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Abstract— One of the main problems when handling the real 

world problems is the uncertainty degree of input data. 
Uncertainty factor can be a result of random variables 
existence, incomplete or inaccurate data, and approximations 
instead of measurements or incomparability of data (resulting 
from varying measurement or observation conditions). Interval 
and fuzzy numbers generally use for representation of real data. 
There are two main innovations in this paper: I) Classification 
of real data using fisher discriminator (FD), and II) Quadratic 
programming of FD problem with fuzzy parameters has led us 
to a quadratic fuzzy objective function and quadratic fuzzy 
constraints, that is solved for the first time in this paper. The 
proposed Fuzzy FD (FFD) obtain new version of classifier with 
two new points. I) Three region of decision are given include 
class 1, class 2, outlier class. II) We can classify real data with 
given uncertainty degree.  Experimental results are performed 
over and Power of the FFD is seen nicely. 
 

Index Terms— Fisher discriminator; Fuzzy data; Fuzzy 
quadratic programming problems; Real data classification. 
 

I. INTRODUCTION 
  Pursuing of effective methods for real data analysis is 
considered with researchers recently. Progress in fuzzy 
mathematics encourage engineering and other scientist in 
application fields for presentation of real models. For 
example A. Bigand 2009 used interval-valued fuzzy sets for 
image filtering [1].  Interval-valued fuzzy sets make it 
possible to take into account the total uncertainty inherent to 
image processing, and particularly noise removal is 
considered. A. Salski 2007 [2] found ecological data as high 
uncertainty data and presented the extension and 
implementation of fuzzy data clustering method proposed by 
Yang and Liu 1999 [3].  R. Yang et al. [4] introduced a 
method for mapping high-dimensional heterogeneous fuzzy 
data to a crisp virtual value on a real axis, so that the 
classification problem in high dimensional heterogeneous 
fuzzy datum space is simplified to that in one dimensional 
crisp data space. 

In this paper we want to introduce a classifier based on 
fisher discriminator suited for working with real data. Fisher 
discriminator (FD) is a suitable approach in the field of 
pattern recognition for classification. FD is based on 
maximization of between class variance and minimization of 
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within class scatter in linear transformation domain. FD 
includes quadratic programming with quadratic constraints. 
We study FD with fuzzy scatter matrix for within class and 
fuzzy covariance matrix for between class scatter. So, we 
must solve fuzzy quadratic programming with fuzzy 
quadratic constraint. Specifically, quadratic programming 
has been widely used in solving real problems and several 
efforts reported in literature developing efficient algorithms 
for solving this types of problems where crisp parameters are 
used [5,6]. In 2007 S.T. Liu and R.T. Wang [7] solved the 
problem of quadratic programming for interval parameters 
by formulating a pair of two level mathematical programs to 
calculate the upper bound and lower bound of the objective 
values of the interval quadratic program. After that, in 2009 
S.T. Liu [8] solved the same problem by the same method, for 
dealing with fuzzy parameters. But the main limitation of 
Liu’s study is linearity assumption of constraints, something 
that is not confirmed in fisher problem. In the next sections 
we will represent our solution to quadratic objective 
functions and quadratic constraints with fuzzy parameters. 
Organization of this paper includes as follows, Section 2 pay 
to preliminaries. Section 3 appropriates to explanation of 
FFD and solving fuzzy quadratic programming problems. 
Section 4 shows experimental results of the presented work. 
Finally, section 5 concludes the paper. 

II. PRELIMINARIES 

A. Fisher Discriminator Algorithm 
Fisher linear discriminator Finds linear transformation of 

predictor variables which provides a more accurate 
discrimination. Classes are separated nicely if we can find 
the direction to project data on so that (a) between classes 
variance is maximized (b) within class variance is minimized. 
Linear projection is 0wxwy T += . In the new space of y, 
between class and within class variance are calculated. 
Between class variance can be presented by 2

12 )~~( mm − , 
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~m , 2

~m  are means of classes 1w , 2w respectively in 

the transform space) and within class variance for classes 1w , 

2w  are shown to the form of 2
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covariance of two classes). So Fisher criteria can be 
formulated as  
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Between classes variance is calculated as follows: 
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where 1m , 2m  are means of class 1w , 2w  respectively 
in input space. If we define 

