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Abstract—In this paper, a proposal of a new extended binary 

representation ('Millipede') is made for genetic algorithms 

(GA). The GA representation may have an important effect on 

its performance. This paper looks at how single-valued 

encoding could be enhanced. Initial tests indicate this new 

solution encoding can be effective. Tests were made using a 

Genetic Algorithm (GA) package called GAGENES, written in 

object-oriented C++. 

 
Index Terms—Extended representation, solution encoding, 

genetic algorithms.  

 

I. INTRODUCTION 

A new scheme is proposed in this paper to extend the 

classic binary representation as used in the original Genetic 

Algorithm (GA) by Holland [1]. The proposal involves 

extending using what the author calls the 'Millipede' solution 

encoding. The solution encoding being proposed in this 

paper is that if a point in the search space can be made to 

represent more than one point, it may be more efficient, much 

like a millipede can walk more efficiently by reaching more 

than a two-legged animal would.  

Various other attempts at improving GA representation 

have been proposed in the past, including gray coding [2], 

adjusting population size on-the-fly[3], [4], the grouping 

genetic algorithm encoding structure [5], and the 

proportional GA. Banzhaf's GPM [6] looked at many 

genotypes mapping into one phenotype. In this paper we look 

at one genotype mapping into many phenotypes instead. 

 

II. ENCODING SCHEME 

The most straightforward encoding scheme typically used 

in a GA is the single-valued one, ie. one gene per object 

representation. As an example, chromosome 0110 would 

represent a value in the search space, eg x=6. Now if we 

could make every chromosome represent more than one 

value (or object) in the search space, this would make the size 

of the search space the GA has to search in smaller than with 

the default representation. As a result the GA's power is 

unimpaired and hypothetically might even increase. 

While a Proportional GA (PGA) utilises individuals which 

are strings over an n-ary alphabet, the proposed Millipede 

GA utilises individuals which are bits just like the classical or 

canonical GA (CGA). However the mapping from the search 

space (genotype) onto the solution space (phenotype) is not 
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one-to-one. It is instead, a one-to-many mapping defined as 

phenotype solution value = f0(genotype), f1(genotype) 

Thus every space in the phenotype will correspond to more 

than one space in the genotype space. 

In the most basic implementation of this concept, f may be 

defined as follows: f0(x)=2x and f1(x)=2x+1. This is the 

“two-legged” version, with two values. The corresponding 

fitness function would evaluate both values (using the 

traditional fitness function for a single value) and return the 

better of the two values. 

Another implementation with three values could be as 

follows, on similar lines. 

phenotype solution value = f0(genotype), f1(genotype), 

f2(genotype) 

In this case f may be defined as follows: f0(x)=3x, 

f1(x)=3x+1, and  f2(x)=3x+2 

Generalising to n-values: 

phenotype solution value = f0(genotype), f1(genotype), 

f2(genotype),.., fn-1(genotype) 

In this case f may be defined as follows: f0(x)=nx, 

f1(x)=nx+1,... and  fn-1(x)=nx+n-1 

Once the GA finds the better solution from the population, 

one would have to evaluate the n-values to find the correct 

x-value from the n values represented. 

 

III. SCHEMATA 

In the CGA, a population of p individuals of length m 

processes at least 2m and at most p.2m schemata [7]. In the 

n-value generalised Millipede GA, every individual 

represents n classic individuals, thus an equivalent 

population would process at least 2m and at most (np).2m 

schemata. 

 

IV. TEST RUNS 

GAGENES, a C++ GA implementation by the author, was 

run on an AMD Phenom(TM) II X6 processor computer 

running Windows 7 and Gentoo Linux in a VM.  

The GAGENES program was used to solve the X4 

problem which is the function single value minimisation 

problem [8] as well as the toy problem, maximize x2. Both 

cases involved a single integer parameter. 

f(x) = x4-12x3+15x2+56x–60 

The following process was performed. The Mersenne 

Twister PRNG [9] was used during the initialisation phase 

and afterwards. For every problem, the GA was run ten times, 

for a maximum of 500 generations. The runs were done once 

with the standard encoding, once with x2 extended encoding, 
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once with x4 extended encoding and once with x16 extended 

encoding. Population size was 100, crossover probability was 

1.0 and the mutation probability was set to 0.2.  

The tests were run once under Windows 7. All tests were 

run on an AMD Phenom(TM) II X6 processor computer 

running Windows 7.  

The following diagrams illustrate the result of running the 

test runs. 

 

V. RESULTS OF GA TESTING 

Fig. 1 and Fig. 2 show the standard GA (CGA) compared 

with the x2 extended encoding, plotting runs against best 

fitness value in Fig. 1 and best average fitness in Fig. 2 

respectively, solving X4. The extended version is slightly 

better than the CGA, especially when it comes to fitness 

averages. Fig. 3 and Fig. 4 show the same problem (X4) but 

comparing CGA with x16 against best fitness and best 

average fitness in Fig. 3 and Fig. 4 respectively. x16 is much 

better than CGA, it has much higher fitness values. Fig. 5 and 

Fig. 6 show the X2 problem (x2) again against best fitness 

and best average fitness respectively, CGA compared to x2 

encoding. x2 has better fitness values in all but one run, and 

the average fitness diagram shows the same story. Fig. 7 and 

Fig. 8 show the same problem comparing CGA to x16 again 

against best fitness value and best average fitness 

respectively. In all runs x16 shows much higher fitness 

values, and much higher average fitness values. 
 

 

Fig. 1. X4-CGA vs EXT by 2. 

 

Fig. 2. X4-CGA vs EXT by 2 averages.  

 

Fig. 3. X4-CGA vs EXT by 16. 

 

Fig. 4. X4-CGA vs EXT by 16 averages. 

 

Fig. 5. XSQUARED-CGA vs EXT by 2. 

 

Fig. 6. XSQUARED-CGA vs EXT by 2 averages. 
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Fig. 7. XSQUARED-CGA vs EXT by 16 

 

Fig. 8. XSQUARED-CGA vs EXT by 16 averages. 

 

VI. CONCLUSION 

The Millipede solution encoding appears to have promise. 

It is clearly dependent on the problem, thus for some 

problems it will be much more beneficial to use it than for 

some others.  

One might worry that it would slow down the GA, 

however this has not been observed so far in these tests. It 

will probably depend upon the fitness function. If this is 

computationally complex, then calling it many times may 

slow down the GA. 

There are further extensions to the encoding scheme as 

proposed in this paper which should be experimented with in 

future research. One could represent other numbers in a 

sequence, for instance. 
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