International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

Scheduling for Non-Real Time Applications of
ORTS Based on Two-Level Scheduling Scheme

YongXian JIN and JingZhou Huang

Abstract—In an open real-time system, the coexistence of
different kinds of real-time and non real-time applications
makesthe system scheduling mechanism face new requirements
and challenges. One two-level scheduling scheme of the open
real-time systems was introduced. Through analysis, we find
that the scheduling strategy for non real-time applications in
original two-level scheduling schemeistoo simple: it may make
real-time applications unschedulable if non real-time
applications contain non-preemptive sections (NPS). In order to
avoid that, this paper proposes four pointed scheduling rules.
Then by integrating the improved scheduling algorithm for
non-real-time applications, we can solve problems existing in
non real-time applications scheduling. Ultimately, the
schedulability of real-time applications and non-real time
applications can be guaranteed.

Index Terms—Non-preemptable section (NPS), non real-time
application, open real-time system (ORTS), schedulability,
two-level scheduling scheme.

I. INTRODUCTION

With the development of information technology,
application of computer systems is getting more and more
widespread. Growing requirement of dealing with real-time
information makes the increasingly close relationship
between rea-time systems and people. Early rea-time
system, which has single type of task, scheduling approach
and scheduling object, and tasks cannot join or withdraw
from the system dynamically, is named closed real-time
system. To this day, that kind of closed real-time system has
been unable to meet the people’s needs, while the
corresponding one, named open real-time system (ORTS),
has become more and more popular. The ORTS’s uppermost
characteristic is openness, and it has two aspects. Thefirst is
openness of application types. In ORTS, multi-types
applications including hard real-time applications, soft
real-time applications, and non-real time applications, may
be concurrent at the same time. The second is openness
during runtime. During system’s runtime, kinds of
applications may join or withdraw from the system
dynamically according to some conditions. So those primary
scheduling approaches, which are proposed for closed
real-time system and suitable for smplex scope, have already
not meet people’s demand.

This paper focuses on the two-level scheme [1], through

Yong-xian JIN is with College of Mathematics, Physics and Information
Science, Zhejiang Normal University, China.

analysis, we find that the scheduling strategy for
non-rea-time applications in original two-level scheduling
scheme is too simple: it may make real-time applications
unschedulable if non-rea-time applications contain
non-preemptive sections (NPS). In order to avoid that, this
paper proposes four pointed scheduling rules and scheduling
algorithm for non-real-time applications that can perfect it.
Finally, feasibility is analysed

The rest of this paper is organized as follows. Section Il
describes related works. In section 111, we analyse the present
two-level scheduling scheme of open red-time system.
Section |V analyses scheduling of real-time and non-red
time applications in two-level scheduling scheme. Section V
gives existing problems and solving approaches of non-real
time applications scheduling of two-level scheduling scheme
for ORTS. We conclude with a short summary in Section VI.

Il. RELATED WORKS

At present, scheduling mechanism of ORTS include two
kinds: the first is the method integrating a variety of
scheduling agorithms based on servers within the
hierarchical scheduling framework [1]. It is one of the
bandwidth reservation agorithms using CUS (constant
utilization server) and TBS (total bandwidth server). The
two-level scheduling framework is established based on that.
It focuses on individualized task scheduling to the application
system; the second is the method syncretizing a variety of
scheduling algorithms within a unified architecture [2]. It
employs a unified system-scheduling model which contains
some different scheduling strategies. It permits to configure
multiple scheduling strategies in a unified structure, but the
system can use only one strategy when running. On the basis
of the two kinds of scheduling mechanism, researchers have
brought forward lots of scheduling algorithms for kinds of
scheduling objects existing simultaneity in an ORTS.