T
B mmmmS ))(( 1212 −−=  (3) 

Then numerator of fraction is wSw B
T . For simplification 

of denominator, we have: 

wSwwmxmxw

mwxwmys

T

Rx

T
ii

T

Rx

T
i

T

Rxy
i

i

iii

111

2
1

:

2
1

2
1

1

11

))((

)()~(~

=







−−

=−=−=

∑

∑∑

∈

∈∈
 (4)  

wSwwmxmxw

mwxwmys

T

Rx

T
ii

T

Rx

T
i

T

Rxy
i

i

iii

222

2
2

:

2
2

2
2

2

22

))((

)()~(~

=







−−

=−=−=

∑

∑∑

∈

∈∈
  (5) 

We define 21 SSSw +=  so we can write criteria to 
following form,  

wSw
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For solving above fractional optimization problem we 
simplify it,  
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III. THE PROPOSED FUZZY FISHER DISCRIMINATOR 
The well-known FD and other conventional classifiers are 

based on precise description of input data. But what about 
analyzing real world problems? As we know, in most 
situations, the real world is too complicated to obtaining 
precise descriptions and fuzziness must be introduced in 
reasonable and reality based models. In real world problems 
input data can have different interpretations. For example, in 
Fig. 1 we plotted graphically some fuzzy numbers 
representation. Here, triangular fuzzy numbers that are more 
applicable and more common in literature, used in 
simulations but formulations are general. 

Intuitively, if input data in a classification or clustering 
problem is fuzzy, then BS , WS  and the objective value 
should be fuzzy as well. So, the conventional FD objective 
function, introduced in the previous section, turn into fuzzy 
fisher discriminator (FFD) problem. Suppose we 
approximately known BS  and WS  coefficients and 
representing them in fuzzy sets format as BS~  and WS~  using 

BS~
µ  and WS~

µ  membership functions, respectively. We 

have 
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Figure 1 – Two samples of fuzzy numbers 

where )~( B
ijSU  and )~( W

ijSU  are the supports of BS~  

and WS~ , respectively. Now the fuzzy fisher optimization 
problem can be formulated as follows: 
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or in minimization format 
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Therefore fisher objective function is a quadratic 
programming problem with quadratic constraint. As 
mentioned before since we are only interested in finding 
direction of discriminator line, we can fix denominator of 
fisher fraction to any number. In constraint part we use the 
inequality format because it can simplify subsequent results 
and also don’t reduce generality of fisher optimization 
function. Additionally, b can be any negative fuzzy number 
which adds fuzziness to the right-hand side of the above 
constraint and is defined using B~ fuzzy set as follows 

)}~(|),{(~
~ BUbbB B ∈= µ  (12) 

Without loss of generality, BS~ , WS~  and B~  are assumed 
to be convex fuzzy numbers 1 , as crisp values can be 
represented by degenerated membership functions which 
only have one value in their domains.   

Based on the extension principle, we have 

 
1 A fuzzy set A in Rn is convex if and only if 

)](),(min[][ 2121 xxxx AAA µµλλµ ≥+  

  for all nRxx ∈21,  and all ]1,0[∈λ . 
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and at least one of these three membership functions must 
be equal to ji, , ∀α . Finding 

FJ~µ is equivalent to finding 

the upper bound and lower bound of objective function at 
each α-cut2, named UJα  and LJα , respectively. These bounds 
can be expressed as 
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From the above relations, the largest and smallest values 
for UJα

 and LJα
 can be determined from the following 

two-level mathematical programming models: 
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However these two level models are not solvable in their 
current form and must be transforming into conventional one 
level program.  

