
 
 

 

  
Abstract

volumes of data available in several fields, which we can make 
use of effectively, for decision making. This can be achieved by 
inducing rules through various rule induction approaches that 
are available. In this paper, we proposed a rule induction 
algorithm, ELEM, which is an enhanced version of one of the 
existing rule induction algorithms, LEM1 [3]. This is made 
effective by reducing the database scans required to generate 
the rules. Also, it provides an incremental approach which 
makes use of ELEM and deals with any kind of data changes in 
a dynamic information system. The incremental technique is a 
way to solve the issue of added-in data without re-implementing 
the original algorithm in a dynamic database. In this paper, an 
incremental rule-extraction algorithm is proposed to resolve 
therefore mentioned issues. Applying this algorithm, while a 
new object is added to an information system, it is unnecessary 
to re-compute rule sets from the very beginning. The proposed 
approach updates rule sets by partially modifying the original 
rule sets, which increases the efficiency. This is especially useful 
while extracting rules in a large database. 
 

Index Terms— ELEM, Global cover, Incremental approach, 
Rule Induction 
 

I. INTRODUCTION 
  Now-a-days, we are inundated with volumes of data. 

Business concerns have been accumulating vast amounts of 
data in accounting, inventory and sales records. Also large 
amounts data are available on internet. For decades this data 
has been entered and stored on computers. However, if the 
training data is viewed as an information system, then the 
procedures and methods of data mining can be used to find 
the previously unrecognized relationships in the data that will 
convert the data to information. 

Rough set theory is a new mathematical approach to 
imperfect knowledge developed by Pawlak (7). The main 
advantage of rough set theory in data analysis is that it does 
not need any preliminary or additional information about data. 
Thus it has gained importance in rule induction.  

To obtain meaningful decision rules, we underwent the 
following stages. Firstly, the data is pre processed. And then 
the rule induction algorithm ELEM is applied to the 
pre-processed data. This global cover, also known as relative 
reduct, based rule induction algorithm generates decision 
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rules, which can reveal profound knowledge and provide 
new insights. The current traditional approaches do not 
consider the added-in data and the classification quality of 
decision tables. This also resulted in numerous studies in 
incremental approaches (3), (4), and (6). However, the 
existing incremental approaches still cannot deal with the 
problems of a large database. Moreover, for dealing with the 
new added-in data set, these approaches often re-implement 
the reduction algorithm and rule extraction which results in 
more computational time and wastage of memory space.  

Therefore, to solve this dynamic database problem, an 
incremental rule extraction algorithm (1) is proposed based 
on the ELEM. Applying this algorithm, while a new object is 
added to an information system, it is unnecessary to 
re-compute rule sets from beginning, instead, we can make 
use of an incremental approach for the same. 

 

II.   LITERATURE REVIEW 

A. Basic Rough Sets 
Let U be a universe of discourse, which cannot be empty 

and R be an equivalence relation or indiscernibility relation 
[4], [8], [10] over U. By U/R we denote the family of all 
equivalence class of R, referred to as categories or concepts 
of R and the equivalence class of an element x  U is denoted 
by [x]R. By a knowledge base, we understand a relational 
system k = (U, R), when U is as above and R is a family of 
equivalence relation or indiscernibility relation over U and k 
is called an approximation space. Elementary sets in k are the 
equivalence classes of R and any definable set in k is a finite 
union of elementary sets in k. 

