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Fisher over Fuzzy Samples

B. Rgjaei, H. Sadoghi Yazdi, S. Effati

Abstract— One of themain problemswhen handling thereal
world problems is the uncertainty degree of input data.
Uncertainty factor can be a result of random variables
existence, incomplete or inaccurate data, and approximations
instead of measurements or incompar ability of data (resulting
from varying measurement or observation conditions). Interval

and fuzzy number sgenerally usefor representation of real data.

There are two main innovationsin this paper: |) Classification
of real datausing fisher discriminator (FD), and I1) Quadratic
programming of FD problem with fuzzy parameters has led us
to a quadratic fuzzy objective function and quadratic fuzzy
constraints, that is solved for the first time in this paper. The
proposed Fuzzy FD (FFD) obtain new version of classifier with
two new points. |) Three region of decision are given include
class 1, class 2, outlier class. 11) We can classify real data with
given uncertainty degree. Experimental resultsare performed
over and Power of the FFD is seen nicely.

Index Terms— Fisher discriminator; Fuzzy data; Fuzzy
quadratic programming problems; Real data classification.

I. INTRODUCTION

Pursuing of effective methods for real data analysis is
considered with researchers recently. Progress in fuzzy
mathematics encourage engineering and other scientist in
application fields for presentation of real models. For
example A. Bigand 2009 used interval-va ued fuzzy sets for
image filtering [1]. Interval-valued fuzzy sets make it
possible to take into account thetotal uncertainty inherent to
image processing, and particularly noise removal is
considered. A. Salski 2007 [2] found ecological data as high
uncertainty data and presented the extenson and
implementation of fuzzy data clustering method proposed by
Yang and Liu 1999 [3]. R. Yang et al. [4] introduced a
method for mapping high-dimensional heterogeneous fuzzy
data to a crigp virtual value on a real axis, so that the
classification problem in high dimensional heterogeneous
fuzzy datum space is simplified to that in one dimensional
crisp data space.

In this paper we want to introduce a classifier based on
fisher discriminator suited for working with real data. Fisher
discriminator (FD) is a suitable approach in the field of
pattern recognition for classification. FD is based on
maxi mization of between class variance and minimization of
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within class scatter in linear transformation domain. FD
includes quadratic programming with quadratic constraints.
We study FD with fuzzy scatter matrix for within class and
fuzzy covariance matrix for between class scatter. So, we
must solve fuzzy quadratic programming with fuzzy
guadratic constraint. Specifically, quadratic programming
has been widely used in solving real problems and several
efforts reported in literature developing efficient algorithms
for solving thistypes of problems where crisp parameters are
used [5,6]. In 2007 S.T. Liu and R.T. Wang [7] solved the
problem of quadratic programming for interval parameters
by formulating apair of two level mathematical programsto
calculate the upper bound and lower bound of the objective
values of the interval quadratic program. After that, in 2009
S.T. Liu[8] solved the same problem by the same method, for
dealing with fuzzy parameters. But the main limitation of
Liu’sstudy islinearity assumption of constraints, something
that is not confirmed in fisher problem. In the next sections
we will represent our solution to quadratic objective
functions and quadratic constraints with fuzzy parameters.
Organization of this paper includes asfollows, Section 2 pay
to preliminaries. Section 3 appropriates to explanation of
FFD and solving fuzzy quadratic programming problems.
Section 4 shows experimental results of the presented work.
Finally, section 5 concludes the paper.

1. PRELIMINARIES

A. Fisher Discriminator Algorithm

Fisher linear discriminator Finds linear transformation of
predictor variables which provides a more accurate
discrimination. Classes are separated nicely if we can find
the direction to project data on so that (a) between classes
varianceismaximized (b) within classvarianceis minimized.

Linear projection isy=WTX+W0. In the new space of vy,
between class and within class variance are calculated.
Between class variance can be presented by (M, - M),
(where m,, m, are means of classesw, , W, respectively in
thetransform space) and within classvariancefor classesw ,
w, are shown to the form of S +S2, (where §°, 37 are

covariance of two classes). So Fisher criteria can be
formulated as

= _ M2
max  J. :% 1)
S +5
Between classes variance is calculated as follows:
(m, - ﬁh)z =w' (my - my)(m, - ml)TW )
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where m;, m, are means of class w;, W, respectively
in input space. If we define
SB = (mz - ml)(mz - ml)T (©)
Then numerator of fraction is w' SgWw . For simplification
of denominator, we have:
§= al- M= W - wm)’ =

Vi1 Ry x1 Ry
" 4
+ &9 TQ — T
wga (x-m)(x-m) iw=w Sw
X 1 Ry 7]
= aly-m)=gwx-wm)’=
¥l Ry Xl Ry (5)

