
 
 

 

  
Abstract—Fine grain methods for parallelization of the H.264 

decoder have good latency performance and less memory usage. 
However, they could not reach the scalability of coarse grain 
approaches although assuming a well-designed entropy decoder 
which can feed the increasing number of parallel working cores. 
We would like to introduce a GOP (Group of Pictures) level 
approach due to its high scalability, mentioning solution 
approaches for the well-known memory issues. Our design 
revokes the need to a scanner for GOP start-codes which was 
used in the earlier methods. This approach lets all the cores 
work on the decoding task. Our experiments showed that the 
memory initialization operations may degrade the scalability of 
parallel applications substantially. The multi-core cache 
architecture appeared to be a critical point for getting the 
desired speedup. We observed a speedup of 7.63 with 8 
processors having separate caches, and a speedup of 13.35 using 
16 processors when a cache is shared by 2 processors. 
 

Index Terms—video compression, H.264 decoder, parallel 
processing, high-performance computing, image processing.  
 

I. INTRODUCTION 
Video encoding and decoding is among the tasks 

demanding very high computing performance. This demand 
keeps increasing when we consider the recent developments 
in video technologies like 3D TV and Ultra High Definition 
Video. The computation power of a home appliance may 
become insufficient to decode the huge amount of data 
needed by those applications. 

After Instruction Level Parallelism approached to 
saturation, Thread Level Parallelism gained more and more 
importance day by day. Today chip multi-processors (CMPs) 
are wide-spread, and the number of cores in a CMP is 
expected to be doubled in every 3 year [1]. This phenomenon 
increases the importance of data- parallel algorithms for 
applications needing high computing power. 

Recent works on video decoder parallelization preferred 
fine grain methods, but they could not reach the scalability of 
coarse grain schemes. In [3], authors declare a linear speedup 
for GOP approach almost in all cases. GOP approach has no 
dependency problem, so in an ideal computation 
environment it has an ideal scalability. Fine grain methods 
lead to dependencies among data partitions, and the entropy 
decoding section cannot be processed in parallel in fine-grain 
approaches. So, even with unlimited memory resources we 
cannot reach the ideal scalability. For detailed information 
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about the data dependencies in different parallel processing 
methods [7] is a good reference. 

In this paper, we introduce a GOP-level approach for 
H.264 video decoding. The main point of our design is that; it 
does not need a GOP start-code scanner. We accept that GOP 
level parallelism needs more memory resources and has long 
latency problem. We will address the memory issues in this 
paper. Latency problem can be resolved by employing hybrid 
methods as in [4]. 

Our work showed that memory bandwidth in multi-core 
architectures is the main bottleneck for highly scalable 
applications. Programs processing large amount of data has 
to deal with a huge amount of memory load-store operations. 
When each core has not a direct path to the memory for write 
and read operations the bandwidth becomes insufficient for 
parallel working cores. We will see the importance of 
efficient memory usage in the results section. In a 
data-intensive program, choosing a function inefficiently 
may cause the program run 2 times slower. 

 

II. STRUCTURE OF THE H.264 DECODER AND 
PARALLELIZATION OPPORTUNITIES 

The system first entropy decodes the coming stream. There 
are two choices for entropy coding: CAVLC and CABAC. 
CABAC is available only in the main profile and uses more 
computations for achieving a better compression. Entropy 
decoding is mostly a sequential computation and hard to 
parallelize. 

After entropy decoding the pictures are reordered and 
passed through inverse quantization. This is followed by 
inverse integer transform. Then, intra prediction or motion 
compensation is performed according to the picture type. 
Finally the picture is passed through a deblocking filter. 

There are several alternatives for data level parallelism 
offered by the structure. Figure 1 shows the data structure in a 
video sequence. The sequence is first divided into GOPs, 
each having a certain number of frames. Frames are divided 
into slices of variable sizes. Slices consist of 
macro-blocklevel is a candidate for partitioning the data to be 
decoded. 

