

Abstract—The objective of this work is to reduce energy

consumption of source programs written in C. The underlying

technique employs code transformation which focuses on

cohesion. Four classes of transformations will be considered:

function, loop optimization, control structure, and operator.

Code transformation is evaluated by effectiveness, efficiency,

space complexity, number of instructions executed, number of

pages, size of memory page allocated, and energy consumption.

The results suggest that different cohesion level will affect the

energy consumption. Moreover, different types of source code

yield different energy consumptions based on cohesion

measures.

Index Terms—Cohesion, energy consumption, code

transformation.

I. INTRODUCTION

Global warming is the biggest and most serious problem

faced by us in this century. Climate change is happening and

its effects are real. If we do not attempt to stop global

warming, it will be too late to save our planet.

One of the culprits that attributes to the above problem is

energy consumed by the use of computerization. The

underlying technology rests heavily on hardware and

software. The proliferation of software development has

opened the horizon of computer programs to assist a user in

various forms of communications such as chat, e-mail,

WWW, and the Internet, etc. However, these programs still

exhibit high power consumption owing to a number of short

falls, ranging from poor program design, inefficient

algorithms, to bad code. One research area to solve the above

problems focuses on source code transformation. The

inherent difficulty lies in code comprehension and

complexity which render the transformation process hard to

reduce energy consumption and maintenance.

The objective of this research aims to reduce energy

consumption of computer programs. Our approach exploits

program related issues such as memory optimization,

instruction scheduling and execution, and code

rearrangement, etc. We envision that the impacts of source

code transformations [1] on software and energy

consumption [2] will be a worthwhile undertaking.

The primary principle of our approach to source code

transformation deals with design. Cohesion is a measure of

how various program components, namely, input/output,

variables and their related structure, are strongly-related and

Manuscript received November 27, 2012; revised January 28, 2013.

The authors are with the Department of Mathematics and Computer

Science, Faculty of Science, Chulalongkorn University, Bangkok 10330

Thailand (e-mail: kuad43@gmail.com, peraphon.s@chula.ac.th).

focused on the various responsibilities of a program module.

The higher the cohesion level, the tighter the components are

knitted. In a highly-cohesive system, code readability and the

likelihood of reuse is increased, while complexity is kept

manageable. Such advantages benefit easy maintenance,

code reuse, and most important of all, less energy

consumption by the program. When source code is

transformed by resorting to higher cohesion, complexity,

number of instructions executed, number of pages allocated,

and size of memory pages allocated are lower. In this work,

we employ SimpleScalar Simulator and Wattch Simulator to

measure program energy consumption.

The rest of the paper is organized as follows. Section II

briefly describes what cohesion is. Section III elucidates on

Power Simulator tools. The proposed method is described in

Section IV and the experimental results are in Section V.

Section VI concludes the paper with some final thoughts.

II. COHESION

Cohesion [3] is a measure of how strongly-related is the

functionality expressed by the source code of a software

module. Methods of measuring cohesion vary from

qualitative measures classifying the source text being

analyzed to quantitative measures which examine textual

characteristics of the source code to arrive at a numerical

cohesion score. Cohesion is an ordinal type of measurement

and is usually expressed as "high cohesion" or "low

cohesion." Modules with high cohesion tend to be preferable

because high cohesion is associated with several desirable

traits of software including robustness, reliability, reusability,

and understandability whereas low cohesion is associated

with undesirable traits such as being difficult to maintain,

difficult to test, difficult to reuse, and even difficult to

understand.

High cohesion [4], [5] emphasizes on how a single module

is responsible to the underlying functionality. As applied to C

code, if a module that serves the given function tends to be

similar in many aspects, the function is said to have high

cohesion. In a highly cohesive programming system, high

cohesion also attributes to code readability and the likelihood

of reuse, while complexity is kept manageable. Nevertheless,

some disadvantages of low cohesion persist.

1) Increased difficulty in understanding the program

modules.

2) Increased difficulty in maintaining a system, because

logical changes in the domain affect multiple modules,

and because changes in one module require changes in

related modules.

