

Abstract—Fine grain methods for parallelization of the H.264

decoder have good latency performance and less memory usage.
However, they could not reach the scalability of coarse grain
approaches although assuming a well-designed entropy decoder
which can feed the increasing number of parallel working cores.
We would like to introduce a GOP (Group of Pictures) level
approach due to its high scalability, mentioning solution
approaches for the well-known memory issues. Our design
revokes the need to a scanner for GOP start-codes which was
used in the earlier methods. This approach lets all the cores
work on the decoding task. Our experiments showed that the
memory initialization operations may degrade the scalability of
parallel applications substantially. The multi-core cache
architecture appeared to be a critical point for getting the
desired speedup. We observed a speedup of 7.63 with 8
processors having separate caches, and a speedup of 13.35 using
16 processors when a cache is shared by 2 processors.

Index Terms—video compression, H.264 decoder, parallel
processing, high-performance computing, image processing.

I. INTRODUCTION
Video encoding and decoding is among the tasks

demanding very high computing performance. This demand
keeps increasing when we consider the recent developments
in video technologies like 3D TV and Ultra High Definition
Video. The computation power of a home appliance may
become insufficient to decode the huge amount of data
needed by those applications.

After Instruction Level Parallelism approached to
saturation, Thread Level Parallelism gained more and more
importance day by day. Today chip multi-processors (CMPs)
are wide-spread, and the number of cores in a CMP is
expected to be doubled in every 3 year [1]. This phenomenon
increases the importance of data- parallel algorithms for
applications needing high computing power.

Recent works on video decoder parallelization preferred
fine grain methods, but they could not reach the scalability of
coarse grain schemes. In [3], authors declare a linear speedup
for GOP approach almost in all cases. GOP approach has no
dependency problem, so in an ideal computation
environment it has an ideal scalability. Fine grain methods
lead to dependencies among data partitions, and the entropy
decoding section cannot be processed in parallel in fine-grain
approaches. So, even with unlimited memory resources we
cannot reach the ideal scalability. For detailed information

Manuscript received September 26, 2010 ; revised January 24, 2011.
Authors are with the Electronics Engineering,Collage of Electrical

Engineering and Computer Science, National Taiwan University, Taiwan,
R.O.C

about the data dependencies in different parallel processing
methods [7] is a good reference.

In this paper, we introduce a GOP-level approach for
H.264 video decoding. The main point of our design is that; it
does not need a GOP start-code scanner. We accept that GOP
level parallelism needs more memory resources and has long
latency problem. We will address the memory issues in this
paper. Latency problem can be resolved by employing hybrid
methods as in [4].

Our work showed that memory bandwidth in multi-core
architectures is the main bottleneck for highly scalable
applications. Programs processing large amount of data has
to deal with a huge amount of memory load-store operations.
When each core has not a direct path to the memory for write
and read operations the bandwidth becomes insufficient for
parallel working cores. We will see the importance of
efficient memory usage in the results section. In a
data-intensive program, choosing a function inefficiently
may cause the program run 2 times slower.

II. STRUCTURE OF THE H.264 DECODER AND
PARALLELIZATION OPPORTUNITIES

The system first entropy decodes the coming stream. There
are two choices for entropy coding: CAVLC and CABAC.
CABAC is available only in the main profile and uses more
computations for achieving a better compression. Entropy
decoding is mostly a sequential computation and hard to
parallelize.

After entropy decoding the pictures are reordered and
passed through inverse quantization. This is followed by
inverse integer transform. Then, intra prediction or motion
compensation is performed according to the picture type.
Finally the picture is passed through a deblocking filter.

There are several alternatives for data level parallelism
offered by the structure. Figure 1 shows the data structure in a
video sequence. The sequence is first divided into GOPs,
each having a certain number of frames. Frames are divided
into slices of variable sizes. Slices consist of
macro-blocklevel is a candidate for partitioning the data to be
decoded.