Ref. [7] gives a good summary of the parallelization 
methods. The highest level is the Group of Pictures level 
parallelism. The video stream is divided into groups of 
pictures for enabling video control functions and 
synchronization. GOP level parallelism provides high 
scalability but requires more memory resources. Since there 
are no dependencies between GOPs, the threads do not need 
to wait for synchronization operations in this approach. 
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Figure 1: Data structure of H.264 video sequence and partitioning 

alternatives 

In frame-level parallelism, each frame is handled by one 
thread. The main problem of this approach is the frame 
referencing. In H.264 all I, P, and B frames might be 
referenced by others. This flexibility makes frame level 
parallelism hard to implement. 

Another choice is slice level parallelism. In order to ensure 
error resilience, frames are divided into slices, which are 
independent from each other. So slices might be processed in 
parallel. However, scalability of this approach is limited, 
because the number of slices is decided by the encoder. 
Besides increasing slice number results in increase in the bit 
rate. 

Recently, most popular approach is the macro-block level 
parallelism. In this approach macro-blocks are processed in 
parallel after dependencies have been resolved. Major 
problem of this approach is its dependence on a high 
performance entropy decoder. 

Finally, the finest approach is block level parallelism. 
Block level parallelism might be used with SIMD  

instructions, for operations like deblocking, IDCT and 
interpolations which are done at block level. 

 

III. PARALLELIZATION STRATEGY 
In a highly scalable model, dependencies between parallel 

threads must be as low as possible and sequential section of 
the algorithm must be minimized. 

nother important issue is efficient resource usage. 
Manager-worker architectures allocates one core in the 
system for task scheduling, and only P-1 of P processors can 
work on the parallel decoding task. So, in a 4 core CMP we 
may only expect a speed up of 3.  

Most of the parallel decoders we mentioned in related 
work part, uses a scheduling component. Besides, allocating 
one core for scheduling issue, this adds a sequential section to 
the overall decoding task. The scheduler may easily become 
insufficient for feeding the increasing number of parallel 
working cores.  

Scalability of a fine grain scheme is limited due to the 
dependencies among the macro-blocks. Before starting to 
decode a macro-block the system needs to wait for all other 

referenced macro-blocks be decoded. Another limit for the 
fine grain methods is the speed of the entropy decoder. A 
separate core should be employed in entropy decoding, and 
this sequential decoding must be very fast for feeding lots of 
parallel macro-block decoders. 

Here we present a GOP level scheme that doesn't need a 
start-code scanner: Scanless GOP. In GOP level parallelism 
each group of pictures is handled in a processor as shown in 
figure 2. We employ closed GOPs in our evaluation for the 
sake of simplicity, but methods for open GOP structures are 
also introduced in previous works like [1] and [2]. In a closed 
GOP structure there aren't any references between two GOPs. 
So each GOP can be decoded in a separate core without any 
dependency..  

However there is another issue limiting the scalability of 
the system: Before starting to decode a GOP, a process must 
know the start point of it. In previous approaches a separate 
process scans the input stream for GOP start-codes, cuts the 
stream into segments and places these in a task queue. 

Actually, we do not need to search for these start codes 
every time we decode the video. We know their positions in 
the stream during the encoding process. So these start points 
can be written in the header of the video stream or in a 
separate file. For our evaluation, we produced the start points 
file by means of the decoder, but the same job may easily be 
done by the encoder as well. Before staring to decode, each 
process can read these start points into an array, and decode 
its own portion without waiting for anything. 

After this observation we may suggest the following 
parallel decoding algorithm:  

 

 
Figure 2: GOP-level parallelization 

1. Read the start points into an array. 
2. i = process id number 
3. While (not end of the stream) 
4. Decode (i)th GOP 
5. i = i + (total process number) 
The forth step of the algorithm includes writing the 

decoded frames into a disk or a display device or a collector 
process, but we will exclude this time in our performance 
calculations. 

