
  

 

Abstract—Quantitative characterization of randomly roving 

agents in wireless sensor networks (WSN) is studied. Below the 

formula simplifications, regarding the known results and 

publications. It is shown that the basic agent model is 

probabilistically equivalent to a similar simpler model and then 

a formula for frequencies is achieved in terms of Stirling 

numbers of the second kind. Stirling numbers are well studied 

and different estimates are known for them letting to justify the 

roving agents quantitative characteristics. 

 
Index Terms—Intrusion detection system, wireless sensor 

network, roving agents.  

 

I. INTRODUCTION 

This work, inspired by [1], [2], [3] considers roving agents’ 

numerical characterization in ad-hoc pervasive and 

trustworthy networks. Agents are autonomous, moving, and 

intelligent software structures capable to play a sensitive role 

in advanced monitoring, computation and protection systems. 

Intrusion detection systems (IDS) based on roving agents [2] 

are addressed particularly. They appear as complementary 

mean to the ordinary cryptographic protection tools of 

computers and networks. Such IDS use software agent based 

monitoring and data collection, watching the inside processes 

of a computer, registering LOG files of application software 

systems, sniffing and recording communication protocols. 

Watching the whole network behavior they are better suited to 

warn approaching attacks and malfunctioning. Data mining 

agents (DMA) and Data fusion agents (DFA) are examples of 

information integration tools in networks [3]. In large 

networks, moreover when its structure is not predefined such 

as wireless sensor networks [1] it is natural to consider 

independent, randomly roving agents, requiring that they are 

able to collect enough information in total, mining the 

necessary knowledge about the intrusion. This framework is 

studied in [3], which prove formulas for the number of DMA 

sufficient to monitor the given size areas of networks. The 

formula received is complex and impractical because of their 

use of nested sums by different parameters. By the same 

reason [3] considers software simulations to understand the 

typical number of agents required for monitoring a given size 

networks. Our work tends to prove simple estimates for the 

same numerical characteristics of WSN analytically. 

 

II. ROVING AGENTS MODEL 

DMA roams around randomly in a network and acquires 

environmental information. It is lightweight using simplest 
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mining algorithms. DFA is for integration of DMA set actions. 

DFA may act as an intrusion detection tool and then its power 

depends on information collected by DMA in network. 

Let we are given a network N  of  n  nodes nvvv ,...,, 21 . 

Some fixed amount of information i  is allocated at node iv . 

There are k  DMA kaaa ,...,, 21 . Each agent visits exactly m  

different nodes and obtains the unique information content in 

each such node. DMA pass all collected information to DFA. 

Denote by ),,( tmnPk
 the probability that DFA contains 

exactly t  information blocks of network nodes when k  

agents randomly visit m  of n  nodes each. The formula for 

),,( tmnPk
 proven in [3] looks as: 
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Formulas for smaller k  given in [3] look similar to (1). Of 

course these formulas are unobservable and simplifications or 

approximations are of interest. By this same reason [3] proves 

formulas, considering computer simulation, to understand the 

typical numbers of agents necessary to retrieve the required 

information in network. Modification of “exactly m ” 

condition in agent distribution scheme is also important and 

will be considered.  

 

Fig. 1. Agent sets distribution in terms of trials and node sets. Left column 

contains outcomes of k by m trials (each iT  is an ordered collection of k 

m-subsets). Right column contains all the subsets of node set N. 
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III. COVERAGE CHARACTERIZATION OF ROVING AGENTS 

Let we are given a set of nodes 



N {v1,...,vn}  and 

kSS ,...,1
 are k  arbitrary subsets of N , each of size m .  

iS corresponds to the set of nodes visited by agent  i . We 

consider a probability distribution scheme over N , and 

suppose that m-subsets iS  are equiprobable and independent 

in this scheme. Having in total 
m

nC  m-subsets the probability 

of one of them is equal to 
m

nC/1 . We are interested in 

knowing the probabilistic characteristics of the union 


k

i iS
1

and its size 
k

i iSt
1

 . In particular, what is the 

probability that union of those subsets contains exactly 

t elements? 


















tStmnp
k

i

ik 
1

Pr),,(                  (2) 

To a collection of subsets 
kSS ,...,1

 of N  nodes 

corresponds a matrix }{ ij

kxn aA   where 



 


otherwise   0

 if   1 ij
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Sv
a                           (3) 

From the fact that each iS  contains exactly m  elements 

follows that each row of matrix A contains exactly m  1 s and 

mn  0 s. If tS
k

i

i 



1

 then there are t  columns of A  which 

contain at least one 1 and tn   columns which do not contain 

1. The number of nk   matrixes with m  ones on each row 

and with exactly tn  columns with no 1 is ),,( tmkQC t

n   

where ),,( tmkQ is the number of tk  matrixes with m  ones 

on each row and at least one 1 on each column. 