Ref. [7] gives a good summary of the parallelization
methods. The highest level is the Group of Pictures level
parallelism. The video stream is divided into groups of
pictures for enabling video control functions and
synchronization. GOP level parallelism provides high
scalability but requires more memory resources. Since there
are no dependencies between GOPs, the threads do not need
to wait for synchronization operations in this approach.

Coarse Grain Parallelization of H.264 Video Decoder and
Memory Bottleneck in Multi-Core Architectures

Ahmet Gürhanlı, Charlie Chung-Ping Chen, and Shih-Hao Hung

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

375

Figure 1: Data structure of H.264 video sequence and partitioning

alternatives

In frame-level parallelism, each frame is handled by one
thread. The main problem of this approach is the frame
referencing. In H.264 all I, P, and B frames might be
referenced by others. This flexibility makes frame level
parallelism hard to implement.

Another choice is slice level parallelism. In order to ensure
error resilience, frames are divided into slices, which are
independent from each other. So slices might be processed in
parallel. However, scalability of this approach is limited,
because the number of slices is decided by the encoder.
Besides increasing slice number results in increase in the bit
rate.

Recently, most popular approach is the macro-block level
parallelism. In this approach macro-blocks are processed in
parallel after dependencies have been resolved. Major
problem of this approach is its dependence on a high
performance entropy decoder.

Finally, the finest approach is block level parallelism.
Block level parallelism might be used with SIMD

instructions, for operations like deblocking, IDCT and
interpolations which are done at block level.

III. PARALLELIZATION STRATEGY
In a highly scalable model, dependencies between parallel

threads must be as low as possible and sequential section of
the algorithm must be minimized.

nother important issue is efficient resource usage.
Manager-worker architectures allocates one core in the
system for task scheduling, and only P-1 of P processors can
work on the parallel decoding task. So, in a 4 core CMP we
may only expect a speed up of 3.

Most of the parallel decoders we mentioned in related
work part, uses a scheduling component. Besides, allocating
one core for scheduling issue, this adds a sequential section to
the overall decoding task. The scheduler may easily become
insufficient for feeding the increasing number of parallel
working cores.

Scalability of a fine grain scheme is limited due to the
dependencies among the macro-blocks. Before starting to
decode a macro-block the system needs to wait for all other

referenced macro-blocks be decoded. Another limit for the
fine grain methods is the speed of the entropy decoder. A
separate core should be employed in entropy decoding, and
this sequential decoding must be very fast for feeding lots of
parallel macro-block decoders.

Here we present a GOP level scheme that doesn't need a
start-code scanner: Scanless GOP. In GOP level parallelism
each group of pictures is handled in a processor as shown in
figure 2. We employ closed GOPs in our evaluation for the
sake of simplicity, but methods for open GOP structures are
also introduced in previous works like [1] and [2]. In a closed
GOP structure there aren't any references between two GOPs.
So each GOP can be decoded in a separate core without any
dependency..

However there is another issue limiting the scalability of
the system: Before starting to decode a GOP, a process must
know the start point of it. In previous approaches a separate
process scans the input stream for GOP start-codes, cuts the
stream into segments and places these in a task queue.

Actually, we do not need to search for these start codes
every time we decode the video. We know their positions in
the stream during the encoding process. So these start points
can be written in the header of the video stream or in a
separate file. For our evaluation, we produced the start points
file by means of the decoder, but the same job may easily be
done by the encoder as well. Before staring to decode, each
process can read these start points into an array, and decode
its own portion without waiting for anything.

After this observation we may suggest the following
parallel decoding algorithm:

Figure 2: GOP-level parallelization

1. Read the start points into an array.
2. i = process id number
3. While (not end of the stream)
4. Decode (i)th GOP
5. i = i + (total process number)
The forth step of the algorithm includes writing the

decoded frames into a disk or a display device or a collector
process, but we will exclude this time in our performance
calculations.

