
  

 

Abstract—The Cerebellar Model Articulation Controller 

(CMAC) neural network is an associative memory that is 

biologically inspired by the cerebellum, which is found in the 

brains of animals. The standard CMAC uses the least mean 

squares algorithm to train the weights. Recently, the recursive 

least squares algorithm was proposed as a superior algorithm 

for training the CMAC online as it can converge in one epoch, 

and does not require tuning of a learning rate. However, the 

RLS algorithms computational speed is dependant on the 

number of weights required by the CMAC which is often large 

and thus can be very computationally inefficient. Recently also, 

the use of kernel methods in the CMAC was proposed to reduce 

memory usage and improve modeling capabilities. In this paper 

the Kernel Recursive Least Squares (KRLS) algorithm is 

applied to the CMAC. Due to the kernel method, the 

computational complexity of the CMAC becomes dependant on 

the number of unique training data, which can be significantly 

less than the weights required by non-kernel CMACs. 

Additionally, online sparsification techniques are applied to 

further improve computational speed. 

 
Index Terms—CMAC, kernel recursive least squares. 

 

I. INTRODUCTION 

The Cerebellar Model Articulation Controller (CMAC) is 

a neural network that was invented by Albus [1] in 1975. The 

CMAC is modeled after the cerebellum which is the part of 

the brain responsible for fine muscle control in animals. It has 

been used with success extensively in robot motion control 

problems [2].  

In the standard CMAC, weights are trained by the least 

mean square (LMS) algorithm. Unfortunately, the LMS 

algorithm requires many training epochs to converge to a 

solution. In addition, a learning rate parameter needs to be 

carefully tuned for optimal convergence. Recently, 

CMAC-RLS [3] was proposed where the recursive least 

squares (RLS) algorithm is used in place of the LMS 

algorithm. CMAC-RLS is advantageous as it does not require 

tuning of a learning rate, and will converge in just one epoch. 

This is especially advantageous in methods such as feed-back 

error learning [2] where online learning is used. In order to 

achieve such advantages, the price paid is an 2( )wO n  
computational complexity, where wn  is the number of 

weights required by the CMAC. Unfortunately, the number 

of weights required by the CMAC can be quite large for high 

dimensional problems. In [4] the inverse QR-RLS (IQRRLS) 

algorithm was used with the CMAC allowing real time RLS 

 
Manuscript received September 29, 2012; revised December 6, 2012. 

The authors are with the Department of Electrical and Electronic 

Engineering, University of Auckland, Auckland, New Zealand (e-mail: 

clau070@aucklanduni.ac.nz, g.coghill@auckland.ac.nz)  

learning of low dimensional problems (less than three 

dimensions) on a PC, although the algorithm is still too 

computationally demanding for the real time learning of 

higher dimensional problems. 

In [5] the kernel CMAC (KCMAC) trained with LMS was 

proposed. An advantage of the KCMAC is that it requires 

significantly fewer weights without the use of hashing 

methods. In the KCMAC only dn  weights are needed, where 

dn  is the number of unique training points presented. In most 

situations dn  is significantly less than wn . Another advantage 

to the KCMAC is that the full overlay of basis functions can 

be implemented without requiring an unmanageable amount 

of memory space for the weights.  

In [6] it was shown that the multivariate CMAC is not a 

universal approximator, and can only reproduce functions 

from the additive function set. The work in [5] showed that 

the reason for this is the reduced number of basis functions in 

the multivariate CMAC. When the full overlay of basis 

functions is used the CMAC becomes a universal 

approximator, with improved modeling capabilities. The full 

overlay of basis functions is typically not used as it would 

require a huge memory space. However, with the KCMAC 

the number of weights needed does not depend on the overlay, 

thus allowing the full overlay to be used. In this paper we 

show that the kernel RLS (KRLS) [7] algorithm can be used 

in the CMAC neural network. The proposed CMAC-KRLS 

algorithm combines the one epoch convergence and no 

learning rate selection advantages of the CMAC-RLS 

algorithms, whilst offering superior computational 

complexity, a smaller memory footprint and better modeling 

capabilities. 