Therefore for any given approximation space defined on 
some universe U and having a n equivalence relation R 
imposed on it, U is partitioned into equivalence classes called 
elementary sets which may be used to define other sets in k; 
Given that X ∈ U, X can be defined in terms of definable sets 
in k by the following  

Lower approximation of X in A is the set 
≠ φ X =∪{Y∈  U | R: Y ⊆ X} 

Upper approximation of X in A is the set 

R X = ∪{Y∈  U | R: Y ∩  X ≠ φ } 
Another way to describe the set approximations is as 

follows. Given the lower and upper approximations R X and 

R X, of X a subset of U, the R-positive region of X is 
POSR(X) and is given by POSR(X) = R X, the R-negative 

region of X is NEGR(X) and is given by NEGR(X) = U- R X, 
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and the boundary or the R-borderline region of X is BNR (X) 
and is given by BNR (X) = R X – R X. The elements of R X 
are those of U which can certainly be classified as elements 

of X and the elements of R X are those elements of U, which 
can possibly be classified as elements of X, employing 
knowledge of R. We say that X is rough with respect to R if 

and only if R X  R X, equivalently BNR (X) ≠ φ  . X is 

said to be R-definable if and only if, R X = R X or BNR (X) 

≠ φ . 

The tuple { R X, R X} composed of the lower and upper 
approximations of X is called a rough set, associated with X 
with respect to R. 

B. Rule Induction 
Rule induction [2], [3], and [5] is one of the most important 

techniques of machine learning. Regularities hidden in data 
are frequently expressed in terms of rules; rule induction is 
one of the fundamental tools of data mining. Rules are 
generally in the following form 

If  (attribute1, value1) and (attribute2, value2)  and 
(attributen, valuen) then (decision, value) 

Data from which rules are induced are usually presented in 
a form similar to a table in which cases (or examples) are 
labels (or names) for rows and variables are labeled as 
attributes and a decision. Attributes are independent variables 
and the decision is a dependent variable. The set of all cases 
labeled by the same decision value is called a concept. For 
example, for the table 3.1, the set {1, 2, 4, 5} is a concept of 
all cases affected by flu (for each case from this set, the 
corresponding value of Flu is yes). 

There are several studies of incremental approach in rough 
set theory [1, 4 and 5]. However, these previous incremental 
approaches cannot deal with the problems of a large database. 
Moreover, for dealing with the new added-in data set, these 
approaches often re-implement the reduction algorithm and 
rule-extraction to generate reduces and decision rules. The 
following table (Table 3.1) shows a simple example of the 
same. Here, Temperature, Headache, Weakness, Nausea are 
called Attributes, and the decision is Flu. The set of all cases 
labeled by the same decision value is called a concept.  For 
Table3.1, case set {1, 2, 4, 5} is a concept of all cases affected 
by flu (for each case from this set the corresponding value of 
Flu is yes). 

 

III. SOLUTION APPROACH 

A. Data extraction and Attribute Reduction  
In this step, we have a database to store the values. Since 

the database cannot be accessible to everyone. We used the 
xml query processing. This converts the table into an xml file 
which is accessible to everyone. The xml file is then 
converted into a text file using a Windows 32 application. 
The major problem we face in rule induction is the null 
values, or missing values or unknown. To avoid this, we can 
create a web page and get the data from the user, where we 
apply validation control so that it prevents entering null 

values and missing values into the database. Thus 
pre-processing is done and missing values are eliminated. 
The necessary attributes are then selected as the condition 
attributes which determine in making a decision. 

B. ELEM 
This module includes two components 
1) Generation of global covering:  

To select the best global cover of the existing ones, we can 
make use of condition indispensible attributes accordingly. 
Some points for Global covering in incremental approach 
• We can generate a list of possible covering with a flag 

field. 
• Starting with the current global cover, as we proceed, if we 

find a sub cover which is not a global covering we can 
set the flag.  

TABLE I: DECISION TABLE 

 
 
• Next time, when we came across sub covers of another 

global cover, just checking the flag we can discard it. 
• This procedure shall reduce the search space. 

2) Implementation of ELEM algorithm 
• ELEM algorithm firstly calculates the minimal set of 

attributes that must be present in generating the rule set 
which is the global covering. 

• ELEM then computes the necessary attribute value-pairs 
and the unnecessary ones are removed and converted 
into a rule set.  
After the implementation of the algorithms, we found 

ELEM is better equipped in handling the incremental 
methodology and so we chose ELEM and proceeded for the 
incremental approach. 