3) Increased difficulty in reusing a module because most

Reducing Engergy Consumption in Programs Using

Cohesion Technique

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

621DOI: 10.7763/IJCTE.2013.V5.761

Nattachart Ia-Manee and Peraphon Sophatsathit

applications won’t need the random set of operations

provided by a module.

The design level cohesion measures [6]-[8], in order of the

worst to the best type, are as follows:

A. Coincidental Cohesion (Worst)

Two outputs of a module have neither dependence

relationship with each other, nor dependence on a common

input.

B. Conditional Cohesion

Two outputs are flag controlled dependent on a common

input.

C. Iterative Cohesion

Two outputs are loop controlled dependent on a common

input.

D. Communicational Cohesion

Two outputs are dependent on a common input. An input is

used to compute both outputs. But it is used as neither a

condition flag to select one of the two outputs nor a loop

invariant to compute both outputs.

E. Sequential Cohesion

One output is dependent on the other output.

F. Functional Cohesion

There is only one output in a module.

III. POWER SIMULATORS

We will explain the two major components of the

simulator, namely, SimpleScalar and Wattch below.

A. Simple Scalar

SimpleScalar [9], [10] is a virtual CPU evaluation tool in

cycle level on Linux based platform. 'Virtual' means it does

not evaluate the actual processor conducts, but emulates a

specific processor by C code. SimpleScalar compiles a given

piece of C code with emulated CPU and evaluates the

performance by analyzing program execute time. The tool set

includes a machine definition infrastructure that permits most

architectural details to be separated from simulator

implementations. All of the simulators distributed with the

current release of SimpleScalar can run programs from the

above instruction sets. Complex instruction set emulation can

be implemented with or without microcode, making the

SimpleScalar tools particularly useful for modeling CISC

instruction sets.

SimpleScalar is a cycle-accurate architectural level

processor simulator. It is distributed free-of-charge to

academic non-commercial users, with all source code,

making it possible to relatively easily extend the simulator.

Ever since SimpleScalar was released, it has become a

popular toolset as it included several simulators ranging from

a fast functional simulator to a detailed, dynamically

scheduled processor model that supported non-blocking

caches, speculative execution and state-of-the-art branch

prediction. SimpleScalar cannot simulate a whole system, i.e.,

it can only simulate applications, and does not produce power

consumption of the whole system as a result of the

simulation.

Some inclusion of SimpleScalar power analysis tools such

as simpower and wattch are furnished in the form of plugin

software. It models physical power comsumption using only

numerical expression to measure the gap between actual

power consumption and the calculated one. In this research,

we use SimpleScalar tool to generate object code.

B. Wattch

Wattch [11], [12] is a simulator that estimates processor

power consumption at the architectural level, developed at

Princeton University, and is one of the simulators that are

based on SimpleScalar. SimpleScalar is used as the cycle

level performance simulator that keeps track of which units

are accessed per cycle and records the total energy consumed

for an application. Wattch uses a modified version of

SimpleScalar’s sim-outorder, which is extended with an

additional number of pipeline stages so that it will be more in

line with current microprocessors. Sim-outorder of wattch

simulator reports detail on power usage in watts.

IV. RESEARCH METHODOLOGY

The proposed methodology employs code transformations

[13] to reduce the energy consumption at program level. The

original C source code is firstly compiled by gcc [14]. The

compiled code is then simulated using SimpleScalar and

wattch.

The next step applies code transformation to the same C

source code and, following the same previous steps, the

simulation results, energy, and power consumption are

collected. Finally, the processor energy and the system

energy are compared to identify the effectiveness of the

transformation under analysis. The flow of this code

transformation analysis is illustrated in Fig. 1

(a) (b)

Fig. 1. Analysis flow of original (a) and transformed code (b).

The simulation is performed using a desktop PC having the

following specifications: OS Ubuntu 10.4, CPU Intel Core 2

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

622

Duo Processor 2 GHz, 4 GB memory.