GPS (Generalized Processor Sharing) agorithm [3]
idealizes real-time applications to be a work-flow whose
granularity can be subdivided infinitely, and then each
real-time task will be alocated certain CPU bandwidth
according to its demand. EGPS algorithm [4] inherits the
thought in[3]. CBS (Constant Bandwidth Server) [5, 6] and
H-CBS (Hierarchical CBS) algorithm[7] focuses on the
problem of providing efficient run-time support to
multimedia applications in a rea-time system, where
different types of tasks can coexist. The bandwidth
reservation mechanism allows real-time tasks to execute in a
dynamic environment under a temporal protection
mechanism, so that each task will never exceed a predefined
bandwidth, independently of its actual request. EDL-RTO

- 166 -

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

(Earliest Deadline as L ate as possible-Red Tasks Only) and
EDL-BWP (Blue When Possible) [8] are two on-line
algorithms, and the objective is to minimize the average
response time of soft aperiodic request, while ensuring that
the QoS (Quality of Service) of periodic tasks will never be
less than a specified bound. Reference [9] presents the
non-preemptive Group-EDF agorithm for soft
multimedia-application systems. The experiment suggests
this algorithm is more efficient in executing soft multimedia
applications. Reference [10] focuses on scheduling soft
real-time applications of the multiprocessor platform. It
points out that compared with partitioned EDF, global EDF
can get a higher system utilization. PShED (Processor
Sharing with Earliest Deadlines First) agorithm [11]
provides independence among scheduling tasks. RPDS

(Rigorously Proportional Dispatching Server) agorithm
[12] establishes a new hierarchical scheduling framework,
and it schedules types of tasks using time chip as the basic
unit. OARTS (Open Adaptive Rea-Time Scheduling)
framework [13], which imports auto control ideasinto ORTS
scheduling, can adjust real-time priorities of tasks depending
on loca resources. However, it do not think about
characteristics of tasks such as NPS, global resources etc.
And they increase burden of the system because of a mass of
computing. Reference [14] presents TDPRTS
(Two-Dimensional Priority Real-Time Scheduling), and the
system allocates different priorities and corresponding
bandwidth for different algorithms, but the bandwidth can not
be adjusted dynamically. The mechanism is not agile enough
so that it is difficult to make full use of system resources.
Reference [15] presents a multiprocessor scheduling
framework for integrating hard and soft and best-effort (non
real-time) tasks. It ensures that hard real-time deadlines are
met and that of soft ones are less than a bound.

Research above does not synthetically think about the
type of tasks (periodic or aperiodic), the characteristic of
tasks (if they contain NPS, if they require global resources)
and so on. By contrast, the two-level scheme [1] hasits own
advantage. The reason is that it admits real-time and non
real-time applications and tasks with different characteristics,
and it can schedule real-time and non real-time applications
in acomplex open real-time environment.

I1l. TwoO-LEVEL SCHEDULING SCHEME OF THE ORTS

A. Related Concepts

Definition 1 Open Real-Time System : Non-relevant
real-time applications and non-real time applications may be
developed and validated independently, and global
schedulability analysis is not necessary when the system is
extended dynamically[1].

Definition 2 Task: Software entity that can accomplish
some function. It is a basic unit of real-time scheduling. An
execution during thetask’slifetimeis called ajob of thistask.
Application is defined by a set consists of multiple tasks.

Definition 3 Server: In this paper it presents a special task
established by the system’s scheduling mechanism and
provides service for scheduling objects [16]. There is more
than one server in system and each server is equivalent to a

slow processor.

Definition 4 Server Speed: It is assumed that the speed of
system processor is 1. Consider one server as a virtua
processor, and then the ratio of the speed of virtual processor
and the system processor is Server Speed. The server speed

ofSK is: Sk<1.

B. Two-level scheduling scheme

non-rea-time real-time real-time real-time
applications application application application
HESH R i

= \} J A

time sharing RM-PCP EDF-SBP cyclic executive
scheduler scheduler scheduler scheduler
So S S, SN

ready queue

>

OS Scheduler
(EDF)
operating system

Fig. 1 Two-level scheduling architecture of open real-time system

Fig.1 shows the architecture of ORTS supported by the
two-level hierarchical scheduling scheme. The system has a
single processor whose speed is one. The workload of the
processor consists of a variable number N of rea-time

applications, called Ai, AZ, A , together with non
real-time applications. All non-real time applications are

executed by a server S), while each real-time application is

executed by a server SK(k3 1). Theserversso, Si, SN
are at the upper level (application level). Each server

S (ks 1) has a ready queue containing ready jobs of the

real-time applicationpk, and ready queue of the server S
contains ready jobs of al the non real-time applications. The

server scheduler of the server S uses a time-sharing
algorithm to schedule ready jobs of all non real-time
applicationsin order to ensureimpartiality. At thelower level
(OS level), the scheduler provided by the operating system,
which we call OS scheduler, maintains al the serversin the
system. It replenishes the server budget and sets the server
deadline for every server according to the characteristics of
the applications the server executes. A server is ready when
its budget is nonzero and its ready queue is not empty. The
OS scheduler also has aready queue, which contains al the
ready serversin the system. It schedules al the ready servers
according to the EDF algorithm.