T %o T 0 T
wiea (6 - m)(x - m) w=w Sw
%1 R, [2]

We define S, =5 +S, so we can write criteria to
following form,
w'S,w
w'S,w

For solving above fractional optimization problem we
simplify it,
max J(w)=w'S,w

max J(w) = (6)

)

st. w'Sw=1

So w=S;'(m, - m,) and optimum hyper-planeis

T 1 ~ ~ T 1 T
y(¥) =w x- —(m +m,) =w X- —w (m +m,)
2 2 (8)

=(Sm,- m)) (x- ) (m +m)

I1l. THE PROPOSED FUZZY F SHER DISCRIMINATOR

The well-known FD and other conventional classifiersare
based on precise description of input data. But what about
analyzing real world problems? As we know, in most
situations, the real world is too complicated to obtaining
precise descriptions and fuzziness must be introduced in
reasonable and reality based models. In real world problems
input data can have different interpretations. For example, in
Fig. 1 we plotted graphically some fuzzy numbers
representation. Here, triangular fuzzy numbersthat are more
applicable and more common in literature, used in
simulations but formulations are general.

Intuitively, if input data in a classification or clustering
problem is fuzzy, then S, S" and the objective value
should be fuzzy as well. So, the conventional FD objective
function, introduced in the previous section, turn into fuzzy
fisher discriminator (FFD) problem. Suppose we

approximately known SB and S" coefficients and
representing them in fuzzy setsformat as S® and SV using
Me and M membership functions, respectively. We

have
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Sy ={(s].me) 17T U(SP)}

oW w w T oW ©)
S ={(s ’n"g‘\j/\/)|3j I U(S§")}

17

— | fpezoota lazz= rube

I aniusrl==s na b

Figure 1 — Two samples of fuzzy numbers

where U (518) and U (5}'\') are the supports of s®

and §W, respectively. Now the fuzzy fisher optimization
problem can be formulated as follows:

~ nog
max  Je=a a s§;wwW,
w i=1 j=1 (10)
g & W
st. aaswwtb
i=1 j=1
or in minimization format
= g g
mn J.=-ga SJBWin
W = = (12)
& &
st. aasww£Eb
i=1 j=1
Therefore fisher objective function is a quadratic
programming problem with quadratic constraint. As

mentioned before since we are only interested in finding
direction of discriminator line, we can fix denominator of
fisher fraction to any number. In constraint part we use the
inegquality format because it can simplify subsequent results
and also don’t reduce generality of fisher optimization
function. Additionally, b can be any negative fuzzy number
which adds fuzziness to the right-hand side of the above

constraint and is defined using éfuzzy set as follows
B ={(b,my) |bl U(B)}

Without loss of generality, SB SY and B areassumed
to be convex fuzzy numbers®, as crisp values can be
represented by degenerated membership functions which
only have one value in their domains.

Based on the extension principle, we have

(12)

1 A fuzzy set Ain R"isconvex if and only if
ML % + 1,12 min[m, (%), m, ()]
forall x,%,1 R andal | T [01].
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m; (J¢) = S _min{mg, (), My (si"), M (D) |
JF=JF(SB,SW,B)}
my (je)=a « my(s))? a,
M. (si)?a, my(b)*a

and at least one of these three membership functions must
be equal to a," i, j . Finding M;_is equivalent to finding

(13

the upper bound and lower bound of objective function at
each a-cut®, named J. and J, respectively. These bounds

can be expressed as

3, =max{J (8%, 5", B)[(§): £5] £(S)s
(8): £57 £(§):.(B); EbE(B),," i

Jo =min{J.(S%, ", B)|(S))s £ £(S)a.
(8): £57 £(§).(B), £bE(B);," 1, ]}

From the above relations, the largest and smallest values
for JY and J- can be determined from the following

Wik (19

two-level mathematical programming models:
max

i a8
(SO ESTE(SL TN - aasw

| ,
2= £ B (S
(B); EbE(B) {st. A& s'ww, £b

", i i=1j=1
min i g8 .
mln - T WW.
(S E( T TG A s

F=EES EE
(B); £bE£(B), gt
"] T

However these two level models are not solvable in their
current form and must be transforming into conventional one
level program.