IV. EXPERIMENTAL METHODOLOGY
In our performance evaluations, we used the H.264/AVC

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

376

reference software ”JM” as the starting point. After
parallelizing the program according to our method, we tested
our parallel algorithm using a cluster of 5 IBM x3550
machines. Each machine has two 4-core Xeon 5500 series
processors. We have tested 3 different situations using 3
different GOP sizes. GOP size affects the performance since
it has a direct effect on the memory usage. In order to see the
performance on a bounty of computing resources, first we ran
just one process in each machine. Then we performed a test
on one machine only, to see the performance on a
shared-memory platform. And then, we checked the
performance using all of the 40 cores. We used Intel's VTune
to profile the processor events during the program execution.
Profiling results has been very helpful for finding out the
bottlenecks of the parallel program. Finally, we tested the
run-time and speedup in different machines having different
multi-core cache architectures to see the effect of cache
structure on scalability and to see the performance in
personal computers.

V. SPEEDUP IMPROVEMENT WHEN THE START-CODE
SCANNER IS REMOVED

The speedup gain in coarse grain approaches may be
limited in CMP architectures due to memory issues. If we
also add some sequential scheduling part to the overall
parallel program we might encounter with very disappointing
results like in figure 3. Here we see that in a 2 x 4 core
machine, the run-time of the algorithm using a start-code
scanner hardly decreases from 13.286 sec to 11.057 sec in the
minimum case when using 6 cores and than starts to increase
again.

Figure 3: Speedup comparison of the algorithm with start-code scanner vs.

the algorithm without a start-code scanner

Figure 4: Run-time comparison of the algorithm with start-code scanner vs.

the algorithm without a start-code

In figure 3 we see that when we remove the scanner from
the algorithm by using ready start codes, we can get the run
time decrease from 13.233 sec to 6.105 sec in the minimum
case when using 7 cores.

Removing the GOP start-code scanner makes our
algorithm purely parallel. Now each process is decoding its
own part of data without sharing data with other processes.
Besides there is not any scheduler or manager processes
assigning tasks to others. So ideally, this algorithm should let
each process work without any synchronization.

We can see in figure 3 that maximum speedup jumps from
1.2 to 2.16 when we remove the scanner.

VI. PERFORMANCE IN MULTI MACHINES
We have seen that the speedup in 1 machine is bounded at

2.16. That is not compatible with the expected ideal
performance of this algorithm. In order to be sure we can
check the results in figure 5. Here we see the speedups for
different GOP sizes when we run only 1 process in each
machine. This figure is very close to what we expect: we see
a very beautiful, linear, one-to-one speedup!

Figure 5: Speedup when only one process is run in each machine

To be sure, we may also check what would happen if we
used all the available 40 cores in the 5 machines. Figure 6
shows that we can get a maximum of 11 times speedup when
we keep the GOP size very small. GOP size affects the
speedup, because it affects the memory usage. A speedup of
11 is reasonable. It approximately equals the speedup in 1
machine, 2.16, times the number of machines, 5.

But, what is the bottleneck in shared-memory platforms?

Figure 6: Speedup when we use all the 40 cores in 5 machines

We see the impact of parallelization on branch

mispredictions in figure 7. There is a slight increase in
mispredicted branches. This must be due to the increase in
instruction count. The maximum number of branch
mispredictions is just about 420, which is a low number.

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

377

Figure 7: Parallelization impact on branch mispredictions

A reason of performance degradation might be register
allocation table stalls. We can see how RAT stall number
changes as we increase the number of parallel working
processors. There is a general slight increase as we see in
figure 8. The increase in RAT stall number may be counted as
normal, since we make all the idle cores in the machine start
to work.