The upper bound model is a two level mathematical 
program in different optimization directions, that is, one for 
outer level for maximization and inner level for 
minimization. The Lagrangian dual problem of inner level is 
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By differentiating with respect to W and vanishing the 
result we have 
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So the dual form of the inner level can be written as 

 
2 An α-cut of a fuzzy set A is a crisp set Aα that is 
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Hence, previously two level optimization problems can be 
reformulated as 
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Now that the two levels is unidirectional the one level 
upper bound problem model can be formulated as 
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Since for a specific W vector, we have 0≥jiww  (elements 

are negative or positive simultaneously) in more cases, we 
can simplified the above optimization function as follows 
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Obviously, this is a conventional quadratic programming 
problem with quadratic constraints and the optimal value of 

UJα  will be the upper bound of the FFD objective value in the 
specified α level. 

In the lower bound case, since inner and outer levels have 
the same optimization direction we can combine them and 
form a one level problem: 



International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009 
1793-8201 

 

 

635 

ji
BbB
SsS
SsS

bwwsts

wwsJ

UL

UW
ij

W
ij

LW
ij

UB
ij

B
ij

LB
ij

n

i

n

j
ji

W
ij

n

i

n

j
ji

B
ijW

L

,
)()(

)()(
)()(

              ..

  min

1 1

1 1

∀
≤≤
≤≤
≤≤

≤

−=

∑∑

∑∑

= =

= =

αα

αα

αα

α

 (23) 

Here in searching the minimum value of objective function, 
B
ijs  coefficients must set to their upper bounds. In addition to 

this the largest feasible region defined by the inequality 
constraint occurs when W

ijs  and b parameters reach their 

lower and upper bounds, respectively. So the lower bound 
objective function can be rewrite as 
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To have the same formulation format as upper bound 
optimization function, we use the dual form of the previous 
relation as follows 
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This is a conventional quadratic programming problem 
with quadratic constraints and similarly, the optimal value of 

LJα  will be the lower bound of the FFD objective value in the 
specified α level. 

 

IV. EXPERIMENTAL RESULTS 
In this section, we utilize the proposed FFD algorithm 

using different samples and as comparison purposes the 
well-known fisher discriminator is used. Here, for ease of 
evaluation 2-dimensional data is used, but obviously the 

presented algorithm in the previous section is general and 
can be used in the case of higher dimensional data. As 
mentioned earlier we use symmetric triangular fuzzy 
numbers and in the case of fisher discriminator the input data 
fuzziness is assumed to be zero.  

 
Example 1: As the first example, we aim to illustrating the 

solution method proposed in this paper for fuzzy quadratic 
objective functions with fuzzy quadratic constraints. 
Therefore for analysis simplification, completely separable 
data (shown in Fig. 2) was assumed. Here the train patterns 
are exactly separated and the linear fisher discriminator 
result is also depicted in this figure. In this case the 
normalized weight vector is: 0214.0,9998.0 *

2
*
1 == ww .  

Now we want to consider fuzziness of input data. We use 
triangular fuzzy numbers with unit support range from each 
side. Table 1 lists the upper and lower bounds of normalized 
weight vectors yield using eleven distinct α-cuts of objective 

value: 0.0, 0.1, … , 1.0. The α-cut of J~  represents the 
possibility that the objective value will appear in the 
associated range.  

The graphical representation of upper and lower bound 
discriminators in different α levels are provided in Fig. 3 for 
ease of investigation. Expectedly maximum between bounds 
variations (widest objective value interval) is occurred at 

0=α  (fuzziness peak) and at 1=α  (no fuzziness) there is 
no difference between bounds and both of them are tends to 
the conventional fuzzy discriminator in Fig. 2. The 
membership function of this example J~µ  is represented in 

Fig. 4. Same as input data it is a triangular like fuzzy number, 
too. 

 

 
Figure 2 – Two separable data classes 

 



International Journal of Computer Theory and Engineering, Vol. 1, No. 5, December, 2009 
1793-8201 

 

 636 

 
TABLE 1 – LOWER AND UPPER BOUNDS OF OBJECTIVE FUNCTION VALUES AND NORMALIZED WEIGHTS USING DIFFERENT Α VALUES. 

Α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
UJα

~  0.2336 0.2257 0.2177 0.2095 0.201 0.1923 0.1833 0.1739 0.1641 0.154 0.1434 
LJα

~  0 0.0182 0.0354 0.0516 0.067 0.0815 0.0952 0.1082 0.1205 0.1322 0.1434 
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Note: as representation restrictions all numbers are rounded. 
 