Alternatively, consider the following schematic 

presentation of roving agents’ distribution. Left column 

vertices in the scheme presented in Fig. 1 contain all the 

arrangements ,..., 21 TT  of k  agents (ordered collections of 

k  m-node-subsets). From combinatorial perspective agents 

and nodes are distinguishable but m-node subsets are 

considered as usual sets - different elements and no ordering. 

Total number of such arrangements is equal to  km

nC . Part of 

these arrangements covers exactly t  nodes and let that 

vertexes corresponding to this arrangements 

are pTTT ,...,, 21 . In this notation p  is the unknown number 

that we want to compute. Right side column vertices 

correspond to all subsets of node set N  and part of these sets 

are of size t . In principle, node subset sizes may vary from 0  

to n  but in our experiment it may take values from m  to 

),min( nkm . 

We draw an edge between an arrangement (left column) 

and a node subset (right column) if node subset is covered by 

that arrangement. Each arrangement is incident to exactly one 

edge (and subset). Each t -subset appears in different 

arrangements and this number is common for all t -subsets 

and is given by ),,( tmkQ . 

),,( tmkQ can be calculated by inclusion-exclusion 

principle. We use the matrix model for calculating ),,( tmkQ . 

First, over a tk  matrix we take the whole set of 

unconstrained arrangements i.e. all matrices with m  1s on 

rows, then we remove from this all the arrangements where at 

least one column is initially filled with 0 (such matrices do not 

obey to conditions we require), then add arrangements with at 

least 2 empty columns, etc. The formula representation of 

related quantities is: 
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We have proven 

 

Theorem 1.  
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First of all here we receive a real simplification of (1). The 

formula received is still complex, but it might be 

approximated and the applied Markov inequality may give 

asymptotic estimates of t -subset probabilities [4]. 

Another important characteristic, the mean value of subset 

size t , might be computed as: 
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Fig. 2. Agents distribution on WSN node sets. Left column contains 

outcomes of m trials (each iS  is an ordered collection of m nodes), right 

column contains triples, node and two different agents 
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IV. ON NODE REPETITION LIMITATIONS IN AN ROVING 

AGENT SCHEME 

Let us consider the scene of random distribution of m  

agents over the n  WSN nodes (here we do not consider k  

agents but m  agents, and each individual agent visits exactly 

one node). Agents are dropped over the node set one by one, 

independently, and with equal probabilities for nodes. 

Allocating all m  agents we receive a collection of nodes 

visited by agents, probably with multiple agents that visited 

the same node. 

The total number of different allocations is mn . Among 

them are 1 node allocations (all the agents visit the same 

node), their number is n , 2 node allocations, they are 

)22(2 m

nC and so on. The largest are m  node allocations 

( m -sets), when agents are distributed in all different nodes, 

the number of such allocations )1)...(1(  mnnn . We are 

interested in the frequencies of allocation sizes when at least 2 

agents are allocated at the same node (sizes from 1 to 1m ), 

or complementary, the share of allocations with all different 

nodes. 

One of the classical approaches of determining typical 

cases in distributions is when Markov or Chebyshev 

inequality is applied. In this way we consider a scheme 

presented in Fig. 2 similar to one presented in Fig. 1 to 

compute the mean value of the number of allocated nodes in 

random distribution of m  agents (of memory 1) over n  

WSN nodes. 

Thus, the number of right side vertices in the scheme, 

where each vertex is a triple; a node and a pair of agents, is 
2

mnC . Edges are connecting an allocation (from left column) 

to a node with a given pair of agents that visited that node 

(right column). We compute the average number of edges 

)( ,mnM   incident to each allocation as 

 

Fig. 3. Allocations by  mknU ,, and mknU ,,  
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Applying Markov inequality  )(}Pr{ ., mnmn M  

and taking 1 , we get an upper bound nCm

2  for the 

probability of agents repeating on the nodes . If 

02 nCm with mn, , then we receive that almost all 

allocations consist of all different agents at nodes. 