C. Incremental Approach 
A rough set rule induction algorithm generates decision 

rules, which can reveal profound knowledge and provide 
new insights. But these traditional approaches do not 
consider the added-in data and the classification quality of 
decision tables. This resulted in numerous studies in 
incremental rough set theory. However, the existing 
incremental approaches still cannot deal with the problems of 
a large database. Also, for dealing with the new added-in data 
set, these approaches often re-implement the reduction 
algorithm and rule extraction which results in more 
computational time and wastage of memory space. 

Therefore, to solve this dynamic database problem, a new 
incremental approach is proposed as follows 

The decision table is consists of condition attributes and 
decision attributes. ELEM algorithm is applied to the 
decision table to generate rules on the existing records. These 
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rules are stored in a file. When a new data set is added to the 
decision table, in general, ELEM algorithm is applied on the 
whole table again to generate the new rules. This seems to be 
ineffective when many records are added. To resolve this 
problem, a new approach using ELEM, Incremental 
Approach, is proposed which is shown above. 

Each step in the incremental approach diverges to different 
cases. We considered all types of cases that can occur when a 
new data is added. All the cases are explained in the 
following. We now move on to the algorithm steps of 
incremental approach. 
 

 
 

Fig. 1. Incremental approach 
 

Case 1: New tuple is dominated by the existing rules 
If the new data set added is dominated by the existing rules 

then there is no change in the existing rules and the new tuple 
is added to the decision table. 
Case 2: Total contradiction 

Here, the conflict occurs with the existing rule, where there 
is no change in any of the condition attributes of the rule and 
the change is only in the decision attribute value. This can be 
termed as total contradiction. The conflicting rule has to be 
deleted from the set of rules. 

The conflicting rule is placed in a new category named as 
inconsistent rules. The remaining rules will be called as 
consistent rules. ELEM algorithm is applied to the new data 
set and the new rule is generated. This rule has to be placed in 
the inconsistent rules. In due course time, we use support 
value of the rules in inconsistent category to reduce their 
number. This will optimize the number of rules which helps 
user to consider minimum number of rules. 
Case 3: Conflict Resolution 

The new tuple conflicts with the rule due to change in the 
condition attributes of the rule. Now, consider the tuples that 
are being covered by the conflicting rule. ELEM algorithm is 
applied combined on these tuples and the new data set. The 
rules are updated with the new rules generated. 
Case 4: No conflict and no domination 

The new tuple might have a new attribute value where 
there is no conflict and no domination. In this case ELEM is 
applied on the new data set and the rules are generated. Rules 
are updated with the new rules that are generated. 

 
Fig. 2. ELEM Data flow diagram 

 

IV. PROPOSED ALGORITHMS 

A. ELEM 
The following gives the algorithm for the ELEM approach. 
Notations 
A set of all attributes 
{d} decision attribute 
{d}* partition of {d} 
{G} global cover where {G}={g1,g2, …, gn}, g1,g2, … gn 

 ∈ A 
ga attribute name, a= 1, 2, … p 
vab value of the attribute ga, b= 1, 2, …q 
( ga, vab ) denotes a attribute-value pair 
R set of rules generated 
Input the decision table with c, condition attributes and d, 

decision attributes 
output  rule sets 
For each tuple in decision table 
R′: =∅ , G′: =G 
While (k > 1) 
G′: =G′- gk 

if ( ∩ (ga , vab )) ≤ {d}* )  ∀ ga ∈ G’ of the tuple then 

G′: =G′ 
Else 

G′: =G′ + {gk} 
K: =k-1 
END if 
If (k = 1) 
R=G′ 
Else 
R′=R′+ {gk} 
END if 
END while 
R=R+{R′} 
END for 

Attribute-value pairs 
generation 

Generate the Global 
cover 

Rule induction

Classification 

Input 

Concept 

Rule
s

data

DB 

New 
data
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1) Test Cases for ELEM 
Notations: 
A- Set of all attributes 
B- A non-empty subset of A 
U- Set of all cases 
IND (B) – an equivalence relation on U. 
Equivalence classes of IND(B) – elementary sets of B 
Consider a decision table (Table I), 
A decision {d} depends on B, if and only if, B* ≤ {d}*