This paper is organized as follows. In Section II a brief 

introduction to the CMAC, CMAC-RLS and KCMAC is 

presented. In Section III the obvious CMAC-KRLS 

implementation is presented. In section IV optimizations to 

the obvious implementation are shown, and two „discarding‟ 

methods which drastically improve computational 

performance at the expense of noise rejection are presented. 

Section V provides some results and comparisons against the 

discarding and non-discarding methods and against a 

CMAC-RLS implementation. Finally Section VI presents 

some conclusions. 

 

II. BRIEF INTRODUCTION TO THE CMAC 

A. Standard CMAC 

The CMAC can be considered as a mapping 

S M A P   . Where  S M  is a mapping from an 

dn -dimensional input vector 
1 2[ ]

d

T

ny y y y   where 

Kernel Recursive Least Squares for the CMAC Neural 

Network 

C. W. Laufer and G. Coghill 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

454DOI: 10.7763/IJCTE.2013.V5.729



  

iy R  to a quantized vector 1 2[ ]
d

T

nq q q q   where 

iq Z . 

The mapping M A   is a non-linear recoding from vector 

q  into a higher dimensional binary vector called the 

association vector, 1 2[ ]
w

T

nX x x x   where wn  is the 

number of weights in the CMAC and {0,1}ix  . The number 

of weights in the CMAC can be large but the association 

vector will only contain m  „1‟s, where m  is the number of 

layers in the CMAC. 

In the mapping A P  the association vector is used to 

select and add together m values from an array of weights 

1 2[ ]
w

T

nW w w w   where iw R  to form the output. 

This can be viewed as an inner product calculation 
TX W .  

Learning in the CMAC corresponds to adjusting the value 

of the weights in order to produce a correct output for an 

input. In the standard CMAC, the LMS algorithm shown in 

(1) is used for this purpose, where   is the learning rate, td  is 

the desired output for training sample t , and 
T

oldX W  is the 

actual CMAC output. 

 

  T T
new old t oldW W X d X W

m


    (1) 

 

In Fig. 1 a visualization of a two input ( 2dn  ) CMAC is 

shown with current quantized input [4 8]Tq  , quantizing 

resolution 13r   in both dimensions, and 64wn  . Here 

4m   layers are used, which correspond to the four weight 

tables on the right of the Fig. We can see that the input vector 

slices through the four layers on both axes. The sliced letters 

for each layer activate a certain weight in its corresponding 

weight table. Each individual weight corresponds to a 

hypercube in the input space, which for the 2D CMAC is 

simply a square. The activated hypercubes for the problem in 

Fig. 1 is shown as four squares diagonally arranged in the 

input space. Here weights Bc, Fg, Jk and No are activated. If 

put into activation vector form it will appear as, 

 

( ) [0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0]T

t

Aa Ba Bc Fg Jk No Pp

x y 

    

    

 

The number of weights required by the CMAC grows 

exponentially with the input dimension, and can thus be very 

large. The number of weights in a CMAC is given by 

 

 
 

1 1

1
1

d
inm

j j

i j

r d
n

h 

  
  
 
 

   (2) 

 

where 
jr  is the quantizing resolution in dimension j , i

jd  

dictates how many quantization grid squares layer i  in 

dimension j is displaced and h is the length of a „full block‟. 

An example of a full block in Fig. 1 is letter A which spans 

4h   four quantization grid squares, whereas letter D is not a 

full block because it does not span h  grid squares. The 

number of layers m is usually given by m h  for the diagonal 

and uniform overlay. 

 

Fig. 1. A two-input CMAC example with four layers, diagonal overlay and 

requiring 64 weights. 

1) Overlays 

The displacement/arrangement of the layers/hypercubes 

plays a large role in the modeling performance of the CMAC. 