SCHEDULING OF REAL-TIME AND NON-REAL TIME
Applications In Two-Level Scheduling Scheme

-167 -

International Association of
Computer Science and Information Technology
WWW.IACSIT.ORG

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

The two-level scheduling scheme, which is based on two
kinds of serverscalled CUS (Constant Utilization Server) and
TBS (Total Bandwidth Server), is one of server scheduling

strategies. Server S shown in Fig.1 may be CUS or TBS,
and it must participate in scheduling of the system with
deadline. The following explanation is necessary:

Assume that § isa CUS server in ORTS. If its deadline is

d, atimet, d iscaculated asfollows:

d, =mex{t,d,, .} +&,/s;, (1)
Heres, denotes the speed of server §, and & denotesthe
time). S
replenishes its budget at time max{t,d, .}, and the budget
valueis g, 1. The deadline setting of TBS is the same to

remaining WCET (worst case execution

CUS, and the difference between them is replenishment time.
Supposejob J, isreleased attimet:if t3 d , ,, they arethe

ik-17

same; if t < d ., TBScan replenish its budget as soon asthe
job J,,, is finished, while CUS has to wait till to time
d [17]

ik-1)

A. Scheduling of Real-Time Applications

Reference [17] proposed some schedulability conditions
of real-time applications (including hard rea-time
applications and soft real-time applications) that do not have
NPS or use global resources in an ORTS, however, the
schedulability of all kinds of applications has not been
guaranteed yet, because we have to think about the following
problems:

(2) If applications include aperiodic or aporadic tasks

(2) If applications are predictable

(3) If applications are scheduled by a preemptive algorithm

(4) If applications include NPS or use global resources

Reference [1] solved the upper four problems for
real-time applications, but it did not consider the case that
non-real time applications may include NPS or use global
resources. The latter two problems are mentioned in this
paper, so the solutions to them are followed. Let’s see an

example related to Fig.2. The application A in the example

uses the EDF algorithm to schedule its two jabs, 4,(0.10,44)

and The

application'% is schedulable if it executes alone on a slow
processor with speed 0.25, as shown in Fig.2 (a). Now

suppose that the release time of thejobsin A areknown, the

application A is executed by a CUS whose server speed is
0.25, as shown in Fig.2 (b). Everything goes well until job

I, completes and server S is no longer ready to execute.

Before the server becomes ready again at 44- a . the
processor executes a job J in another application whose
server has a deadline later than 44, and the job J entersits
NPS right before 44- a sever S cannot execute the

remaining piece of job % until the job J leavesits NPS. If
the length of the NPS is longer than &, % misses its

deadline at 44. However, if the application A is executed by
a TBS with server speed 0.25, it is schedulable, as shown in

Fig.2 (c). When the job J2 completes at time 44~ @ the
budget of the server is replenished immediately and the
deadline is set to 44. The server remains ready to execute at
this time. Consequently, the job J of the application whose
server deadline is after 44 cannot execute before the job J;

completes Y.
\l/r1 \le
a |
0 40-a 44-3 44
Nk |2
J2
40-a 44-a
(@).Slow Processor with Speed
A nonpreernptablmsrercwtrignydl
a | | [| | I o
0 40-a 44-a 44
A2 L2
Jo I I
40-a 44-3
(b).Fast Processor (executed by a CUS)
& Vit
A | [] | -
0 40-a Ma 44
3 2
x L]

40-a 44-a
(c).Fast Processor (executed by a TBS)

Fig.2 Schedules of real-time application A,

Sincethe casein Fig.2 (b) may lead to un-schedul ability of
some applications, Reference [1] deals with that like this: If
an application is scheduled by a preemptive algorithm when
it enter the system, the system will check out if there have
been applications including NPS. If any, the server type will
be set to TBS; If not, the server type will be set to CUS. And
the system will change CUSs scheduled by preemptive
algorithmsto TBSsif it acceptsthefirst application including
NPS.