 

IV. EXPERIMENTAL METHODOLOGY 
In our performance evaluations, we used the H.264/AVC 
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reference software ”JM” as the starting point. After 
parallelizing the program according to our method, we tested 
our parallel algorithm using a cluster of 5 IBM x3550 
machines. Each machine has two 4-core Xeon 5500 series 
processors. We have tested 3 different situations using 3 
different GOP sizes. GOP size affects the performance since 
it has a direct effect on the memory usage. In order to see the 
performance on a bounty of computing resources, first we ran 
just one process in each machine. Then we performed a test 
on one machine only, to see the performance on a 
shared-memory platform. And then, we checked the 
performance using all of the 40 cores. We used Intel's VTune 
to profile the processor events during the program execution. 
Profiling results has been very helpful for finding out the 
bottlenecks of the parallel program. Finally, we tested the 
run-time and speedup in different machines having different 
multi-core cache architectures to see the effect of cache 
structure on scalability and to see the performance in 
personal computers. 

 

V. SPEEDUP IMPROVEMENT WHEN THE START-CODE 
SCANNER IS REMOVED 

The speedup gain in coarse grain approaches may be 
limited in CMP architectures due to memory issues. If we 
also add some sequential scheduling part to the overall 
parallel program we might encounter with very disappointing 
results like in figure 3. Here we see that in a 2 x 4 core 
machine, the run-time of the algorithm using a start-code 
scanner hardly decreases from 13.286 sec to 11.057 sec in the 
minimum case when using 6 cores and than starts to increase 
again.  

 

 
Figure 3: Speedup comparison of the algorithm with start-code scanner  vs. 

the algorithm without a start-code scanner 

 
Figure 4: Run-time comparison of the algorithm with start-code scanner  vs. 

the algorithm without a start-code 

In figure 3 we see that when we remove the scanner from 
the algorithm by using ready start codes, we can get the run 
time decrease from 13.233 sec to 6.105 sec in the minimum 
case when using 7 cores. 

Removing the GOP start-code scanner makes our 
algorithm purely parallel. Now each process is decoding its 
own part of data without sharing data with other processes. 
Besides there is not any scheduler or manager processes 
assigning tasks to others. So ideally, this algorithm should let 
each process work without any synchronization. 

We can see in figure 3 that maximum speedup jumps from 
1.2 to 2.16 when we remove the scanner. 

 

VI. PERFORMANCE IN MULTI MACHINES 
We have seen that the speedup in 1 machine is bounded at 

2.16. That is not compatible with the expected ideal 
performance of this algorithm. In order to be sure we can 
check the results in figure 5. Here we see the speedups for 
different GOP sizes when we run only 1 process in each 
machine. This figure is very close to what we expect: we see 
a very beautiful, linear, one-to-one speedup! 

 
Figure 5: Speedup when only one process is run in each machine 

To be sure, we may also check what would happen if we 
used all the available 40 cores in the 5 machines. Figure 6 
shows that we can get a maximum of 11 times speedup when 
we keep the GOP size very small. GOP size affects the 
speedup, because it affects the memory usage. A speedup of 
11 is reasonable. It approximately equals the speedup in 1 
machine, 2.16, times the number of machines, 5.  

But, what is the bottleneck in shared-memory platforms? 

 
Figure 6: Speedup when we use all the 40 cores in 5 machines 

 
We see the impact of parallelization on branch 

mispredictions in figure 7. There is a slight increase in 
mispredicted branches. This must be due to the increase in 
instruction count. The maximum number of branch 
mispredictions is just about 420, which is a low number. 
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Figure 7: Parallelization impact on branch mispredictions 

A reason of performance degradation might be register 
allocation table stalls. We can see how RAT stall number 
changes as we increase the number of parallel working 
processors. There is a general slight increase as we see in 
figure 8. The increase in RAT stall number may be counted as 
normal, since we make all the idle cores in the machine start 
to  work.  
 