The upper bound model is a two level mathematical
program in different optimization directions, that is, one for
outer level for maximization and inner level for
minimization. The Lagrangian dual problem of inner level is

n n n n
o O o O
LW.1)=-a a sjww; +1 (@ a syww; - b).
i=1 j=1 i=1 j=1
By differentiating with respect to W and vanishing the
result we have

L

W_OCR) 2Ials1J w + 2 a_s1J

So the dual form of the inner Ievel can be written as

aaswwEb

i= j=1

(€

=0, j=1..,n (18

2 Ano-cut of afuzzy set Aisacrisp set A, that is
A ={xI U|m,(x)*a}

max - 88 Sww +1 (A & s'ww, - b)

i=1 j=1 i=1 j=1
st. a SJ w +1 a SJ =0,j=1..,n (19)
I 30

Hence, previoudy two level optimization problems can be
reformulated as

imax -8 & sww,
w i=1 j=1
max : (44w 5
reseEyy @AWl gy
3 =(§N: £ £
(B): EDE®) st - ag W+l agj
. i
i ,J—l---,n
1 I 30

1

Now that the two levels is unidirectional the one level
upper bound problem modd can be formulated as

(o]

Jg’zmax-aé sPww, +I(énéns}?’wiwj-b)
wil i=1 j=1 i=1 j=1
g g (21)
st. -as;w +la sifw =0,j=1..,n
i=1 i=1
( )L £ B £( B)U
(S £ £(5);
(B)a £|0£(B)a
120, "i,]

Since for a specific W vector, we have W,w; 3 O (elements

are negative or positive smultaneoudly) in more cases, we
cans mplified the above optimization function as follows

J; = max - aa(sj)ww+l(aa(sj)ww B")

i=1 j=1 i=1 j=1
st CA w8 w=0j=1..n
i=1 i=1
| 30

Obvioudly, thisis a conventional quadratic programming
problem with quadratic constraints and the optimal value of

J: will bethe upper bound of the FFD objectivevaluein the
specified o level.
In thelower bound case, since inner and outer levels have

the same optimization direction we can combine them and
form aone level problem:
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Jy=min - g a ssww,
w i=1 j=1
38
st. aasww Eb (23)
i=1 j=1

(S))a £57 £(S)).
(S)x £57 £(S)s
(B). £bE(B);

]

Herein searching the minimum value of objectivefunction,
s? coefficients must set to their upper bounds. In addition to
this the largest feasible region defined by the inequality
constraint occurs when 3\?’ and b parameters reach their

lower and upper bounds, respectively. So the lower bound
objective function can berewrite as

n n
L . o O B\U
Ja _n\”n -a a(S|j)a\Nin
i=1 j=1

n n
o O
aa(§).ww £8°
i=1 j=1

To have the same formulation format as upper bound
optimization function, we use the dual form of the previous
relation as follows

o O

(S)aww; +1 (@ & ()2 ww; - B)

i j=1

(24)
st.

n n

. o O

J;:mlln -aa
w,

i=1 j=1

- A (SIw+1 A (8w =0,j=L...n
i=1 i=1

30

This is a conventional quadratic programming problem

with quadratic constraintsand similarly, the optimal value of
JaL will bethe lower bound of the FFD objective value in the

st (25)

specified o level.

IV. EXPERIMENTAL RESULTS

In this section, we utilize the proposed FFD algorithm
using different samples and as comparison purposes the
well-known fisher discriminator is used. Here, for ease of
evaluation 2-dimensional data is used, but obviously the
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presented algorithm in the previous section is general and
can be used in the case of higher dimensional data. As
mentioned earlier we use symmetric triangular fuzzy
numbersand in the case of fisher discriminator theinput data
fuzzinessis assumed to be zero.

Example 1: Asthefirst example, weaim toillustrating the
solution method proposed in this paper for fuzzy quadratic
objective functions with fuzzy quadratic constraints.
Therefore for analysis simplification, completely separable
data (shown in Fig. 2) was assumed. Here the train patterns
are exactly separated and the linear fisher discriminator
result is also depicted in this figure. In this case the
normalized weight vector is: w, = 0.9998, w,, = 0.0214.

Now we want to consider fuzziness of input data. We use
triangular fuzzy numbers with unit support range from each
side. Table 1 liststhe upper and lower bounds of hormalized
weight vectorsyield using eleven distinct a-cuts of objective

value: 0.0, 0.1, ... , 1.0. The a-cut of J represents the
possibility that the objective value will appear in the
associated range.

The graphical representation of upper and lower bound
discriminatorsin different o levels are provided in Fig. 3 for
ease of investigation. Expectedly maximum between bounds
variations (widest objective value interval) is occurred at
a =0 (fuzziness peak) and at a =1 (no fuzziness) thereis
no difference between bounds and both of them are tends to
the conventional fuzzy discriminator in Fig. 2. The

membership function of this example m; is represented in

Fig. 4. Sameasinput dataitisatriangular like fuzzy number,
too.

- 4 w 1 12
Figure 2 — Two separable data classes
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TABLE 1— LOWER AND UPPER BOUNDS OF OBJECTIVE FUNCTION VALUES AND NORMALIZED WEIGHTS USING DIFFERENT A VALUES.