B. Scheduling of Non-Real Time Applications

OS scheduler will establish a TBS firstly when the
ORTS dtarts. The system accepts all the non-real time

applications. Then they will be executed by SO. The server

S is scheduled by time-sharing algorithm [18]. In reference
[16] characteristics of CUS has been described. Suppose

complete time of a job is t , and the server deadline is
t (t<t). Then during the interva (t.t) (called

background time) the processor is available, so S can make
use of thistime interval to execute non real-time applications
onit.

-168-

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

V. EXISTING PROBLEMS AND SOLVING SCHEME OF
NON-REAL TIME APPLICATIONS SCHEDULING

A. Problems Description and Analysis

In front scheduling approaches for real-time applications
and non-real time applications have been described, where
description about non-real time applications scheduling istoo
simple. By analysis, the following problems are addressed:

Thefirst problem: All the jobs released by non-real time
applications are scheduled by time-sharing algorithm on
server S, and then can it guarantee the fairness and

schedulability of executing all the jobs?

The second problem: The ORTS aways admits non-rea
time applications, and non-real time applications do not
provide any characteristic when they enter the system. Then
can it affect the schedulability of the existent rea-time
applications?

The third problem: The system may execute non-real
time applications by making use of background time of CUS,
however, is it reasonable that non-rea time applications are
scheduled by current ways? And how does the server
replenish its budget under the premise that the server is
scheduled by time-sharing algorithm?

The analysis about the former three problemsisasfollows:

Analysis of the first Problem: Reference [1] uses a
time-sharing algorithm in order to guarantee fairness of
scheduling al the non-real time applications, so that jobsin
the ready queue can be executed for the time divided equally
from the budget. That’s perfect, but perhapsthe actual caseis
not so simple. Suppose:

(1) Every timeif the server schedules job, and every jobis
executed by fixed time units, when there are amount of jobs
the server may only execute some of jobsin the ready queue.
If the number of jobsis so large that every timethe server has
to execute the latter jobs of the ready queue, then the former
jobs in the ready queue will not be executed in a very long
time. Then the case “starvation” appears. Since the case
should not appear, the best solution is to increase the server

speed. However, the server speed of S is fixed when the
system starts. Then how could we solve this problem? If al
the jobs in the ready queue can obtain equal time units
divided from budget every time the server is scheduled, every
jobwill get very little time when there are lots of jobs. At this
point the cost of context switching cannot be neglected, and
how to solve this problem? Through the above description,
disadvantages of the two time-sharing approaches can be
seen clearly. What means should we use to avoid the two
disadvantages?

(2) If NPS are included by jobs released by non-real time
applications, the jobs may occupy the time that does not
belong to them, so it will influence the following jobs’
execution. If the task, which releases this kind of job, is
periodic, it will destroy fairness of the time-sharing algorithm
serioudly. Then how could we deal with it? Assume a job
which has NPS is executed at last in one scheduling, and at
some point the job is been executing in its NPS, but the server
budget runs out, then how should the server response?

Analysis of the second problem: in section l11.A, thereis
an example describing the solution for potential

unschedul ability of real-time applicationsin ORTS. From the
analysis two necessary conditions of unschedulability are
obtained: oneis application including NPS; the other is CUS
scheduled by a preemptive algorithm. At first it limits the
second condition, in other words, the type of server on which
there are applications scheduled by preemptive algorithms,
but preemption may occur all the same. And then it limitsthe
first condition a the acceptance test, that s,
U, +U, +max, . {B /d,} £1 B =max;, {L} ;4 N

WN{ , Where

istotal number of applicationsin the systemincluding A [1],
so this problem is solved. Please refer to reference [1] to get
more details. However, non-real time applications are not
tested when they enter the system, so the system cannot get
characteristics about NPS of them. Thusit is possible that the
length of some non-preemptable section in non-real time
applications is longer than that in real-time applications. So
the potential unschedulability brought by the first necessary
condition could not be avoided and schedulability conditions
proposed by reference [1] could not be met. Then some
real-time applications in the system may be not schedulable
because of that.