 
Figure 8: Register allocation table stalls 

 
Figure 9: Level 1 data cache misses 

 
Figure 10: L2 cache misses 

So, what causes the speedup degradation? Figure 11 takes 
us close to the answer. 189,072 resource stalls occur when 1 
core is working; this number increases as we increase the 
parallel working core number and reaches 736,559 when we 
employ 8 cores. This may explain the matter. Now, we know 

that there is a resource shortage, but which resource is not 
sufficient 

We see a surprising result in figure 9 and figure 10. Major 
result of the cache pollution is that it increases the cache 
misses. The data which is written into the cache newly causes 
replacement of the data that is already in the cache. So when 
the program needs the replaced data it has to reload it from 
the memory system. The amount of data processed by a video 
decoder is very large. It is expected that when each core 
processes 1 GOP its cache be filled quickly. So we expect a 
big number of cache misses. However, we see a pretty good 
L1 cache performance and an almost ideal L2 cache 
Performance: 17 misses at most. 

 

VII.   THE BOTTLENECK IN SHARED MEMORY PLATFORMS 
We have seen that the speedup came to saturation in a 

single machine having 8 cores in 2 processors, even though it 
produces a very good plot in multiple machines. As we 
mentioned in our conference paper [8] cache pollution is 
thought to be the main factor affecting the performance in 
chip multiprocessors. To find out the major problem we 
profiled the events during program execution by Intel'vTune.  
 

 
Figure 11: Effect of parallel processing on resource stalls 

Figure 12 gives the answer. We see that almost all of the 
resource stalls are because of load-store operations. We 
cannot even see the plot for other stalls since their number is 
too small when compared with the resource stalls due to the 
load-store operations. When 1 core is working there are 
177,117 stalls due to load-store operations. The stall number 
increases to 732,792 when all the 8 cores are working in 
parallel. We have seen that cache performance is quite good. 
So we should suspect the performance of store operations. 

 
Figure 12: Effect of parallel processing on different kinds of resource stalls 
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VIII. MOST ACTIVE FUNCTIONS 
It is the time now to check the most active functions in the 

system. Figure 13 is very interesting. Function “memset” 
takes the 70.47% of the whole system for serial execution. 
This means that most of the time is spent for setting memory 
locations to a specific value. Basically, we expect store 
operations to be faster than the load operations. Because 
during a store the processor can continue to execute other 
instructions after sending it to the memory system, it does not 
need to wait for the store operation to finish. But store 
operations are also done via cache levels. They affect the 
cache bandwidth and take longer than calculation 
instructions. When too many stores are executed one after 
another, the store buffer of the processor fills up, and this 
causes the load-store resource stalls.  

 

 
Figure 13: Most active functions in the system during serial run 

 

IX. IMPACT OF MEMORY INITIALIZATIONS 

 
Figure 14: Run time improvement after removing unnecessary memsets 

 

 
Figure 15: Speedup improvement after removing unnecessary memsets 

We noticed that most of the calls to memset function is 
done by the calloc function which allocates a location in the 
memory and initializes these locations to zero. But are all 
these initializations needed? The answer is system dependent. 
For portability reasons, in the reference software, all the 
memory allocations are done with an initialization. Not 
affecting the correct program execution for linux, we have 
changed most of the calloc functions to malloc, which 
allocates memory, but does not initialize the allocated 
addresses. We can see the great difference in run time and 
speedup in figures 14 and 15. 

We see that the runtime changed from 6.105 to 2.881, that 
is we got a speedup of 2.119 just by changing the function 
calloc to malloc in suitable places. This shows the impact of 
memory operations on the performance. The scalability of 
our algorithm also improved. The speedup due to parallel 
processing was 2.167 at most before, now we can see a 
speedup of 2.516. 

Figure 16 shows the most active functions in the system 
after the modification . We see that the percentage of the 
memset function decreased to 60.03%.  
 