The transformation methods [15], [16] have been

partitioned in four classes, each focusing on a specific code

aspect:

1) Loop Transformation

2) Data Structure Transformation

3) Subroutine Transformation

4) Control Structure Transformation

A. Loop Transformation

This class includes transformations modifying either the

loop body or the control structure of the loop. The proposed

transformation produces positive effects in term of reduction

of the number of Instruction Cache (I-cache) and Data Cache

(D-cache) misses.

The basic idea is to reduce the size of the loop body in

order to decrease the number of the I-cache (Instruction

cache) misses. In particular, the transformed codes are

distributed in disjoint loops to enable the storing of a

complete loop in the cache, preventing to access the upper

memory levels.

Loop Transformation is effective with I-cache when a loop

body is larger than the cache or than a given number of cache

blocks and/or the cache is unified.

D-cache could probably occur when the original loop

presents expressions with non-interacting arrays so that

different arrays can be distributed on disjoined loop bodies.

B. Data Structure Transformation

This type of transformation either modifies the data

structure included in the source code or introduces new data

structure or modifies the access mode and the access paths.

This transformation aims to maximize the use of register to

reduce memory and cache accesses.

Array Declaration Sorting is to modify the local array

declaration ordering so that the arrays more frequently

accessed are placed on top of the stack.

Array Scope Modification converts local arrays into global

arrays to store them within data memory rather than on the

stack.

C. Subroutine Transformation

This class of transformations includes the set of source

code manipulations operating at subroutine level, typically

not considered by compilers, analyzing whether or not it is

convenient to modify the subroutine interface.

Compilers usually produce object code by queueing the

subroutines depending on the source code structure.

Subroutine Queueing Reordering sorts the subroutine

declarations according to the subroutine call sequence in

order to reduce the I-cache misses.

Substitution of a variable passed as an address with a local

variable replaces a routine argument passed as an address

with a local copy of a variable. This transformation drives the

compiler to use registers, minimizing the energy necessary to

access such data.

D. Control Structure Transformation

This class gathers source code transformations optimizing

either specific operations or control structures.

Conditional Expression Reordering analyzes a complex

conditional expression by rearranging the sub-expressions

set in order to save energy by exploiting implicit shortcuts

operations. The proposed transformation reassembles the

sub-expressions by following two sub-conditions being

reordered, placing the sub-condition whose probability to be

true is higher.

Function Call Preprocessing associates with a specific

function a proper set of macros that will substitute a function

call with either an equivalent but low energy function call or

a specific result. The transformation skips a function call, or

reduces its impact, when its actual parameters allow to

directly identifying either the returned value or another

equivalent function.

V. EXPERIMENTAL RESULTS

Two samples C source code were taken from [4] for the

experiment that served as a standard benchmark. The results

of the simulation are collections of the following factors:

Clock Cycle, No. of Instructions Executed, Avg. Clock

Power, Avg. Total Power, I-Cache Miss, and D-Cache Miss.

Clock Cycle refers to the total number of the processor

cycle of the current simulation.

No. of Instructions Executed refers to the number of

processor instructions being executed.

Avg. Clock Power refers to the average power in milliwatt

(mW.) that is consumed by the processor.

Avg. Total Power refers to the average power in milliwatt

(mW.) of overall process.

The Instruction Cache Miss (I-Cache Miss) refers to a

cache read miss from an instruction cache.

The Data Cache Miss (D-Cache Miss) refers to a cache

read miss from a data cache.

Fig. 2 shows the original C code (having conditional

cohesion) in comparison with the transformed C code

(having functional cohesion).

Table I summarizes the simulation statistics based on

simulation run of code listing 1.

TABLE I: RESULTS OF SIMULATION OF CODE LISTING 1

Parameter Original Transformed %

Clock Cycle 11,034.0 10,878.0 -1.41

No. of Instr Executed 8368.0 8354.0 -0.17

Avg. Clock Power (mW) 28.8 28.4 -1.39

Avg. Total Power (mW) 79.6 78.5 -1.38

I-Cache Miss 335.0 333.0 -0.60

D-Cache Miss 436.0 436.0 -0.00

Table II summarizes the simulation statistics based on

simulation run of code listing 2.