The standard Albus CMAC uses a diagonal overlay 

arrangement, and this is used in the CMAC example in Fig. 1, 

and is also shown in Fig. 2a. In [8] the so called „uniform‟ 

arrangement shown in  Fig. 2b is found which is an overlay 

yielding improved modeling performance. With the diagonal 

and uniform arrangements, the number of layers required is 

given by m h . The parameter h is adjusted to control the 

amount of local generalization in the CMAC.  

It is now well known that the multivariate CMAC can only 

approximate functions from the additive function set [6], and 

is thus not a universal approximator. In [5] it was shown that 

the reason for this is the limited number of basis functions in 

the multivariate CMAC. To fix this, the full overlay, shown 

in Fig. 2c, should be used where here the number of layers is 

given by dn
m h . The full overlay poses a problem however, 

as the number of weights required by the CMAC increases 

dramatically and often becomes too large to manage for high 

dimensional problems. 

B. CMAC-RLS 

Recently it was shown that the RLS algorithm can be used 

in the CMAC in place of the LMS update equation [3]. The 

use of CMAC-RLS is advantageous especially for online 

motion control learning in a stationary environment as the 

RLS algorithm allows the CMAC to learn in one epoch, and 

does not require tuning of a learning rate. 

Other RLS algorithm implementation variants such as  

 
a)                                b)                                    c) 

Fig. 2. The a) diagonal (m=h=5), b) uniform (m=h=5), and c) full (h=5, m=25) 

2D overlay arrangements. 

QR-decomposition RLS (QRRLS) [9] and inverse 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

455



  

QR-decomposition RLS (IQR-RLS) [4] have been used to 

improve the computational speed making CMAC-RLS 

feasible for low dimensional problems that require few 

weights. 

C. Kernel CMAC 

In a kernel machine, the input vector is non-linearly 

transformed into a higher dimensional „feature vector‟ by a 

kernel function.  The work in [5] makes the connection that 

the CMAC is essentially a kernel machine where the M A  

mapping to the association vector is the non-linear transform 

to a higher dimension where the kernel used is a first order 

b-spline function. Using this knowledge, a common method 

used in kernel machines called the „kernel trick‟ can be 

applied where the weights are then evaluated in the „kernel 

space‟ rather than the feature space. Since the dimensionality 

of the kernel space is equal to the number of unique training 

data presented to the algorithm rather than wn , significantly 

less memory is required for weight storage. Therefore, the 

number of weights used becomes independent of the type of 

overlay used, so it is feasible to use the full CMAC overlay. 

From [5] the output of the KCMAC is given as, 

 

 
Top k   (3) 

 

where   is the weight vector in the kernel space, and K  is 

the kernel vector given by K Xx , where X  is the 

dictionary and consists of the previously seen association 

vectors arranged as row vectors and x  is the current 

association vector. The KCMAC LMS training algorithm 

from [5] is given as, 

 

 2 T

new old K e      (4) 

 

where K  is a matrix consisting of previous kernel vectors 

arranged as row vectors, and e  is a vector of errors. The 

vectors  , K , e  and matrix K  grow in size as more 

unique training data are presented to the KCMAC. 

 

III. THE KERNEL RLS ALGORITHM FOR THE CMAC 

The online sparsifying KRLS algorithm is derived and 

presented in [7]. The KRLS algorithm will be a better choice 

than the RLS algorithm for training the CMAC, as the 

computational complexity will be dependent on the number 

of unique training data seen, rather than the number of 

training data possible. Hence, the full overlay of basis 

functions can be used. With sparsification techniques the 

number of training data required can be reduced even further. 

Here we quote the algorithm from [7] with slight alterations 

to specialize it for the CMAC. Note that the method for 

calculating the association vector is not shown here, but a 

good description of how it is calculated can be found in [10].  