Figure 8: Register allocation table stalls

Figure 9: Level 1 data cache misses

Figure 10: L2 cache misses

So, what causes the speedup degradation? Figure 11 takes
us close to the answer. 189,072 resource stalls occur when 1
core is working; this number increases as we increase the
parallel working core number and reaches 736,559 when we
employ 8 cores. This may explain the matter. Now, we know

that there is a resource shortage, but which resource is not
sufficient

We see a surprising result in figure 9 and figure 10. Major
result of the cache pollution is that it increases the cache
misses. The data which is written into the cache newly causes
replacement of the data that is already in the cache. So when
the program needs the replaced data it has to reload it from
the memory system. The amount of data processed by a video
decoder is very large. It is expected that when each core
processes 1 GOP its cache be filled quickly. So we expect a
big number of cache misses. However, we see a pretty good
L1 cache performance and an almost ideal L2 cache
Performance: 17 misses at most.

VII. THE BOTTLENECK IN SHARED MEMORY PLATFORMS
We have seen that the speedup came to saturation in a

single machine having 8 cores in 2 processors, even though it
produces a very good plot in multiple machines. As we
mentioned in our conference paper [8] cache pollution is
thought to be the main factor affecting the performance in
chip multiprocessors. To find out the major problem we
profiled the events during program execution by Intel'vTune.

Figure 11: Effect of parallel processing on resource stalls

Figure 12 gives the answer. We see that almost all of the
resource stalls are because of load-store operations. We
cannot even see the plot for other stalls since their number is
too small when compared with the resource stalls due to the
load-store operations. When 1 core is working there are
177,117 stalls due to load-store operations. The stall number
increases to 732,792 when all the 8 cores are working in
parallel. We have seen that cache performance is quite good.
So we should suspect the performance of store operations.

Figure 12: Effect of parallel processing on different kinds of resource stalls

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

378

VIII. MOST ACTIVE FUNCTIONS
It is the time now to check the most active functions in the

system. Figure 13 is very interesting. Function “memset”
takes the 70.47% of the whole system for serial execution.
This means that most of the time is spent for setting memory
locations to a specific value. Basically, we expect store
operations to be faster than the load operations. Because
during a store the processor can continue to execute other
instructions after sending it to the memory system, it does not
need to wait for the store operation to finish. But store
operations are also done via cache levels. They affect the
cache bandwidth and take longer than calculation
instructions. When too many stores are executed one after
another, the store buffer of the processor fills up, and this
causes the load-store resource stalls.

Figure 13: Most active functions in the system during serial run

IX. IMPACT OF MEMORY INITIALIZATIONS

Figure 14: Run time improvement after removing unnecessary memsets

Figure 15: Speedup improvement after removing unnecessary memsets

We noticed that most of the calls to memset function is
done by the calloc function which allocates a location in the
memory and initializes these locations to zero. But are all
these initializations needed? The answer is system dependent.
For portability reasons, in the reference software, all the
memory allocations are done with an initialization. Not
affecting the correct program execution for linux, we have
changed most of the calloc functions to malloc, which
allocates memory, but does not initialize the allocated
addresses. We can see the great difference in run time and
speedup in figures 14 and 15.

We see that the runtime changed from 6.105 to 2.881, that
is we got a speedup of 2.119 just by changing the function
calloc to malloc in suitable places. This shows the impact of
memory operations on the performance. The scalability of
our algorithm also improved. The speedup due to parallel
processing was 2.167 at most before, now we can see a
speedup of 2.516.

Figure 16 shows the most active functions in the system
after the modification . We see that the percentage of the
memset function decreased to 60.03%.

Figure 16: Most active functions in the system during serial run after

removing unnecessary memset functions

We have seen that resource stalls due to the store
operations is the main bottleneck of this application. Most of
the execution time is used by memset function which sets a
memory area to a specific value. This is done when resetting
a data-structure before starting to use it for some different
calculation. But this resetting gets very expensive when it is
done again and again. It consumes 60% of the runtime even
after we removed the unnecessary ones for linux operating
system.