TABLE II: RESULTS OF SIMULATION OF CODE LISTING 2

Parameter Original Transformed %

Clock Cycle 11,762.0 11,589.0 -1.47

No. of Instr Executed 6690.0 6782.0 +1.38

Avg. Clock Power (mW) 30.7 30.5 -0.65

Avg. Total Power (mW) 84.9 84.3 -0.71

I-Cache Miss 343.0 339.0 -0.71

D-Cache Miss 426.0 405.0 -4.93

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

623

Original C code Transformed C code

void main()

{

 int n1 = 100;

 int n2 = 200;

 int flag = 1;

 int arr1[100];

 int arr2[200];

 int sum1;

 int sum2;

 Sum1_or_Sum2(n1, n2, flag, arr1,

arr2, &sum1, &sum2);

}

void Sum1_or_Sum2(

 int n1, n2;

 int flag,

 int arr1[], int arr2[],

 int *sum1, int *sum2)

{

 int i;

 *sum1 = 0;

 *sum2 = 0;

 if (flag == 1)

 for (i = 0; i < n1; i++)

 *sum1 = *sum1 + arr1[i];

 else

 for (i = 0; i < n2; i++)

 *sum2 = *sum2 + arr2[i];

}

void main()

{

 int n1 = 100;

 int n2 = 200;

 int flag = 1;

 int arr1[100];

 int arr2[200];

 int sum1;

 int sum2;

 if (flag == 1)

 Sum(n1, arr1, &sum1);

 else

 Sum(n2, arr2, &sum2);

}

void Sum(

 int n,

 int arr[],

 int *sum)

{

 int i;

 *sum = 0;

 for (i = 0; i < n; i++)

 *sum = *sum + arr[i];

}

Fig. 2. Original VS transformed code listing 1.

Fig. 3 shows the original C code (having communicational

cohesion) in comparison with the transformed C code

(having functional cohesion).

Original C code Transformed C code

void main()

{

 int n = 100;

 int arr[100];

 int sum;

 int prod;

 float avg;

 Sum_and_Prod(n, arr, &sum,

&prod, &avg);

}

void Sum_and_Prod(

 int n,

 int arr[],

 int *sum,

 int *prod,

 float *avg)

{

 int i;

 *sum = 0;

 *prod = 1;

 for (i = 0; i < n; i++)

 {

 *sum = *sum + arr[i];

 *prod = *prod * arr[i];

 }

 *avg = *sum / n;

}

void main()

{

 int n = 100;

 int arr[100];

 int sum;

 int prod;

 float avg;

 sum = Sum(n, arr);

 prod = Prod(n, arr);

 avg = sum / n;

}

void Sum(int n, int arr[])

{

 int i;

 int sum = 0;

 sum = 0;

 for (i = 0; i < n; i++)

 {

 sum = sum + arr[i];

 }

 return sum;

}

void Prod(int n, int arr[])

{

 int i;

 int prod;

 prod = 1;

 for (i = 0; i < n; i++)

 {

 prod = prod * arr[i];

 }

 return prod;

}

Fig. 3. Original VS transformed code listing 2.

Other results of coincidental, iterative, and sequential

cohesion, in comparison with functional cohesion yield

similar outcomes.

VI. CONCLUSION

In this paper, we propose a simple technique to reduce

energy consumption of a computer program using design

cohesion measure. This method is to transform a given piece

of C code to increase tighter cohesion level. Both samples

source code were simulated on the designated simulation tool

environment. The results showed that the original source

code consumed more power than the transformed code. This

was because we could reduce both I-cache and D-cache

misses, clock cycle, and power consumed, with an exception

of increase in number of instructions executed in code listing

2. Although we were able to reduce the energy consumption

upon improvement with cohesion, the amount of reduced

energy was not significantly noticeable. However, the

proposed approach exhibited promising opportunities in

larger programs. The higher the level of cohesion is attained,

the more power is conserved by a program. As such, good

design level code translates into less energy consumption by

subsequent programming applications.

