high-speed TCP variant with AODV and DSR routing

protocol respectively.

Throughput decreases as we increase the number of hops

for all high-speed TCP variants as shown in the tables. Our

studies show that all high-speed TCP variants consistently

perform better with DSDV. One of the reasons is that DSDV

maintains a routing table and hence avoids the initial delay in

discovering a route as in AODV and DSR.

Comparing throughput values of AODV with DSR, it is

observed that better throughput is achieved by all high-speed

TCP variants with AODV. The reason behind DSR’s poor

performance is that the data packet carries entire route

information from source to destination in its header. This

leads to severe degradation of throughput as the number of

hops increase. It can be seen in Table II and III, when H > 2,

the throughput values for DSR decrease drastically.

STCP gives the best performance when DSDV routing

protocol is used because it is far more aggressive than other

high-speed TCP variants due to its fixed increase/decrease

parameters. Also the packet drop rate is low since the

topology is static in nature and hence the overhead of control

packets (routing packets) is minimal in DSDV. This allows

STCP to reach the equilibrium aggressively in less number of

RTTs and thus achieve better throughput. However, when

AODV and DSR are used, the packet drop rate increases due

to increase in the control overhead (DSR has less control

overhead than AODV because DSR maintains entire route

information in its cache). Since STCP’s increase/decrease

parameters are fixed, its aggressiveness leads to frequent

packet drops and thus degrades the overall throughput of the

network. HSTCP performs better than STCP when AODV

and DSR routing protocols are used because it varies the

increase/decrease parameters depending on packet drop rate.

TABLE I: THROUGHPUT (IN KBPS) USING DSDV

No. of

Hops, H
HSTCP STCP CUBIC CTCP

1 2995.20 2995.39 2994.32 2995.20

2 1508.34 1508.23 1508.69 1508.34

3 899.86 902.53 901.49 899.86

4 681.79 691.83 682.46 683.16

5 594.01 558.24 595.59 544.61

6 516.79 541.37 539.00 541.74

7 395.05 450.74 449.46 424.92

TABLE II: THROUGHPUT (IN KBPS) USING AODV

No. of

 Hops, H
HSTCP STCP CUBIC CTCP

1 2996.51 2996.51 2996.51 2996.51

2 1507.82 1507.82 1507.82 1507.82

3 898.50 912.42 904.04 903.92

4 612.29 603.51 616.63 612.99

5 539.44 512.88 540.04 528.53

6 478.06 447.65 487.99 486.23

7 398.80 391.00 382.66 417.07

TABLE III: THROUGHPUT (IN KBPS) USING DSR

No. of

Hops, H
HSTCP STCP CUBIC CTCP

1 2996.42 2996.42 2997.22 2996.42

2 1507.46 1508.44 1508.10 1507.46

3 817.21 824.51 862.09 817.21

4 603.66 570.67 616.62 587.38

5 432.86 401.08 458.55 416.92

6 377.98 344.28 413.15 374.08

7 377.10 339.59 379.55 361.48

When DSR routing protocol is used, CUBIC TCP gives the

best performance. With DSDV, the performance of CUBIC is

similar to that of STCP. DSDV and DSR have low control

overhead as compared to AODV. Since AODV has the

highest amount of control overhead, more packets are

dropped due to collision and hence CUBIC increases cwnd

slowly rather than aggressively. Thus CUBIC achieves least

throughput with AODV routing protocol.

When AODV routing protocol is used, CTCP gives the

best performance because of its delay-based component. This

delay-based component reduces the sending rate to avoid

packet drops caused due to increased control overhead in

AODV. HSTCP, STCP and CUBIC do not reduce the

sending rate till a packet drop occurs and thus increasing

cwnd aggressively, results in more packet drops and

degradation in throughput.