The processors repeat the store operation of the same value
for the number of items to be initialized. When we have some
big amount of data to be initialized this results in a long
latency. A possible way to make these memory initializations
faster might be using the non-temporal stores which are
offered by SSE instruction set. These instructions store the
data directly to memory without cache allocation. So in the
first glance, we may think that they might have a better
scalability, because the cores will not wait for each other for
writing to the same cache. However, they will bypass the
cache system, only if the related address is not cached. For
the case of memory initializations, almost all the data we deal
with is already in the cache, because we are resetting some
data that we have already used. So we should not be so
hopeful about non-temporal store instructions for our
problem. Indeed, when we changed the memset function with
a function using non-temporal stores, we did not observe any
speedup.

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

379

X. PERFORMANCE IN SHARED-MEMORY, SEPARATED-CACHE
ARCHITECTURES

Finally, it is time to see some good results. Till now, we
used Intel Xeon 5500 Series processors having 4 cores. These
processors have a “shared” L2 cache of 8MB. We may
suspect that a shared cache may degrade the performance of
data-intensive parallel processing. As we increase the parallel
working core number the cache size and bandwidth available
for each core decreases! Furthermore, during the time
consuming data initializations, cores are trying to write to the
same cache at the same time, causing many resource stalls.

The results we obtained up to this point reveal that shared
cache architectures are not suitable for highly scalable
data-intensive parallel applications. Even though we haven't
encountered a misprediction problem due to enough cache
size, the store operations caused the cores wait for each other
to write to the same cache. The performance of shared cache
structures might be enhanced by providing a separate
read-write port for each core in the environment. In our case,
we saw that even though the cores are working on totally
different data, they had to wait for using the shared resources.
We measured 177,117 stalls due to load-store operations
when working with 1 core. The stall number increased to
732,792 when all the 8 cores joined the calculation.

We ported our program to IBM System P5 595, a 64-core
SMP. In the system there are 8 MCMs (multichip modules)
operating on a shared memory. Each MCM has 8 cores,
shared 7.6 MB L2 and 144 MB L3 caches. So up to 8
processes this system will behave like a separate cache
architecture. After 8 processes we will see the affect of cache
sharing. We see the result in figure 17.

Figure 17: Speedup and run time plot for an SMP with 8 multichip modules

having 8 cores in each and one cache system per multichip module

XI. PERFORMANCE IN A PERSONAL COMPUTER

Figure 17: The architecture of AMD Turion 64 X2 mobile technology

processor

We saw a pretty good performance in the SMP server. But

we should also check the performance in a machine having
less computing resources. It has been claimed that GOP level
parallelization may be suitable for high performance
computing platforms, but it is hard to apply in personal
devices.

Therefore, we tested the performance of our algorithm in a
different platform. We used a laptop computer having AMD
Turion 64 X2 dual-core mobile technology processor. The
architecture of this processor is given in figure 18. Here we
compare this machine with the IBM x3550 machine. We see
that in this processor there are two separate level 2 caches for
each core. Each cache is 512KB. We should not be surprised
that the machine with AMD dual core processor is slower
because it is a notebook having 1.8 GHz core speed and a
total of 1 MB L2 cache, while the machine with the Intel
processor is a server having 2.5 GHz core speed and a total of
8 MB L2 cache.

Figure 19 shows the impact of cache architecture on the
scalability. We see that we can get a speedup of 1.962 with 2
cores in a shared memory platform if we use a separate cache
for each core. This is almost an ideal result! This result shows
that separated caches are more suitable for multi-core
machines in order to get a better scalability. The result also
shows the efficiency of GOP level partitioning without a
start-code scanner in environments having humble
computing resources.

Figure 18: Speedup comparison of a separate cache PC with a server,

showing the efficiency of the algorithm in personal devices

XII. RELATED WORK
First GOP-level parallel video decoder was introduced a

long time ago in [2]. It is a real-time MPEG-1 decoder
consisting of parallel processing 16 nodes having distributer
and collector components. The task of the distributer is to cut
the video sequence into segments. An other GOP level
parallelization of MPEG-1 encoder for MIMD
multiprocessors was presented by Shen [9].