 

V. COMPARISON OF AGENT ALLOCATION SCHEMES 

In this point we will define and consider two basic 

probability distributions tightly related to each other. 

1) First distribution  mknU ,,  is composed of k  

independent consecutive allocations of m-node subsets 

over the WSN area of n nodes. km

nC )( Outcomes of trials 

are ordered collections of m-subsets of WSN nodes. 

These collections may cover all node subsets of sizes 

from m  to ),min( nkm . 

2) Second distribution scheme mknU ,, , which we consider 

and compare with the basic distribution  mknU ,,  

considered above, consists of k  consecutive and 

independent stages; each stage allocates m elements 

consecutively and independently over the WSN area of n 

nodes. Outcomes of these trials are all kmn ordered 

collections of nodes. These collections may cover all 

node subsets of sizes from 1 to ),min( nkm . 

In one individual stage of mknU ,,  we have !m  orderings 

of a single allocation of m-subset of one step of  mknU ,, . This 

is to be taken into account comparing the schemes  mknU ,, and 

mknU ,, . This difference can also be seen comparing the one 

stage outcomes of  mknU ,, and mknU ,, . Represent
m

nC  of 

model  mknU ,,  as 

!
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Numerator of the last ratio is the counterpart of mn  of 

 mknU ,,  model, and !m  is the coefficient we mentioned 

about. Comparing  mknU ,, and mknU ,, , first we note that 

outcomes of  mknU ,,  are part of outcomes of mknU ,,  and 

hence they may have higher probabilities. Consider the 

probability jp  of an event, that in stage j  of mknU ,, , all the 

allocated m  elements are different. Then kpppP  ...21  

is the probability that in all k stages allocated m  elements are 

different. In different stages allocations of course may 

intersect. Outcomes of  mknU ,,  multiplied with this 

probabilities are equal to probabilities of mknU ,, , part B of 

intersection of outcomes in Fig. 3. jp was estimated in 

previous point as a value tending to 1 asymptotically. We may 

extend this proposition to the entire value P . Formally we 

use the property that probability of union of events is less or 

equal the sum of event probabilities: 
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          (9) 

Then 02 nkCm  with kmn ,,  is a sufficient 

condition (upper estimate) for repetition probability to tend to 

zero. The sufficient condition 02 nkm  for allocation of 

all m  agents in all k  consecutive stages to different nodes is 

naturally acceptable in WSN which have a very large nodes 

set as a rule. The final picture is 

1) Part B allocations (Fig. 3) appear in mknU ,,  with 

probability P  tending to 1. 
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2) Relative probability distribution among the elements of B 

is identical in both models  mknU ,,  and mknU ,,  

3) Event probability in model  mknU ,,  is not less than in 

mknU ,,  multiplied by P . 

4) Probabilities of t-subset allocations under the model 

mknU ,,  have formulas similar to the ones for model 

 mknU ,,  considered above. 

If  tmkR ,,  denotes the number of t-node allocations in 

model mknU ,,  then the formal representation of  tmkR ,,  is 

similar to the formula for  tmkQ ,, . Considered above can 

be achieved by the same inclusion exclusion method: 
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On this basis we formulate. 

 

Theorem 2. If 02 nkCm with kmn ,, , then t -node 

allocation probabilities in models }{,, mknU  and mknU ,,  have 

the following relation 
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Finally, we note that  tmkR ,,  has equivalent presentation 

in terms of Stirling numbers of the second kind ([5]) 
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Here we used the fact that allocation of k  consecutive and 

independent stages of m  elements over the WSN area of n  

nodes is equivalent to allocation of km  elements over that 

area. Note that the difference between the formulas for 

 tmkQ ,,  and  tmkR ,,  is the summation limits. In case of 

 tmkR ,,  formally we may add the zero term for ti  , and 

then we receive 

  ),(!,, tmkSttmkR                    (12) 

 

which is the final postulation of this paper. 

 

VI. CONCLUSION 

WSN and software agent systems are important application 

technique for many areas. Being hard algorithmically and 

complex in model level these systems require special 

economy regimes to work. Above we considered an intrusion 

detection system based on roving agents and achieved simple 

formulas that allow to understand the number of agents 

required for monitoring a given size network. One of the main 

formulas is given in terms of combinatorial Stirling numbers 

and known asymptotic estimates for them [5] allows to adopt 

the monitoring regime in an optimal way. 
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