



Abstract—In this paper, a proposal of a new extended binary

representation ('Millipede') is made for genetic algorithms

(GA). The GA representation may have an important effect on

its performance. This paper looks at how single-valued

encoding could be enhanced. Initial tests indicate this new

solution encoding can be effective. Tests were made using a

Genetic Algorithm (GA) package called GAGENES, written in

object-oriented C++.

Index Terms—Extended representation, solution encoding,

genetic algorithms.

I. INTRODUCTION

A new scheme is proposed in this paper to extend the

classic binary representation as used in the original Genetic

Algorithm (GA) by Holland [1]. The proposal involves

extending using what the author calls the 'Millipede' solution

encoding. The solution encoding being proposed in this

paper is that if a point in the search space can be made to

represent more than one point, it may be more efficient, much

like a millipede can walk more efficiently by reaching more

than a two-legged animal would.

Various other attempts at improving GA representation

have been proposed in the past, including gray coding [2],

adjusting population size on-the-fly[3], [4], the grouping

genetic algorithm encoding structure [5], and the

proportional GA. Banzhaf's GPM [6] looked at many

genotypes mapping into one phenotype. In this paper we look

at one genotype mapping into many phenotypes instead.

II. ENCODING SCHEME

The most straightforward encoding scheme typically used

in a GA is the single-valued one, ie. one gene per object

representation. As an example, chromosome 0110 would

represent a value in the search space, eg x=6. Now if we

could make every chromosome represent more than one

value (or object) in the search space, this would make the size

of the search space the GA has to search in smaller than with

the default representation. As a result the GA's power is

unimpaired and hypothetically might even increase.

While a Proportional GA (PGA) utilises individuals which

are strings over an n-ary alphabet, the proposed Millipede

GA utilises individuals which are bits just like the classical or

canonical GA (CGA). However the mapping from the search

space (genotype) onto the solution space (phenotype) is not

Manuscript received October 12, 2012; revised January 30, 2013.

Clyde Meli is with the CIS Department, University of Malta (e-mail:

clyde.meli@um.edu.mt).

one-to-one. It is instead, a one-to-many mapping defined as

phenotype solution value = f0(genotype), f1(genotype)

Thus every space in the phenotype will correspond to more

than one space in the genotype space.

In the most basic implementation of this concept, f may be

defined as follows: f0(x)=2x and f1(x)=2x+1. This is the

“two-legged” version, with two values. The corresponding

fitness function would evaluate both values (using the

traditional fitness function for a single value) and return the

better of the two values.

Another implementation with three values could be as

follows, on similar lines.

phenotype solution value = f0(genotype), f1(genotype),

f2(genotype)

In this case f may be defined as follows: f0(x)=3x,

f1(x)=3x+1, and f2(x)=3x+2

Generalising to n-values:

phenotype solution value = f0(genotype), f1(genotype),

f2(genotype),.., fn-1(genotype)

In this case f may be defined as follows: f0(x)=nx,

f1(x)=nx+1,... and fn-1(x)=nx+n-1

Once the GA finds the better solution from the population,

one would have to evaluate the n-values to find the correct

x-value from the n values represented.

III. SCHEMATA

In the CGA, a population of p individuals of length m

processes at least 2m and at most p.2m schemata [7]. In the

n-value generalised Millipede GA, every individual

represents n classic individuals, thus an equivalent

population would process at least 2m and at most (np).2m

schemata.

IV. TEST RUNS

GAGENES, a C++ GA implementation by the author, was

run on an AMD Phenom(TM) II X6 processor computer

running Windows 7 and Gentoo Linux in a VM.

The GAGENES program was used to solve the X4

problem which is the function single value minimisation

problem [8] as well as the toy problem, maximize x2. Both

cases involved a single integer parameter.

f(x) = x4-12x3+15x2+56x–60

The following process was performed. The Mersenne

Twister PRNG [9] was used during the initialisation phase

and afterwards. For every problem, the GA was run ten times,

for a maximum of 500 generations. The runs were done once

with the standard encoding, once with x2 extended encoding,

Millipede, an Extended Representation for Genetic

Algorithms

Clyde Meli

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

695DOI: 10.7763/IJCTE.2013.V5.777

once with x4 extended encoding and once with x16 extended

encoding. Population size was 100, crossover probability was

1.0 and the mutation probability was set to 0.2.

The tests were run once under Windows 7. All tests were

run on an AMD Phenom(TM) II X6 processor computer

running Windows 7.