The windfall benefits from the proposed code

transformation technique are program readability, better

design, lower complexity, and more code reuse.

REFERENCES

[1] C. Brandolese, W. Fornaciari, and F. Salice, “Code-level

transformations for software power optimization,” CEFRIEL, Tech.

Rep. N. RT-02-004, 2002.

[2] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto, “The impact of

source code transformations on software power and energy

consumption,” J. Circuits Systems and Computers, vol. 11, no. 5, pp.

477-502, May 2002.

[3] E. B. Allen and T. M. Khoshgoftaar, “Measuring coupling and

cohesion: An information-theory approach,” in Proc. Sixth

International Software Metrics Symposium, pp. 119-127, November

1999.

[4] J. M. Bieman and B.-K. Kang, “Measuring design-level cohesion,” in

Proc. IEEE Transactions on Software Engineering, vol. 24, no. 2, pp.

111-124, Feb. 1998.

[5] G. Gui and P. D. Scott, “Coupling and cohesion measures for

evaluation of component reusability,” in Proc. the 2006 International

Workshop on Mining Software Repositories, May 2006.

[6] B. D. Bois, S. Demeyer, and J. Verelst, “Refactoring-Improving

Coupling and Cohesion of Existing Code,” in Proc. 11th Working Conf.

Reverse Eng., pp. 144-151, November 2004.

[7] J. M. Bieman and L. M. Ott, “Measuring functional cohesion,” in Proc.

IEEE Transl. Software Engineering, vol. 20, no. 8, pp. 644-657,

August 1994.

[8] T. M. Meyers and D. Binkley, “An empirical study of slice-based

cohesion and coupling metrics,” ACM Transl., vol. 17, no. 1, December

2007.

[9] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An Infrastructure

for Computer System Modeling,” in Proc. IEEE, Feb. 2002, pp. 59-67.

[10] D. Burger and T. Austin, “The simplescalar tool set, version 2.0,”

Technical report, Computer Sciences Department, University of

Wisconsin, Jun 1997.

[11] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level poweranalysis and optimizations,” in Proc. 27th

Annual International Symposium on Computer Architecture, Jun.

2000.

[12] J. Chen, M. Dubois, and P. Stenstrom, “Integrating Complete-System

and User-level Performance/ Power Simulators: The Sim Wattch

Approach,” in Proc. IEEE, IEEE Press, Jul. 2007, vol. 27, no. 4, pp.

34-48.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

624

[13] M. Fowler, Refactoring: Improving the Design of Existing Code, 1st

ed., Addison Wesley, 1999.

[14] V. Tiwari, S. Malik, and A. Wolfe, “Compilation techniques for low

energy: an overview,” in Proc. IEEE Int. Symp. Low Power Electronics,

Digest of Technical Papers, 1994, pp. 38-39.

[15] H. Falk and P. Marwedel, “Control flow driven splitting of loop nests at

the source code level,” in Proc. Europe Conference and Exhibition,

415.

[16] G. Cai and C. H. Lim, “Architectural Level Power/Performance

Optimization and Dynamic Power Estimation,” in Proc. Cool Chips

Tutorial, in Conjunction with MICRO 32, Nov. 1999, pp. 90-113.

-Manee is a Lieutenant of The Royal Thai Naval pursuing his

Masters in Computer Science. His research interest is in Software

Engineering.

Peraphon Sophatsathit received his Bachelor Degree

in Industrial Engineering from Chulalongkorn

University, Masters in Industrial Engineering and

Computer Science from University of Texas at

Arlington USA, and Ph.D. in Computer Science from

Arizona State University USA.He is currently an

associate professor in Computer Science at the

Department of Mathematics and Computer Science,

Faculty of Science, Chulalongkonrn University,

Thailand. His research interests are Software Engineering and Operating

Systems.

International Journal of Computer Theory and Engineering, Vol. 5, No. 4, August 2013

625

Mar. 2007, pp. 410-

Nattachar Ia