Analysis of the third problem: The server S may make
full use of the background time of CUS if the system has
some CUSs. However, perhaps the following cases appear:

(1) In aperiod of time, there are only TBSs in the system

and the server speed Uo of S issmall. If amount of jobs are
in the ready queue, the case described in the first problem

may appear. At that time the server S can use spare
bandwidth in the system temporarily. By doing this QOS
(Quality of Service) of non-real time applications can be
improved and the influence brought by inadequacy of

bandwidth of the server S can be eased too.

(2) How could it replenish the server budget when the
budget runs out? We can do it like real-time applications:
replenish the remaining WCET of the head job of the ready
gueue. However, the following problems may be found: the
head job in the ready queue has been executed for many times

and its WCET (assume it isT) is little. Suppose the server
replenishes its budget with T . As mentioned above, if the

second time-sharing way has been applied, the server will
have divided its budget equally to all the jobs on it. Then

every job can be executed for T /N and at this time the
WCET of the head job will changeto T - T/N 1N >>T

thenT »T-T/N The expression shows usthat all thejobs
in the ready queue cannot be executed basically. At the same
time the cost of context switching will not be neglected
because it occupies a large proportion of executing time.

Thus the server SOWiII participate in scheduling frequently
with little budget. It increases burden of scheduling and even
leads to unsteadiness of the system.

B. Scheduling Rules and Algorithm of Non-Real Time
Applications

The section above addresses some problems that may

-169 -

International Association of
Computer Science and Information Technology
WWW.IACSIT.ORG

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

appear when all the non-real time applications are executed

on S of the TBS and analyses them in detaill. These
problems are brought by NPS of non-real time applications or
using global resources, and inconsequence of scheduling
non-real time applications.

It is existence of NPS or using global resources that
destroys fairness and schedulability of scheduling non-real
time applications. And it even results in some real-time
applications unschedulable. This kind of application has its
own particularity so it should not be scheduled together with
other kinds of non-real time applications. The problem will
be solved if these two kinds of applications are separated and
non-rea time applications including NPS or using global
resources are scheduled together with real-time applications.

The second problem and the unschedulability problem of
the first one are solved by making non-real time applications
including NPS or using global resources join the real-time
applications scheduling. Now concentrate on the remaining
problems, namely: non-real time applications that do not

have NPS or use global resources are scheduled on S of a
TBS, then how to avoid starvation of some jobs and improve
QOS of other jobs as far as possible at the same time when
the number of jobs in the ready queue increases? What kind
of time strategy should the server use to schedule jobs? What
way should the server use to replenish its budget? How to
make use of the background time? Then the approaches are as
follows:

Set two variablesI andI to denote bandwidth and one

variable N to memorize the number of jobs in the ready

queueofSO.Initial valueofI isOandI isl' uo(whereuois

the server speed of S). When real-time applications enter or
quit from the system, new vaue of | is calculated by this
formula:

| =1-U, - max,,{B, /d;} (2

B.
Where, ! isthe execution time of the longest NPS of all

the other applications other than A , anddj is the shortest

relative deadline of tasks in ’%, and U, is the current total
processor utilization of system. (i) If there is no background
time, the server will replenish its budget with a fixed

budget B and the deadline of it is set accordi ng toU0 + L (i)
If there is background time, the budget will be the length of
the background time and the deadlineis set to the deadline of
the CUS server.

Suppose the shortest time unit that ajob is executed each

timeisL . At first the server calculates the ratio between the
current budget B and the number N before it executes jobs.

(i) If the inequation LEB/N is true, then the budget will
be divided equally for every job. If WCET of some jobs is
less than the budget assigned, the remaining budget will be
used to execute the next job. Keep doing this till the server
budget runs out. If the budget is nonzero when all the jobs
complete, OS scheduler will reclaim the budget. (ii) If the

inequation L > B /N istrue, then L will be assigned to the
front jobs of the ready queue. If some jobs have remaining
budget, it will be dealt with like above.