 

Let B = {Temperature, Headache} 
A decision {d} depends on B are B* = {{1}, {2}, {3, 7}, 

{4}, {5, 6}} 
A Global covering of {d} is a subset B of A such that {d} 

depends on B and B is minimal in A. 
The following is the procedure for finding the global 

cover. 
{Temperature, Headache, Weakness, Nausea}* = {{1}, 

{2}, {3}, {4}, {5}, {6}, {7}} 
{Flu}* = {{1, 2, 4, 5}, {3, 6, 7}} 
{T, H, W, N}* ≤ {F}* 

Dropping Temperature, 
{H, W, N}* = {{1}, {2}, {3, 6}, {4}, {5, 7}} ≤  F* 
Dropping headache, 
{T, W, N}* = {{1}, {2}, {3}, {4}, {5}, {6}, {7}} ≤ F* 
So, {T, W, N} is accepted. 
Dropping weakness, 
{T, N}* = {{1}, {2}, {3, 7}, {4}, {5, 6}} ≤  F* 

Dropping Nausea, 
{T, W}* = {{1}, {2, 6}, {3}, {4, 7}, {5}} ≤  F* 
Therefore, Total covering is {T, W, N} 
Now, consider each case in the table, 
 
Case 1: 
(Temperature, very-high) & (Weakness, yes) & (Nausea, 

no) → (Flu, yes) 
Now, Drop (Temperature, very-high) 
{1, 4, 5, 7} ∩ {1, 3, 5, 6, 7} = {1} covers cases {1, 5} and 

{7} i.e, two different concepts. 
So, (Temperature, very-high) cannot be dropped. 
 Drop (Weakness, yes), 
{1} ∩ {1, 3, 5, 6, 7} = {1} covers only case 1. 
So, (Weakness, yes) can be dropped. 
Therefore, (Temperature, very-high) & (Nausea, no) → 

(Flu, yes) 
Drop (Nausea, no), 
{1} covers only case 1. 
So, (Nausea, no) can be dropped. 
Finally the rule is, (Temperature, very-high) → (Flu, yes) 
 
Case 2: 
(Temperature, high) & (Weakness, no) & (Nausea, yes) → 

(Flu, yes) 
Drop (Temperature, high), 
{1, 4, 5, 7} ∩ {2, 4} = {4} covers case 2. 
So, (Temperature, high) can be dropped. 
Drop (Weakness, no), 
{2, 4} covers {2, 4} cases from same concept 
So, (Weakness, no) can be dropped, 
Finally, (Nausea, yes) → (Flu, yes) 

 
Case 3: 
(Temperature, normal) & (Weakness, no) & (Nausea, no) 

→ (Flu, no) 
Drop (Temperature, normal), 
{2, 3, 6} ∩ {1, 3, 5, 6, 7} = {3, 6} covers {3, 6} from same 

concept. 
So, (Temperature, normal) can be dropped. 
Drop (Weakness, no), 
{1, 3, 5, 6, 7} covers {1, 5} and {3, 6, 7} with different 

concepts 
So, (Weakness, no) cannot be dropped. 
Drop (Nausea, no), 
{2, 3, 6} covers {2} and {3, 6} with different concepts 
So, (Nausea, no) cannot be dropped. 
Finally, (Weakness, no) & (Nausea, no) → (Flu, no) 
 
Case 4: 
(Temperature, high) & (Weakness, yes) & (Nausea, no) → 

(Flu, yes) 
Drop (Temperature, high), 
{1, 4, 5, 7} ∩ {1, 3, 5, 6, 7} = {1, 5, 7} covers different 

concepts. 
So, (Temperature, high) cannot be dropped. 
Drop (Weakness, yes) 
{2, 5, 6} ∩ {1, 3, 5, 6, 7} = {5, 6} covers different 

concepts. 
So, (Weakness, yes) cannot be dropped. 
Drop (Nausea, no) 
{2, 5, 6} ∩ {1, 4, 5, 7} = {5} covers same concepts. 
So, (Nausea, no) can be dropped. 