The following diagrams illustrate the result of running the

test runs.

V. RESULTS OF GA TESTING

Fig. 1 and Fig. 2 show the standard GA (CGA) compared

with the x2 extended encoding, plotting runs against best

fitness value in Fig. 1 and best average fitness in Fig. 2

respectively, solving X4. The extended version is slightly

better than the CGA, especially when it comes to fitness

averages. Fig. 3 and Fig. 4 show the same problem (X4) but

comparing CGA with x16 against best fitness and best

average fitness in Fig. 3 and Fig. 4 respectively. x16 is much

better than CGA, it has much higher fitness values. Fig. 5 and

Fig. 6 show the X2 problem (x2) again against best fitness

and best average fitness respectively, CGA compared to x2

encoding. x2 has better fitness values in all but one run, and

the average fitness diagram shows the same story. Fig. 7 and

Fig. 8 show the same problem comparing CGA to x16 again

against best fitness value and best average fitness

respectively. In all runs x16 shows much higher fitness

values, and much higher average fitness values.

Fig. 1. X4-CGA vs EXT by 2.

Fig. 2. X4-CGA vs EXT by 2 averages.

Fig. 3. X4-CGA vs EXT by 16.

Fig. 4. X4-CGA vs EXT by 16 averages.

Fig. 5. XSQUARED-CGA vs EXT by 2.

Fig. 6. XSQUARED-CGA vs EXT by 2 averages.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

696

Fig. 7. XSQUARED-CGA vs EXT by 16

Fig. 8. XSQUARED-CGA vs EXT by 16 averages.

VI. CONCLUSION

The Millipede solution encoding appears to have promise.

It is clearly dependent on the problem, thus for some

problems it will be much more beneficial to use it than for

some others.

One might worry that it would slow down the GA,

however this has not been observed so far in these tests. It

will probably depend upon the fitness function. If this is

computationally complex, then calling it many times may

slow down the GA.

There are further extensions to the encoding scheme as

proposed in this paper which should be experimented with in

future research. One could represent other numbers in a

sequence, for instance.

REFERENCES

[1] J. H. Holland, “Adaptation in natural and artificial systems: an

introductory analysis with applications to biology,” Control and

Artificial Intelligence (Complex Adaptive Systems S.), The MIT Press,

1975.

[2] D. E. Goldberg, “Genetic algorithms in search,” Optimization and

Machine Learning, Addison-Wesley, 1989.

[3] A. E. Eiben, E. Marchiori, and V. A. Valkó, “Evolutionary algorithms

with on-the-fly population size adjustment,” Parallel Problem Solving

from Nature PPSN VIII, LNCS 3242, Springer, 2004, pp. 41-50.

[4] F. G. Lobo, I. Centro, and M. Ecológica, Revisiting Evolutionary

Algorithms with On-the-Fly Population Size Adjustment.

[5] E. Falkenauer, “A new representation and operators for genetic

algorithms applied to grouping problems,” Evol. Comput, vol. 2, pp.

123-144, June 1994.

[6] W. Banzhaf, Y. Davidor, H.–.Schwefel, and R. M. (eds),

Genotype-Phenotype-Mapping and Neutral Variation - A case study in

Genetic Programming, 1994.

[7] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution

Programs, Springer-Verlag, 1999.

[8] A. Dolan. GA playground - java genetic algorithms toolkit. [Online].

Available: http://www.aridolan.com/ga/gaa/gaa.html#SingleVarMin

[Accessed: Sep. 25 2012].

[9] M. Matsumoto and T. Nishimura, “Mersenne twister: A

623-dimensionally equidistributed uniform pseudorandom number

generator,” ACM Trans. on Modeling and Computer Simulation, vol. 8,

1998, pp. 3-30.

Clyde Meli was born in Sliema, Malta and has an

M.Phil degree in computing from the University of

Malta in Malta obtained in 1992 and is currently

finalising his Ph.D. degree at the same university.

He has worked full-time for the University of Malta in

Malta since graduating from his first B.Sc. degree in

computing & mathematics at the same university in

1993. He has also worked part-time for REMPEC

(UN) and is currently also working for the University's Gozo branch giving

lectures in the neighbouring island of Gozo. Dr. Meli is a member of IEEE

and ACM, and is currently on the IT Services Liason Committee at the same

university. He was on the WICT (Workshop in ICT Malta) 2010 board. The

author is interested in research in genetic algorithms, genetic programming

and computer security including spam detection, the latter being the subject

of his Ph.D.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

697