Algorithm 1 features an online sparsification technique 

that sparsifies by preventing feature vectors that are 

approximately linearly dependant on the dictionary, X  from 

being added. The full concept and derivation behind this 

sparsification method can be found in [7]. Using this method 

the dictionary size can be limited, whilst still making use of 

training points not added to the dictionary. In (12) the scalar 

value   is calculated which is a measure of how linearly          

dependant x  is on the dictionary X . If   is greater than 

some threshold v, this means that x  was not approximately 

linear dependant on the dictionary, and will be added to the 

dictionary. Otherwise, if the threshold is not met, the update 

equations (20) – (22) will be used instead. The elements of 

vector a  represent a weighting on how linearly dependant a 

vector in the dictionary is to the current feature vector. If the 

current feature vector is already in the dictionary, the entries 

of vector a  will be all zero except for a single unity entry at 

the index of the matching dictionary point. 

ALGORITHM I: KRLS-CMAC 
1

1

1

[1/ ], [ / ],

( ( )), [1], 1

K m d m

X quant y P c





  

  
   (5) 

for 2,3... tt n    (6) 

Get new sample: ( , )t ty d    (7) 

Quantize sample: ( )tq quant y   (8) 

Calculate association vector: ( )x q   (9) 

k Xx  ( )O cm  (10) 
1a K k  2( )O c  (11) 

Tm k a    ( )O c  (12) 

if v   (1)O  (13) 
T

TX X x     (1)O  (14) 

1

1 1

1

T

old

new T

K aa a
K

a








  

  
 

 2( )O c  (15) 

0

0 1

old

new

P
P

 
  
 

 ( )O c  (16) 

 1
T

old t old

new
T

t old

a d k

d k

 


 

  
  

  

 ( )O c  (17) 

1c c    (18) 

else 

1

old

T

old

P a
q

a P a



 2( )O c  (19) 

T

new old oldP P qa P   2( )O c  (20) 

 1 T

new old t oldK q d k      2( )O c  (21) 

 

The sparsification threshold should be set to some 

percentage of m . It was found that usually setting it to 

10%-30% of m worked well.  

 

IV. AN OPTIMIZED KERNEL RLS ALGORITHM FOR THE 

CMAC 

The CMAC-KRLS algorithm is still fairly computationally 

complex, with major bottlenecks at (10), (11), (12), and (20) - 

(22). Fortunately, most of these bottlenecks can be reduced 

by some optimizations presented below. First for reference, 

the optimized discarding CMAC-KRLS is presented in 

Algorithm 2. 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

456



  

A. Generation of the Kernel Vector 

If the full overlay is used in a high dimensional CMAC, m 

can become extremely large. For example if 20h  , and 

4dn  , then 420 160 000m   . This causes a computational 

burden for the KCMAC as the calculation of the kernel 

vector given by [5] is k Xx= . This requires c m  

comparisons if the first order b-spline is used as the kernel 

function (binary CMAC) and x  and X  are stored sparsely. 

Although comparisons are efficient, if m  is very large the 

computation will still be demanding. 

ALGORITHM II: OPTIMIZED DISCARDING CMAC-KRLS 

1

1 1[1/ ], [ / ], ( ),

[1], 0.98 1, 1,

K m d m Q quant y

P c





   

   
 (22) 

2,3... tfor t n  (23) 

Get new sample: ( , )ty d  (24) 

Quantize sample: ( )tq quant y  (25) 

1:for i c  (26) 

1

max ,0
dn

i i

j

k h Q q


 
   

 
  ( )dO n c  (27) 

( . ( ))if Q contains q  (1)O  (28) 

. ( )b Q indexof q  (1)O  (29) 

,

,

b b

b b

P
q

P



 (1)O  (30) 

 1

, , ,b b b b b bP P qP   (1)O  (31) 

 1

:,

T

new old b t oldK q d k      ( )O c  (32) 

(! . ( ))elseif rejectDict Contains q  (1)O  (33) 

1a K k  2( )O c  (34) 

Tm k a    ( )O c  (35) 

if v   (1)O  (36) 
T

TQ Q a     (1)O  (37) 

1

1 1

1

T

old

new T

K aa a
K

a








  

  
 

  2( )O c  (38) 

0

0 1

old

new

P
P

 
  
 