Finally, (Temperature, high) & (Weakness, yes) → (Flu, yes) 
 
Case 5: 
(Temperature, normal) & (Weakness, yes) & (Nausea, no) 

→ (Flu, no) 
Drop (Temperature, normal), 

{1, 4, 5, 7} ∩ {1, 3, 5, 6, 7} = {1, 5, 7} covers different 
concepts. 

So, (Temperature, normal) cannot be dropped. 
Drop (Weakness, yes), 
{3, 4, 7} ∩ {1, 3, 5, 6, 7} = {3, 7} covers same concepts. 
So, (Weakness, yes) can be dropped. 
Drop (Nausea, no), 
{3, 4, 7} covers different concepts 
So, (Nausea, no) cannot be dropped. 
Finally, (Temperature, normal) & (Nausea, no) → (Flu, 

no) 
Therefore, the rule sets of ELEM algorithm are: 
(Temperature, very-high) → (Flu, yes) 
(Nausea, yes) → (Flu, yes) 
(Weakness, no) & (Nausea, no) → (Flu, no) 
(Temperature, high) & (Weakness, yes) → (Flu, yes) 
(Temperature, normal) & (Nausea, no) → (Flu, no) 

B. Incremental Approach 
The following gives the algorithm for the incremental 

approach. 
Notations  
D it is the new data set added. 
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Dc data set’s condition values 
Dd data set’s decision values 
P set of all rules (in general consistent) 
P any rule 
ICR Inconsistent rules 
p’ newly added rules 
DT Decision Table 
R a tuple for DT (decision table) 
Step 1: Check if new data set conflicts with any existing 

rules with no change in condition attributes. (i.e. a tuple 
already exists such that, the change is only in decision 
attributes) CASE 2 – Total Contradiction 

for each p in P 
if ( Dc=pc and Dd≠pd ) then 
for each R in DT 
if ( Dc=Rc ) then 
goto Step 6 
else goto Step 2 
END if 
END for 
END if 
END for 
Step 2: Check if the new data set conflicts with any 

existing rules with a change in condition attributes. CASE 3 – 
Conflict resolution 

for each p in P 
 if ( Dc=pc and Dd≠pd ) then 
for each R in DT 
if ( Dc≠Rc ) then 
goto Step 7 
else goto Step 3 
END if 
END for 
END if 
END for 
Step 3: Check if the new data set conflicts with one rule 

and another rule dominates it. CASE 3 – Conflict resolution. 
flag:=0 
for each p in P 
if ( Dc=pc and Dd=pd ) then 
flag:=1 
END if 
END for 
for each p in P 
if ( Dc=pc and Dd≠pd ) then 
for each R in DT 
if ( Dc≠Rc ) AND (flag=1) then 
goto Step 7 
else goto Step 4 
END if 
END for 
END if 
END for 
Step 4: Check if the data set is neither conflicting nor 

dominated by the existing rules. CASE – 4 
count:=0 
for each p in P 
if ( Dc≠pc ) then 
count++ 
END if 

END for 
if ( count= |rules|) then 
Goto Step 8 
else goto Step 3 
END if 
Step 5: Check if the new data set is dominated by existing 

rules. CASE – 1 
for each p in P 
if ( Dc=pc and Dd=pd ) then 
Add the tuple to decision table 
END if 
END for 
Step 6: Total Contradiction 
Step 6.1: Add p to Inconsistent rules  
Step 6.2: Remove the conflicting rule from the set of rules 
Step 6.3: Apply ELEM to D, and the new rules:= p’ 
Step 6.4: Update Inconsistent rules by adding p’ 
Step 6.5: Add the tuple to decision table 
Step 7: Conflict Resolution 
Step 7.1: Retrieve the tuples [{R}] covered by the 