B. Mobile Topologies

TABLE IV: THROUGHPUT (IN KBPS) USING DSDV

TCP

Variant

Expected

Throughput

Actual

Throughput

Percentage

Achieved

HSTCP 1385.606 872.5324 62.97

STCP 1387.243 799.5872 57.63

CUBIC 1390.356 645.1164 46.40

CTCP 1382.826 884.4412 63.95

TABLE V: THROUGHPUT (IN KBPS) USING AODV

TCP

Variant

Expected

Throughput

Actual

Throughput

Percentage

Achieved

HSTCP 1365.179 1137.103 83.29

STCP 1359.197 1145.236 84.25

CUBIC 1367.008 1170.215 85.60

CTCP 1366.152 1149.400 84.13

TABLE VI: THROUGHPUT (IN KBPS) USING DSR

TCP

Variant

Expected

Throughput

Actual

Throughput

Percentage

Achieved

HSTCP 1326.714 1310.200 98.75

STCP 1314.514 1308.454 99.53

CUBIC 1342.538 1272.218 94.76

CTCP 1321.394 1315.010 99.51

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

805

 𝑡i 𝑇𝑖
∞
𝑖 = 1

 𝑡𝑖
∞
𝑖 = 1

Table IV to VI show the expected throughput, actual

throughput (in Kbps) obtained and the percentage of

expected throughput achieved for each high-speed TCP

variant with DSDV, AODV and DSR respectively.

We observe that the actual throughput obtained for

high-speed TCP variants with DSR is almost similar to

expected throughput. Actual throughput obtained with

AODV is lower than DSR but higher than DSDV. The basic

reason why DSDV results in least throughput is explained as

follows:

Mobility causes frequent route failures. Table driven

routing protocols like DSDV do not send the data packets till

the routing table is updated with new routes. This introduces

large delays and thus degrades the overall throughput of the

network. Demand driven routing protocols like AODV and

DSR do not maintain a routing table and hence, in case of

frequent route failures, do not induce large delays. Thus the

performance of high-speed TCP variants degrades with

DSDV.

CTCP performs better than other variants when DSDV is

used. This is because CTCP has a delay-based component

that avoids packet drops and consequently increases the

throughput. The performance of all high-speed TCP variants

is almost similar when AODV and DSR are used. CUBIC and

STCP give slightly better performance with AODV and DSR

respectively.

VI. CONCLUSIONS AND FUTURE WORK

Through simulations we have studied the behavior of

high-speed TCP variants in multi-hop wireless networks by

varying the routing protocols such as Destination Sequenced

Distance Vector (DSDV), Ad hoc On demand Distance

Vector (AODV) and Dynamic Source Routing (DSR) routing

protocols. We have evaluated the performance of high-speed

TCP variants in terms of throughput for static as well as

mobile topologies. It is observed that the performance of TCP

largely depends on routing protocols.

Each routing protocol varies in the way it reacts to link

failures. Routing protocols also differ in the way they form

the routes. More routing overhead reduces the overall

throughput of the network. More number of collisions due to

increased routing overload makes the situation worse for

TCP performance.

In this study we have not considered the effects of

non-congestion losses on the performance of high-speed TCP

variants. Also the performance of high-speed TCP variants is

not studied with respect to parameters such as Convergence

speed, RTT fairness and TCP fairness. In future, we intend to

study the performance of high-speed TCP variants with

above mentioned parameters and also the effects of

non-congestion losses on the performance of TCP.

REFERENCES

[1] I. F. Akylidiz, X. Wang, and W. Wang, “Wireless mesh networks: a
survey,” Computer Networks, Elsevier, pp. 445-487, January 2005.

[2] T. Kelly, “Scalable TCP: Improving Performance in High Speed Wide

Area Networks,” ACM SIGCOMM Computer Communication Review,
vol. 33, pp. 83-91, 2003.

[3] V. Jacobson, “Congestion avoidance and control,” Proceedings of

SIGCOMM ’88, ACM, Stanford, CA, Aug. 1988.

Mohit P. Tahiliani completed his B.E and M.Tech in

Computer Science and Engineering from
Visvesvaraya Technological University, Belgaum,

India in the year 2007 and 2009 respectively.