  
(a) (b) 

Figure 3 – (a) upper bound of fuzzy discriminators (b) lower bound of fuzzy discriminator, using different confidence values and separable dataset. 
 

TABLE 2 – ERROR RATE INTERVALS USING DIFFERENT LEVELS OF FUZZINESS IN INPUT DATA. 
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

e (%) [6.5 22.75] [6.5 20.25] [6.5 15.5] [6.5 10.25] [6.5 7.75] [6.5 6.75] [6.5 6.75] [6.5 6.5] [6.5 6.5] [6.5 6.5] 
 

 
Figure 4 – Resulted fuzzy objective function 

 

   
Figure 5 – Non-separable Training dataset distribution. 

 
Example2: As our second example, we want to study and 

compare efficiency of conventional fisher algorithm and our 
FFDA as encountering fuzzy input data classes with 
different certainty levels in train and test phases. We will use 
samples as shown in Fig. 5 with 200 patterns in each class 
(triangle and circle) and overlapping area between them. 
Similar to previous example, using represented data as train 
set, discriminator lines with distinct α values: 0.1, 0.4, 0.7 
and 1.0 are presented in Fig. 6.  

In this case, as a suitable validation factor, classification 
error rate interval using different levels of fuzziness is 
defined below, and is listed in Table 2. Lower and upper 
levels of each α-cut interval are obtained using LWα  and 

UWα  vectors (Fig. 6). We must mention that error rates using 
crisp and non-fuzzy input data is 6.5%. 

100
samples ofnumber  total

samples fiedmissclassi of num
×=e  (26)  

Expectedly, according to Table 2, as fuzziness decreases 
(or α value increases) we have smaller error interval and in 
addition to this property in each case the lower bound of 
error is approximately equivalent to the non-fuzziness 
situations.  

But, different factors, such as environment noise, 
measurement errors and etc., can cause different uncertainty 
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levels in real data. For example, in the previous dataset, the 
real value of a test data that is reported as ]2.0 4.1[=x  with 
40% confidence value, can range from ]0.4- 8.0[=lx  to 

]0.8 0.2[=hx  and misclassified as triangle class using 
conventional fuzzy classifier. Whereas in our FFDA method 
a reasonable margin with respect to input space confidence 
value is created and samples in test phase is classified as 
triangle, circle and unclassifiable classes (spaces belongs to 
these triple classes for previous example and 40% certainty 
level is shown as Fig. 7). Here we will call unclassifiable 
samples (samples lies in margin spaces) as outlier. It seems 
to be a good decision that when the uncertainty factor in 
input space is high and samples can range in a wide interval 
from their reported position, the algorithm don’t confide on 
boundary samples and work on the basis of samples that 
their dependency to one class is certain. Now, one can 
design another classifier with appropriate parameters to 
classify outlier samples into one of triangle or circle classes.  
 

 
(a) 

   
(b) 

 
Figure 6 - (a) upper bound of fuzzy discriminators (b) lower bound of fuzzy 
discriminator, using different confidence values and non-separable samples. 

 

 

Figure 7 – FFDA lower and upper discriminator lines (bold) and FDA 
discriminator (normal). Obviously samples such as 1 and 2 can certainly 
classified as circle and triangle classes. But samples such as 3 and 4 are 
unclassifiable because of uncertainty factor reported values.  

 
TABLE 3 – CLASSIFICATION RESULTS USING 400 TEST SAMPLES. 

 Conventional FDA FFDA 
Classification rate 87.75% 87.75% 
Misclassification rate 12.25% 3.5% 
Outlier rate ---------- 8.75% 
 
Finally, according to previous observations, we examine 

200 test samples from each class with 40% certainty level 
and the results are listed as Table 3. Lower misclassification 
in FFDA can be illustrated as attending fuzzy nature of real 
data. 

V. CONCLUDING REMARKS 
This paper solves quadratic programming problems with 

fuzzy parameters and quadratic fuzzy constraints and using 
this solution FFD classifier that is based on conventional 
FDA and suitable for real data that is usually imprecise, is 
introduced. 
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