conflicting rule p 
Step 7.2: Apply ELEM to D + {R}, and the new rules:=p’ 
Step 7.3: Update the consistent rules by adding p’ 
Step 7.4: Add the tuple to decision table 
Step 8: Neither a conflict nor domination, but the existing 

rules do not cover the new data set 
Step 8.1: Apply ELEM to D, and the new rules:=p’ 
Step 8.2: Update the consistent rules by adding p’ 
Step 8.3: Add the tuple to decision table 
In the similar way, when a tuple is deleted, 
If there is a rule that covers only the deleted record, then it 

can be removed 
 else, only the tuple is removed from the table and the 

rule sets remain intact. 
1) Test Cases for Incremental Approach 

Consider the TABLE I and now the rule sets P are 
1. (Temperature, very high) ⇒ (Flu, yes) covers 1st tuple. 
2. (Nausea, yes) ⇒ (Flu, yes) covers 2nd and 4th tuple. 
3. (Weakness, no) & (Nausea, no) ⇒ (Flu, no) covers 3rd and 
6th tuple. 
4. (Temperature, high) & (weakness, yes) ⇒ ((Flu, yes) 
covers 5th tuple.  
5. (Temperature, normal) & (Nausea, no) ⇒ (Flu, no) covers 
7th tuple. 
 

Example for case 1: 
S 
N
o

Temperature Headach
e 

Weaknes
s 

Nause
a 

Flu

8 Normal Yes No No No

 
Step 5: Dominating existing rules 
For each rule p in P 
if ( (Dc{(Temperature , normal) & (Nausea , no)} = pc 

{(Temperature , normal ) & (Nausea , no)}) &  
(Dd {(flu , yes)} = pd {(flu , yes)})) i.e, the new data set 

dominates the existing rules 
then 
Add 8th tuple to the decision table and no change in the 
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existing rules. 
End if 
End for 

 

Fig. 3. Case 1 

 
Example for case 2: 

S 
N
o 

Temperature Headach
e 

Weaknes
s 

Nause
a 

Flu

9 High Yes No Yes No

 
Step 1:  Total contradiction 
Check if new data set conflicts with any existing rules with 

no change in condition attributes. (i.e, a tuple already exists 
such that, the change is only in decision attributes) 

for each p in P 
if ((Dc{(Nausea , yes)} = pc{(Nausea , yes)}) & 
(Dd{(flu , yes)} ≠ pd{(flu , no)})) i.e, the new data set is 

conflicted by the 3rd rule in the decision  
Attribute, then 
for each R in decision table(DT) 
if(Dc{(Temperature , high) & (Headache , yes) & 

(Weakness , no ) & (Nausea , no)} = 
 Rc{(Temperature , high) & (Headache , yes) & 

(Weakness , no ) & (Nausea , no)}) 
i.e the new data set is totally contradicted by the 2nd tuple 

and 2nd  rule , then 
GOTO step 6. 
Step 6: Total contradiction 
Step 6.1 Add 2nd rule to the Inconsistent rules. 
Step 6.2 Remove the 2nd rule from the set of rules. 
Step 6.3 Apply ELEM to the new data set 9 and generate 

new rules p′. 
Step 6.4 Update the inconsistent rules by adding p′. 
Step 6.5 Add 9th tuple to the decision table. 