 (1)O  (39) 

 1
T

old t old

new
T

t old

a d k

d k

 


 

  
  

  

 ( )O c  (40) 

1c c    (41) 

else 

T

rejectDict
rejectDict

q

 
  
 

 (1)O  (42) 

NOTE: 1

:,bK   indicates the b‟th column of 1K

 
 

Here another method to calculate the kernel vector for the 

first order b-spline kernel is shown which is very efficient for 

the full overlay. By realizing that the individual kernel vector 

entries, ik , are actually the number of shared hypercubes 

between dictionary point iQ  (where the dictionary Q  stores 

quantized input vectors instead of association vectors), and 

current quantized input q , we can reduce the number of 

calculations required to calculate the kernel vector to 
dn c . 

In Fig. 3 we see a 2D CMAC full overlay, where 3h  , and 

thus 9m  . We can view this Fig as having the dictionary 

point 
iQ  at the center, and the numbers in the surrounding 

grid squares give the number of shared hypercubes for nearby 

possible values of q . Equation (27) can be used to calculate 

number of overlaps 
ik  for a particular quantized dictionary 

point 
iQ  and the current quantized input q .  

Using this method means that instead of storing the 

association vector in the dictionary, the quantized input 

vector should be stored instead. There is also no need to 

evaluate the association vector using this method, since k  is 

now directly a function of the quantized input q  rather than 

association vector x . 

  

Fig. 3. Kernel vector values for iQ  at the center, and nearby possible q . 

B. Discarding Sparsification 

In any kernel machine used in an online learning 

environment, it is important to keep the dictionary size small 

so that it will be able to provide a response to input data in 

real time. In Algorithm 1 a sparsification technique was used 

which only added data that was not approximately linearly 

dependant on the dictionary. However, it still made use of 

every training point to adjust the weights, even if it was not in 

the dictionary. 

In what we will call the discarding CMAC-KRLS 

implementation, data not added to the dictionary is simply 

discarded and not made use of. Thus, when performing (20) – 

(21) we see that the a  vector is always all zero except for a 

single unity entry at the index where the matching dictionary 

entry is stored and thus the P  matrix remains diagonal. So if 

the dictionary index for input q  is known to be b, we only 

need to update scalars 
bq  (which is simply notated as q in 

Algorithm 2) and 
,b bP . Thus, equations (20) to (21) can be 

simplified significantly as can be seen in equations (29) – 

(32). The disadvantage however is that, in a non-stationary 

environment the CMAC may be slower to adapt, or in a noisy 

environment the CMAC will be slower to converge as only if 

the dictionary points are re-visited will the CMAC update. If 

the CMAC must be used in a non-stationary or noisy 

environment, the non discarding Algorithm 1 can be used, the 

sparsification threshold can be reduced, or the 

semi-discarding algorithm presented next in section IV.C can 

be used. 

This algorithm can also be written such that instead of 

performing the computationally demanding approximate 

linear dependence threshold test every iteration, it only need 

be performed if the current input is not a member of the 

dictionary already. This is because instead of using the test, a 

simple hashtable lookup as seen in (28) can be performed to 

see if the current quantized input vector is already a member 

of the dictionary. A hashtable lookup is a very efficient (1)O  

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

457



  

operation. The threshold test will still need to be carried out 

in the case that the current input is not already in the 

dictionary. 

Furthermore, if a point has been previously discarded and 

thus not added to the dictionary, it will never be added to the 

dictionary in the future. This is because as more points are 

added to the dictionary, the rejected point can only become 

more linearly dependant on the dictionary. This prevents the 

need to compute the approximate linear dependence test 

when seeing previously rejected points and is reflected by 

equations (33) and (43). 