Currently he is pursuing Ph.D at National Institute of
Technology Karnataka, Surathkal, India. His areas of

interest include: Congestion control algorithms,

Active Queue Management (AQM) mechanisms and Routing protocols for
Multi-hop wireless networks. He is a Student Member of IEEE and has

served as Reviewer for ADCONS 2011, ITCS 2012 and Student Research

Symposium Chair for ADCONS 2011. He has also delivered several Talks
in National / International Conferences and Workshops.

K. C. Shet completed his B.E, M.Sc. Engg and Ph.D in
Electronics and Communication from Mysore

University, Sambalpur University and IIT Bombay,

India in the year 1972, 1979 and 1989 respectively.
Currently he is working as a Professor in Department of

Computer Science and Engineering at National

Institute of Technology Karnataka, Surathkal, India.
His areas of interest include Software testing, Wireless networks, Securing

web services and Anti spam solutions. He has published several papers in

International Journals and Conferences and has also served as Reviewer,
Keynote Speaker and Chair for several reputed conferences.

T. G. Basavaraju completed his B.E, M.E and Ph.D in

Computer Science and Engineering from UBDT

Davangere, UVCE, Bangalore and Jadavpur University,
Kolkata respectively. Currently he is working as

Professor and Head in Department of Computer Science

and Engineering at SKSJ Technological Institute,
Bangalore, India. His areas of interest include Ad hoc

and Sensor Networks, Mesh Networks and Network Management. He has

authored several textbooks on Computer Networks and has also published
several papers in International Journals and Conferences. He has also served

as Reviewer, Keynote Speaker and Chair for several reputed conferences.

International Journal of Computer Theory and Engineering, Vol. 5, No. 5, October 2013

806

[4] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,

and SACK TCP,” ACM Computer Communication Review, vol. 26, no.

3, pp. 5-21, 1996.

[5] S. Floyd and T. Henderson, “The newreno modification to TCP’s fast

recovery algorithm,” Request for Comments 2582, Experimental, April

1999.

[6] L. Brakmo and L. Peterson, “TCP Vegas: end-to-end congestion

avoidance on a global internet,” IEEE Journal on Selected Areas in

Communication, vol. 13, pp. 1465-1480, Oct. 1995.

[7] K. T. J. Song, Q. Zhang, and M. Sridharan, “A compound TCP

approach for high-speed and long distance networks,” in Proceedings

of PFLDNet, 2006.

[8] S. Floyd, “Highspeed TCP for Large Congestion Windows,” Request

for Comments 3649, Experimental, 2003.

[9] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control

for fast long-distance networks,” in Proceedings of IEEE INFOCOM,

Hong Kong, 2004.

[10] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP

variant,” Proceedings of the third PFLDNet Workshop, France, 2005.

[11] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation,

architecture, algorithms, performance,” in Proceedings of IEEE

INFOCOM, Hong Kong, 2004.

[12] TCP Evolution and Comparison, Which TCP will Scale to Meet the

Demands of Today’s Internet? Whitepaper, FastSoft, Pasadena, 2008.

[13] G. Holland and N. Vaidya, “Analysis of TCP Performance over Mobile

Ad Hoc Networks,” ACM/IEEE MOBICOM ’99, Seattle, Washington,

Aug. 1999.

[14] E. D. Souza and D. Agarwal, “A HighSpeed TCP Study:

Characteristics and Deployment Issues,” LBNL Technical Report,

Berkeley, 2003.

[15] M. Gerla, K. Tang, and R. Bagrodia, “TCP Performance in Wireless

Multi-hop Networks,” in Proceedings of IEEE WMCSA ’99, New

Orleans, LA, Feb. 1999.

[16] J. Broch, D. A. Maltz, D. B. Johnson, Y. Hu and J. Jetcheva, “A

Performance comparison of multi-hop wireless ad hoc network routing

protocols,” in Proc. ACM/IEEE Int. Conf. on Mobile Computing and

Networking, pp. 85-97, October 1998.

[17] K. Fall and K. Vardhan, “The ns Manual,” The VINT Project, January

2009.