We see a real-time parallel MPEG-2 decoder in [3]. Both
GOP-level and slice-level approaches are evaluated. This
system also has scan and display processes. Scan process is
responsible for reading the encoded video from the disk and
placing encoded GOPs into a task queue. For GOP approach
they observed almost linear speedup in all cases. The
bottleneck of the design is that, the memory requirement
increases with the size of the GOP, size of the picture and
number of parallel processors used.

Various slice level parallelization methods have been
suggested. Lee introduced a slice level parallel MPEG-2
decoder for HDTV [10]. A manager-worker style parallel
H.263 decoder was implemented by Lehtoraanta [11] using 1
manger and 3 worker DSP cores.

A hierarchical parallelization approach for H.264 encoder
is introduced in [4]. In this paper authors suggest that a
GOP-level scheme and a slice-level scheme might be used

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

380

together for overcoming the latency problem. Another
hierarchical method was proposed by Chen [14]. In this study
frame level and slice level parallelism employed together.
When the frame level saturates, slice level parallelization is
used for further partitioning. They declare a 4.5X speedup in
a machine having 8 cores.

A task level decomposition method has been introduced by
Gulati [12]. His system both encodes and decodes H.264
video sequences in real time by means of a control processor
and 3 DSPs. Schoffmann [13] also suggests a pipeline model,
but at macro-block level.

Among fine grain methods, 2D-wave approach [5], and
3D-wave technique [6] declares pretty high scalabilities.
However, fine-grain approaches depend on a well designed
CABAC accelerator, since entropy decoding of a single slice
or frame is mostly sequential.

XIII. CONCLUSIONS
We have introduced a GOP level parallelization method

for the H.264 video decoder. Our method revokes the need
for a start-code scanner, thus lets all the processors in the
environment contribute to the decoding task. This technique
also lets the processors work without waiting for a new task
assignment. So in the ideal computation environment it has
perfect scalability.

We have observed a one-to-one linear speedup in parallel
working machines. This is because the memory resources do
not change when we increase the parallel working processor
number. So we can observe a speedup close to ideal.

The speed of memory store operation degrades the
speedup in shared cache platforms. As the parallel working
processors increase, the number of simultaneous store
operations also increase. This causes a lot of resource stalls
due to fullness of the store buffer. We saw a maximum
speedup of 2.516 when working with 6 processors, and the
speedup got close to saturation after 4 processors.

We saw that memory load-store operations are very
expensive in shared cache platforms, and they should be
carefully utilized. When we replaced the calloc function with
malloc, both of which are doing memory space allocation but
calloc is also doing initialization of allocated memory, we got
a run-time decrease from 6.105 sec to 2.881 sec, and
maximum parallel processing speedup increased from 2.167
to 2.516.

Finally, we saw the effect of multi-core cache architecture
on scalability. Our program performed very close to the ideal
line up to 8 processes, in an environment having 8 L2-L3
cache systems, after 8 processes we observed a deviation
from the ideal line and saw a speedup of 13.35 using 16 cores.
Our test on a personal computer showed that the algorithm is
also applicable in platforms having not-so-strong computing
resources.

REFERENCES
[1] P. Stenström, Chip-multiprocessing and Beyond, Proc. Twelfth

Int.Symp. on High-Performance Computer Architecture, 2006, pp. 109
- 109

[2] M. K. Kwong, P. T. P. Tang, and B. Lin. A Real-Time MPEG Software
Decoder Using a Portable Message-Passing Library.Mathematics and
Computer Science Division, ANL, Argonne,IL 60439-4844, 1995

[3] A. Bilas, J. Fritts, and J. Singh, Real-time parallel mpeg-2 decoding
insoftware, Parallel Processing Symposium, 1997. Proceedings., 11th
International,pp. 19703, 1-5 Apr 1997

[4] A. Rodriguez, A. Gonzalez, and M. P. Malumbres, Hierarchical
parallelization of an h.264/avc video encoder, Proc. Int. Symp. on
Parallel Computing in Electrical Engineering, 2006, pp. 36368

[5] Mauricio Alvarez Mesa, Alex Ramírez, Arnaldo Azevedo, Cor
Meenderinck, Ben Juurlink, Mateo Valero, Scalability of
Macroblock-level Parallelism for H.264 Decoding, icpads, pp.236-243,
2009 15th International Conference on Parallel and Distributed
Systems, 2009.