C. Semi-Discarding Sparsification 

If increased noise performance is required, whilst retaining 

some of the good computational properties of the discarding 

method, a semi-discarding method shown in Algorithm 3 can 

be used. With the semi-discarding method, in the update  

section of Algorithm 1 (after the else statement) every value 

in the a  vector is  forcefully set to zero, except for the largest 

absolute value, which is the most contributing value and 

indicates the value in the dictionary  most like the current 

input.  The update algorithm is then performed with the 

masked a  vector. This keeps the P  matrix diagonal – the 

reason for fast computational performance. Modifications to 

get the semi-discarding algorithm are shown in Algorithm 3. 

ALGORITHM III: SEMI-DISCARDING CMAC-KRLS 

Same as Algorithm 2 but,  

Replace (34) with an else statement 

Replace (43) with four new lines: 

 . maxb a index a  ( )O c  (43) 

 
,

2

,

b b b

b b b

P a
q

P a



 (1)O  (44) 

 1

, , ,b b b b b b bP P qP a   (1)O  (45) 

 1

:,

T

new old b t oldK q d k      ( )O c  (46) 

D. Forgetting Factor 

A forgetting factor is typically used to allow RLS 

algorithms to track in non-stationary environments. The 

forgetting factor   has been integrated into the update 

equations (30) and (31) in Algorithm 2, and also in (34) and 

(35) in Algorithm 3. A forgetting factor of around 0.98 to 1 is 

useful. Smaller values give better tracking performance, but 

decreased noise rejection. 

E. Additional Computational Optimizations 

The kernel vector is a sparse vector, and thus equation (34) 

can be sped up significantly by performing sparse vector 

matrix multiplication. 

 

V. KRLS-CMAC RESULTS 

In the following experiments each CMAC used a 

resolution of 100r   for each dimension, and a local 

generalization parameter of 10h  . The experiments were run 

on an Intel i5 4-core CPU. The algorithm was written in C# 

and parallelization was applied where possible. The 

algorithms were tested on a two input sinc function, and 

various results are discussed below. 

As mentioned previously, algorithms that rely on the 

kernel trick use as many weights as there are unique training 

points. They can use even less if sparsification methods are 

used. In Fig. 4 the number of weights used to learn the sinc 

function for any sparsifying CMAC-KRLS algorithm with 

full overlay is plotted against different sparsification 

thresholds. A total of 1681 unique training points were 

presented sequentially. The number of weights used by a 

CMAC-IQRLS algorithm is also plotted for diagonal and 

uniform overlays which are similar. The full overlay cannot 

be used in CMAC-IQRLS as it would require 11,881 weights 

which is not computationally feasible. Also note that if the 

problem was a higher dimensional problem, the number of 

weights required for CMAC-RLS would be much larger even 

with only the diagonal or uniform overlays.  

In Fig. 5 the average time taken over ten epochs for each 

CMAC-KRLS algorithm with full overlay to complete          

learning of a single training point is plotted for various 

sparsification thresholds which are recorded as a percentage 

of m between 0 and 90%. Take note of the logarithmic scale. 

The number of weights admitted to the dictionary for a 

specific sparsification threshold can be seen on Fig. 4. Fig. 5 

shows that the two discarding algorithms perform the fastest. 

This is because after the first epoch all the dictionary points 

have been added, thus the discarding algorithms use their 

very efficient update algorithm in subsequent epochs 

bringing the average down. The non-discarding algorithm is 

the slowest due to its more complex update equations. For 

comparison, the CMAC-IQRLS algorithm is shown for the 

same problem. It should be noted that although the 

CMAC-IQRLS algorithm is competitive with the 

non-discarding algorithm here, in a higher dimensional 

problem it would likely be infeasible whereas the 

CMAC-KRLS would perform at a similar speed no matter the 

dimension given the same number of unique training data.  

 

Fig. 4. Number of weights used for any CMAC-KRLS for different 

sparsification thresholds compared against the CMAC-IQRLS. 