 
Figure 16: Most active functions in the system during serial run after 

removing unnecessary memset functions 

We have seen that resource stalls due to the store 
operations is the main bottleneck of this application. Most of 
the execution time is used by memset function which sets a 
memory area to a specific value. This is done when resetting 
a data-structure before starting to use it for some different 
calculation. But this resetting gets very expensive when it is 
done again and again. It consumes 60% of the runtime even 
after we removed the unnecessary ones for linux operating 
system. 

The processors repeat the store operation of the same value 
for the number of items to be initialized. When we have some 
big amount of data to be initialized this results in a long 
latency. A possible way to make these memory initializations 
faster might be using the non-temporal stores which are 
offered by SSE instruction set. These instructions store the 
data directly to memory without cache allocation. So in the 
first glance, we may think that they might have a better 
scalability, because the cores will not wait for each other for 
writing to the same cache. However, they will bypass the 
cache system, only if the related address is not cached. For 
the case of memory initializations, almost all the data we deal 
with is already in the cache, because we are resetting some 
data that we have already used. So we should not be so 
hopeful about non-temporal store instructions for our 
problem. Indeed, when we changed the memset function with 
a function using non-temporal stores, we did not observe any 
speedup.  
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X. PERFORMANCE IN SHARED-MEMORY, SEPARATED-CACHE 
ARCHITECTURES 

Finally, it is time to see some good results. Till now, we 
used Intel Xeon 5500 Series processors having 4 cores. These 
processors have a “shared” L2 cache of 8MB. We may 
suspect that a shared cache may degrade the performance of 
data-intensive parallel processing. As we increase the parallel 
working core number the cache size and bandwidth available 
for each core decreases! Furthermore, during the time 
consuming data initializations, cores are trying to write to the 
same cache at the same time, causing many resource stalls.  

The results we obtained up to this point reveal that shared 
cache architectures are not suitable for highly scalable 
data-intensive parallel applications. Even though we haven't 
encountered a misprediction problem due to enough cache 
size, the store operations caused the cores wait for each other 
to write to the same cache. The performance of shared cache 
structures might be enhanced by providing a separate 
read-write port for each core in the environment. In our case, 
we saw that even though the cores are working on totally 
different data, they had to wait for using the shared resources. 
We measured 177,117 stalls due to load-store operations 
when working with 1 core. The stall number increased to 
732,792 when all the 8 cores joined the calculation. 

We ported our program to IBM System P5 595, a 64-core 
SMP. In the system there are 8 MCMs (multichip modules) 
operating on a shared memory. Each MCM has 8 cores, 
shared 7.6 MB L2 and 144 MB L3 caches. So up to 8 
processes this system will behave like a separate cache 
architecture. After 8 processes we will see the affect of cache 
sharing. We see the result in figure 17.  

 
Figure 17: Speedup and run time plot for an SMP with 8 multichip modules 

having 8 cores in each and one cache system per multichip module 

XI. PERFORMANCE IN A PERSONAL COMPUTER 

 
Figure 17: The architecture of AMD Turion 64 X2 mobile technology 

processor 

We saw a pretty good performance in the SMP server. But 

we should also check the performance in a machine having 
less computing resources. It has been claimed that GOP level 
parallelization may be suitable for high performance 
computing platforms, but it is hard to apply in personal 
devices. 

Therefore, we tested the performance of our algorithm in a 
different platform. We used a laptop computer having AMD 
Turion 64 X2 dual-core mobile technology processor. The 
architecture of this processor is given in figure 18. Here we 
compare this machine with the IBM x3550 machine. We see 
that in this processor there are two separate level 2 caches for 
each core. Each cache is 512KB. We should not be surprised 
that the machine with AMD dual core processor is slower 
because it is a notebook having 1.8 GHz core speed and a 
total of 1 MB L2 cache, while the machine with the Intel 
processor is a server having 2.5 GHz core speed and a total of 
8 MB L2 cache. 

Figure 19 shows the impact of cache architecture on the 
scalability. We see that we can get a speedup of 1.962 with 2 
cores in a shared memory platform if we use a separate cache 
for each core. This is almost an ideal result! This result shows 
that separated caches are more suitable for multi-core 
machines in order to get a better scalability. The result also 
shows the efficiency of GOP level partitioning without a 
start-code scanner in environments having humble 
computing resources.  