 
Example for case 3: 

S 
N
o 

Temperature Headach
e 

Weaknes
s 

Nause
a 

Flu

10 high yes Yes no no

 
Step 2: Conflict resolution 

 

 

Fig. 4. Case 2 

Check if the new data set conflicts with any existing rules 
with a change in condition attributes. 

for each p in P 
if((Dc{(Temperature,high)&(Weakness,yes)}=pc{( Temp

erature , high) & (Weakness , yes)}) & 
Dd{(flu , no)} ≠ pd{(flu , yes)}) i.e., new data set is 

conflicted by 4th rule since it has same 
 Condition attributes and different decision attribute which 

covers 5th tuple, then 
for each R in decision table(DT) 
if(Dc{(Temperature , high) & (Headache , yes) & 

(Weakness , yes) & (Nausea , no)} ≠  
Rc{(Temperature , high) & (Headache , no) & (Weakness , 

yes) & (Nausea , no)} i.e, the new data set  
has different condition attributes to the 5th tuple , then 
GOTO step 7. 
Step 7:  Conflict resolution 
Step 7.1 Retrieve 5th tuple covered by the conflicting rule. 
Step 7.2 Apply ELEM to new data set and the 5th tuple and 

generate new rules p′. 
Step 7.3 Update the consistent rules by p′. 
Step 7.4 Add the new tuple to the decision table. 

 
Example for case 3: 

S 
N
o

Temperature Headach
e 

Weaknes
s 

Nause
a 

Flu

11 Very High No No No No

Step 3: Conflict resolution 
Check if the new data set conflicts with one rule and 

another rule dominates it. 
Let us consider flag:=0 
for each p in P 
if((Dc{(Weakness , no ) & (Nausea , no)} = pc{(Weakness , 

no ) & (Nausea , no)}) &  
Dd{(flu , no)} = pd{(flu , no)}) i.e the new data set is 

dominated by the 3rd rule , then 
Flag:=1 
End if 
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Fig. 5. Case 3 

if((Dc{(Temperature , very high)} = pc{(Temperature , 
very high)}) & Dd{(flu , no) ≠  pd {(flu , yes)}) 

i.e, the new data set is conflicted by the 1st rule which 
covers 1st tuple then , 

for each R in decision table(DT) 
if(((Dc{(Temperature , very high) & (Headache , no) & 

(Weakness , no ) & (Nausea , no)} ≠ 
 Rc{(Temperature , very high) & (Headache , yes) & 

(Weakness , yes ) & (Nausea , no)}) AND  
(flag:=1))  i.e, the new data set is conflicted by the 1st rule 

with no similar tuple and flag =1 is  
satisfied , then 
GOTO step 7 which is already described above. 
 Same procedure has to be followed by retaining the 

dominated rule and the rules are updated. 
 

 

Fig. 6. Case 4 

Example for case 4: 
S 

No 
Temperat

ure 
Headach

e 
Weaknes

s 
Nause

a 
Flu

12 High No moderate no Ye
s 

 
Step 4:  Check if the data set is neither conflicting nor 

dominated by the existing rules. 
Let us consider count:=0 
for each p in P 

if((Dc{(Temperature , high) & (Headache , no) & 
(Weakness , moderate ) & (Nausea , no)} ≠ pc{∅}) 

i.e no rule dominates or conflicts the new data set , then 
increment count  

count = 5 (checks for all the five rules) 
End if 
End for 
if(count = |rules|) i.e, count(5)=|rules|(5) is satisfied then 
GOTO step 8 
Step 8: 
Step 8.1 Apply LEM1 to new data set and generate new 

rules p′. 
 Step 8.2 Update the consistent rules by p′. 

Step 8.3 Add the new tuple to the decision table. 
END 

Thus, all the cases are tested and verified with examples as 
shown above. This shows that the algorithm followed 
through all the paths as it was specified. 

 V.

 

CONCLUSION

 In this paper, we proposed an enhanced version of LEM1 
i.e. ELEM, a rule induction algorithm which has several 
advantages over the original algorithm. First, it requires less 
number of database scans. Secondly, it facilitates in 
providing an incremental approach which updates the rule 
sets when there is a change in data in the information system. 
We also dealt with addition and deletion of tuples in the 
decision table. However, there is enough scope for 
improvement in the proposed algorithm. For example, an 
efficient technique to deal with the problem of generation of 
global covers when there is a change in data. Also, one may 
need to have knowledge about how often to check for 
changes in the Information System which plays a crucial role 
in implementing the incremental approach. 
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