 

Fig. 5. Average time taken per iteration over ten training epochs. 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

458



  

The total absolute error for modeling the two input sinc 

function with no noise was measured for each CMAC-KRLS 

variant with full overlay and recorded in Fig. 6. Note that it 

was found that the non-discarding and semi-discarding 

algorithms required additional epochs to fully converge when 

trained sequentially, and thus the algorithm was run for 10 

epochs before measuring the error. The discarding and 

non-discarding CMAC-KRLS algorithms were similar in 

performance up till a sparsification threshold of 0.5. The 

semi-discarding algorithm was only slightly worse than the 

non-discarding algorithm. For comparison the errors from the 

CMAC-IQRLS algorithm with the diagonal and uniform 

overlays are shown.  

In Fig. 7 a comparison between the discarding, 

semi-discarding and non-discarding CMAC-KRLS for noisy 

data and random training points training under a 

sparsification threshold of 0.2 is shown. The non-discarding 

CMAC-KRLS performs significantly better as the number of 

training data increases due to its ability to make use of every 

data point. The discarding CMAC-KRLS only makes use of 

training points already in the dictionary, so it has less ability 

to average over time. The semi-discarding algorithm has 

improved performance over the discarding algorithm due to 

its ability to make some use of the discarded data. 

 

Fig. 6. Total absolute error for different sparsification thresholds. 

 

Fig. 7. Comparison with noisy random data between each CMAC-KRLS 

under a sparsification threshold of 0.2. 

VI. CONCLUSION 

In this paper the CMAC-KRLS algorithm was presented. It 

was shown that the CMAC-KRLS is more computationally 

efficient for high dimensional problems compared with the 

CMAC-RLS as its complexity is only ultimately dependant 

on the number of unique training data and not the number 

training points as it is with CMAC-RLS. It was also shown 

that the full overlay can be used in the CMAC-KRLS 

efficiently to improve the modeling capabilities if the kernel 

vector is calculated in a way that does not require 

computation of the association vector. A very efficient 

discarding and semi-discarding CMAC-KRLS algorithm was 

also presented that trades off noise rejection for 

computational speed. Overall, the CMAC-KRLS is shown to 

be a superior alternative to the CMAC-RLS algorithms for 

high dimensional problems in terms of modeling, 

computational, and memory performance. 

REFERENCES 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

International Journal of Computer Theory and Engineering, Vol. 5, No. 3, June 2013

459

[1] J. S. Albus, “New approach to manipulator control: The cerebellar 

model articulation controller (CMAC),” Journal of Dynamic Systems, 

Measurement and Control, Transactions of the ASME, vol. 97, pp. 

220-227, 1975.

[2] M. K. H. Gomi, “Learning control for a closed loop system using 

feedback-error-learning,” in Proceedings of the 29th Conference on 

Decision and Control Honolulu, Hawaii, 1990.

[3] T. Qin, et al., “A learning algorithm of CMAC based on RLS,” Neural 

Processing Letters, vol. 19, pp. 49-61, 2004.

[4] C. W. Laufer, “A regularized inverse QR decomposition based 

recursive least squares algorithm for the CMAC neural network,”

Unpublished.

[5] G. Horvath and T. Szabo, “Kernel CMAC with improved capability, 

systems, man, and cybernetics, Part B: Cybernetics,” IEEE 

Transactions on, vol. 37, pp. 124-138, 2007.

[6] M. Brown, C. J. Harris, and P. C. Parks, “The interpolation capabilities 

of the binary CMAC,” Neural Networks, vol. 6, pp. 429-440, 1993.

[7] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares 

algorithm,” IEEE Transactions on Signal Processing, vol. 52, pp. 

2275-2285, 2004.

[8] P. C. Parks and J. Militzer, “Improved allocation of weights for 

associative memory storage in learning control systems,” 1st IFAC 

symposium on Design Methods of Control Systems, pp. 777-782, 1991.

[9] T. Qin, H. Zhang, Z. Chen, and W. Xiang, “Continuous CMAC-QRLS 

and its systolic array,” Neural Processing Letters, vol. 22, pp. 1-16, 

2005.

[10] R. L. Smith, “Intelligent motion control with an artificial cerebellum,”

Doctorate, Electrical and Electronic Engineering, University of 

Auckland, Auckland, 1998.