A 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
J. N 0.2336 0.2257 0.2177 0.2095 0.201 0.1923 0.1833 0.1739 0.1641 0.154 0.1434
J. N 0 0.0182 0.03%4 0.0516 0.067 0.0815 0.0952 0.1082 0.1205 0.1322 0.1434
e é.98u ¢ .980 €.99u €90 | €990 | é1.00 €100 ¢1.00 ¢1.00 €10u é1.00

a (5] ] e ] é ] é ! é ! e ! é ! e ! e ! é ! e !
1o | 18l | &6l | &4l | £12H | Eool | &o7H | EosH | Eo3H | E.00H | &.02

&970 | 6970 | 6980 | &.98) | 6990 | €99 | 699 | &0y | €100 | é100 | é.0u
: & oa | &20H g2od | &.18d | &isH | &14H €114 oo | &.o7d | o048 | &o2d

Note: as representation restrictions all numbers are rounded.

: o det -
A @ o o (0
Figure 3 — (a) upper bound of fuzzy discriminators (b) lower bound of fuzzy discriminator, using different confidence values and separable dataset.

TABLE 2 — ERROR RATE INTERVALS USING DIFFERENT LEVELS OF FUZZINESS IN INPUT DATA.

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

€(%) |[6522.75 |[6,520.25]| [6515.5] |[6.510.25]| [6.57.75] [[6.56.75] [656.75] | [6565] | [656.5 | [6.56.5]

; . Example2: Asour second example, wewant to study and
- compare efficiency of conventional fisher algorithm and our
A FFDA as encountering fuzzy input data classes with
- different certainty levelsin train and test phases. Wewill use
' samples as shown in Fig. 5 with 200 patternsin each class
3 (triangle and circle) and overlapping area between them.
- Similar to previous example, using represented data astrain
’ set, discriminator lines with distinct o values: 0.1, 0.4, 0.7
and 1.0 are presented in Fig. 6.
L _ _ In this case, as a suitable validation factor, classification
Figu,e4,Rmnedfuzzy(;t;jewvefumﬂon ' eror rate interval using different levels of fuzziness is
defined below, and is listed in Table 2. Lower and upper
. ) levels of each a-cut interval are obtained using W," and

V\/aU vectors (Fig. 6). Wemust mention that error ratesusing

crisp and non-fuzzy input datais 6.5%.

_ numof missclassified samples, 100 (26)

total number of samples

Expectedly, according to Table 2, as fuzziness decreases
(or a value increases) we have smaller error interval and in
addition to this property in each case the lower bound of
error is approximately eguivalent to the non-fuzziness
situations.
FigureS-— Non-separabIeTraining;:jataset distri;Jution. ; But, different factors, such as ef.“llronment nqlse,
measurement errorsand etc., can cause different uncertainty
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levelsin real data. For example, in the previous dataset, the
real value of atest data that is reported as x =[1.40.2] with

40% confidence value, can range from x, =[0.8-0.4] to
x, =[2.00.8] and misclassfied as triangle class using

conventional fuzzy classifier. Whereasin our FFDA method
areasonable margin with respect to input space confidence
value is created and samples in test phase is classified as
triangle, circle and unclassifiable classes (spaces belongs to
these triple classes for previous example and 40% certainty
level is shown as Fig. 7). Here we will call unclassifiable
samples (samplesliesin margin spaces) asoutlier. It seems
to be a good decision that when the uncertainty factor in
input spaceis high and samples can rangein awide interval
from their reported position, the algorithm don’t confide on
boundary samples and work on the basis of samples that
their dependency to one class is certain. Now, one can
design another classifier with appropriate parameters to
classify outlier samplesinto one of triangle or circle classes.

B

(b)

Figure 6 - (a) upper bound of fuzzy discriminators (b) lower bound of fuzzy
discriminator, using different confidence val ues and non-separable samples.

m circle
1

outlier

triangle
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Figure 7 — FFDA lower and upper discriminator lines (bold) and FDA
discriminator (normal). Obvioudy samples such as 1 and 2 can certainly
classified as circle and triangle classes. But samples such as 3 and 4 are
unclassifiable because of uncertainty factor reported values.

TABLE 3— CLASSIFICATION RESULTS USING 400 TEST SAMPLES.

Conventional FDA | FFDA
Classification rate 87.75% 87.75%
Misclassification rate 12.25% 3.5%
Qutlierrate | = = 8.75%

Finally, according to previous observations, we examine
200 test samples from each class with 40% certainty level
and theresultsarelisted as Table 3. Lower misclassification
in FFDA can beillustrated as attending fuzzy nature of real
data.

V. CONCLUDING REMARKS

This paper solves quadratic programming problems with
fuzzy parameters and quadratic fuzzy constraints and using
this solution FFD classifier that is based on conventional
FDA and suitable for real data that is usually imprecise, is
introduced.
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