 
Figure 18: Speedup comparison of a separate cache PC with a server, 

showing the efficiency of the algorithm in personal devices 

 

XII. RELATED WORK 
First GOP-level parallel video decoder was introduced a 

long time ago in [2]. It is a real-time MPEG-1 decoder 
consisting of parallel processing 16 nodes having distributer 
and collector components. The task of the distributer is to cut 
the video sequence into segments. An other GOP level 
parallelization of MPEG-1 encoder for MIMD 
multiprocessors was presented by Shen [9].  

We see a real-time parallel MPEG-2 decoder in [3]. Both 
GOP-level and slice-level approaches are evaluated. This 
system also has scan and display processes. Scan process is 
responsible for reading the encoded video from the disk and 
placing encoded GOPs into a task queue. For GOP approach 
they observed almost linear speedup in all cases. The 
bottleneck of the design is that, the memory requirement 
increases with the size of the GOP, size of the picture and 
number of parallel processors used. 

Various slice level parallelization methods have been 
suggested. Lee introduced a slice level parallel MPEG-2 
decoder for HDTV [10]. A manager-worker style parallel 
H.263 decoder was implemented by Lehtoraanta [11] using 1 
manger and 3 worker DSP cores.  

A hierarchical parallelization approach for H.264 encoder 
is introduced in [4]. In this paper authors suggest that a 
GOP-level scheme and a slice-level scheme might be used 
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together for overcoming the latency problem. Another 
hierarchical method was proposed by Chen [14]. In this study 
frame level and slice level parallelism employed together. 
When the frame level saturates, slice level parallelization is 
used for further partitioning. They declare a 4.5X speedup in 
a machine having 8 cores.  

A task level decomposition method has been introduced by 
Gulati [12]. His system both encodes and decodes H.264 
video sequences in real time by means of a control processor 
and 3 DSPs. Schoffmann [13] also suggests a pipeline model, 
but at macro-block level.  

Among fine grain methods, 2D-wave approach [5], and 
3D-wave technique [6] declares pretty high scalabilities. 
However, fine-grain approaches depend on a well designed 
CABAC accelerator, since entropy decoding of a single slice 
or frame is mostly sequential. 
 

XIII. CONCLUSIONS 
We have introduced a GOP level parallelization method 

for the H.264 video decoder. Our method revokes the need 
for a start-code scanner, thus lets all the processors in the 
environment contribute to the decoding task. This technique 
also lets the processors work without waiting for a new task 
assignment. So in the ideal computation environment it has 
perfect scalability. 

We have observed a one-to-one linear speedup in parallel 
working machines. This is because the memory resources do 
not change when we increase the parallel working processor 
number. So we can observe a speedup close to ideal. 

The speed of memory store operation degrades the 
speedup in shared cache platforms. As the parallel working 
processors increase, the number of simultaneous store 
operations also increase. This causes a lot of resource stalls 
due to fullness of the store buffer. We saw a maximum 
speedup of 2.516 when working with 6 processors, and the 
speedup got close to saturation after 4 processors. 

We saw that memory load-store operations are very 
expensive in shared cache platforms, and they should be 
carefully utilized. When we replaced the calloc function with 
malloc, both of which are doing memory space allocation but 
calloc is also doing initialization of allocated memory, we got 
a run-time decrease from 6.105 sec to 2.881 sec, and 
maximum parallel processing speedup increased from 2.167 
to 2.516. 

Finally, we saw the effect of multi-core cache architecture 
on scalability. Our program performed very close to the ideal 
line up to 8 processes, in an environment having 8 L2-L3 
cache systems, after 8 processes we observed a deviation 
from the ideal line and saw a speedup of 13.35 using 16 cores. 
Our test on a personal computer showed that the algorithm is 
also applicable in platforms having not-so-strong computing 
resources. 
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