[6] A. Azevedo, B.H.H. Juurlink, C.H. Meenderinck, A. Terechko, J.
Hoogerbrugge, M. Alvarez, A. Ramirez, M. Valero, A Highly Scalable
Parallel Implementation of H.264, Transactions on High-Performance
Embedded Architectures and Compilers (HiPEAC), September 2009

[7] Cor Meenderinck , Arnaldo Azevedo , Ben Juurlink , Mauricio Alvarez
Mesa , Alex Ramirez, Parallel Scalability of Video Decoders,Journal of
Signal Processing Systems, v.57 n.2, p.173-194, November 2009

[8] Ahmet Gurhanli, Charlie Chung-Ping Chen, Shih-Hao Hung,
GOP-level Parallelization of the H.264 Video Decoder without a
Start-code Scanner, International Conference on Signal Processing
Systems, July 2010

[9] Shen, K., Rowe, L. A., Delp, E. J., Parallel implementation of an
MPEG-1 encoder: Faster than real time. In Proc. SPIE, digital video
compression: Algorithms and technologies 1995 (Vol. 2419, pp.
40718).

[10] Lee, C., Ho, C. S., Tsai, S.-F., Wu, C.-F., Cheng, J.-Y., Wang, L.-W.,
Implementation of digital hdtv video decoder by multiple multimedia
video processors., In International conference on consumer electronics,
1996 (pp. 98, 5 June)

[11] Lehtoranta, O., Hamalainen, T., Saarinen, J., Parallel implementation
of h.263 encoder for cif-sized images on quad dsp system. In The 2001
IEEE international symposium on circuits and systems, ISCAS 2001
(Vol. 2, pp. 209 12), 6 May

[12] Gulati, A., Campbell, G. Efficient mapping of the H.264 encoding
algorithm onto multiprocessor DSPs. In Proc. embedded processors for
multimedia and communications II, 5683(1), 9403, March 2005.

[13] Klaus Schöffmann, O. L., Fauster, M., Böszörmenyi, L., An evaluation
of parallelization concepts for baseline-profile compliant H.264/AVC
decoders. In Lecture notes in computer science. Euro-Par 2007 parallel
processing, August.

[14] Chen, Y., Tian, X., Ge, S., Girkar, M., Towards efficient multi-level
threading of h.264 encoder on intel hyper-threading architectures. In
Proc. 18th int. parallel and distributed processing symposium, 2004.

Ahmet Gurhanli is a Ph.D. candidate in National
Taiwan University, Graduate Institute of Electronics.
He graduated from Hacettepe University, Electronics
Engineering Department in 2003. He received his
MS degree from National Taiwan University in 2006.
His research interests are Computer Architecture,
Parallel Computing, Electronic Design Automation
and Video Processi

Charlie Chung-Ping Chen is a full professor at
National Taiwan University, Graduate Institute of
Electronics Engineering. He received his Ph.D. from
the University of Texas at Austin, USA. His research
interests are VLSI CAD, Microprocessor Design,
and RF Mix/Signal Circuit Design.

Shih-Hao Hung is an assistant professor at National
Taiwan University, Graduate Institute of Networking
and Multimedia. His research interests are
Co-Optimization of Applications and Architectures,
Computer Architecture and Parallel Computing,
Computer Performance Characterization and
Optimization, Commercial Servers and Applications,
and Design of Embedded Syste

International Journal of Computer Theory and Engineering, Vol. 3, No. 3, June 2011

381