If the number of jobs in the ready queue continues to

increase and it is larger than a critical value Ny , the server
will borrow the spare bandwidth temporarily to increase its
speed till the number of jobsin the ready queue reducesto a
N N, >N

N

m and there is a
NEN,

value smaller than "™ , here,

remainder between ™ and Nm. @i If then

setI = Oand the server will participate in scheduling with

N>NM,thensetI =1 andthe

Uy +I

its own server speed; (ii) If
server will participate in scheduling with speed

CompareI WithI lif the value of | changes Whensbis
executing its jobs or in the ready queue: (i) il 3 I, it will
do nothing; (ii) IfI <l , the server will stop executing or

quit from the server ready queue immediately, makeI =1
and set the remaining budget to new server budget. Then the
server participates in scheduling over again.

According to analysis above, four scheduling rules are
induced to resolve these problems addressed.

Scheduling Rule 1: acceptance rule of non-real time
applications.

In the original framework non real-time applications join
the scheduling queue of non real-time applications without
accepting particular detections, while the our rules need to
check if they contain NPSs and then deal with them
depending on different circumstances.

All the non-real time applications must provide their
parameter of NPS before they enter the system. If one
application includes NPS or needs to use global resources, its
priority will be improved and it will be tested and scheduled
by the system as real-time applications; if not, the application

will join in the server Sb. Following is the process of
acceptance test (shown in Fig. 3).

-170-

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

enters the system

real-time
application?

A 4
provides necessary
parameters

determine a server type
and allocate bandwidth

meets acceptance
conditions?

Fig.3 Acceptance test

(1)Check if the current application is a non real-time
application. If itis, turnto (2), else to (3).

(2)Check if the current application contains NPS. If it does
not, put it into the scheduling queue of non rea-time
applications, else turn to (3).

(3)The application provides necessary characteristic
parameters for system, and then the system will determine a
server type and allocate the corresponding bandwidth for it.

(4)Check if the total bandwidth allocated meets
schedulable conditions. If it does, accept the application, else
refuseit.

There is an issue to demonstrate. The system schedules
hard, soft and non real-time applications depending on
different priorities, but in the process of accept test, the
system only differentiates real-time applications from non
real-time ones. This indicates that there are no differences
when the system chooses real-time applications, that isto say,
hard real-time applications will not be chosen firstly just
because they have higher priorities. It isthe arrival order that
determines if an application is chosen firstly, and fairness of
acceptance test is reflected by doing this.

Scheduling Rule 2: replenishment rule of server budget.

When budget of the server S is 0 and the ready queue is
not empty: (1) If there is no background time, set the budget

of the server to B and itsrelative deadline to BIU, 1) , then
put it into the server ready queue of OS level;
(2) If thereisbackground timefrom CUS, set budget of the

server S to the length of the background time and deadline
to the deadline of the current CUS. And then the server
executes jobs immediately.

Scheduling Rule 3: executing rule of jobs in the ready

queue.
Suppose server budget is B when the server is scheduled:

1) if the inequation LEB/N is true, then the server
budget will be divided equally. Every job can be executed

for B /N 2y if the inequation L > B /N istrue, execute
ready jobs circularly from the next job of the last one in the

previous execution. Every job can be executed for L.
Scheduling Rule 4: borrowing rule of spare bandwidth.

@ 1 NENn then set ! =0and the server S will
participate in scheduling with its own server speed;
@ 11NNy then set | =1 and the server S will

participate in scheduling with speed Up #l .

According to the rules mentioned above, one scheduling
algorithm of non-real time applications is proposed as
following:

(1) If the job ready queue of the server S is empty, wait;
(2) If there is background time, set the budget of the

server S to the length of the background time and deadline to
the deadline of the current CUS. Execute jobs in the ready
gueue according to rule 3, go to (5);

(3) Set the sever budget to B and execute rule 4;
(4) Execute rule 3. CompareI with| if the value of |
changes when S is executing its jobs or in the ready queue:

ifI <l , the server will stop executing or quit from the
server ready queue immediately and set the remaining budget
to new server budget, execute rule 4, go to (4);

(5) If the budget of server S runsout or theready queueis
empty then go to (1).

C. Validity Analysis of the Scheduling Scheme

In the four rules proposed: The first rule separates the
non-real time applications including NPS or using global
resources from other non-real time applications, and by
improving priorities of them and making them participate in
scheduling as real-time applications, the adverse effects
brought by them are eliminated. Thus the problem addressed
about non-rea time applications including NPS or using
global resources has been solved. Reference [1] has dealt
with al kinds of real-time applications properly in an ORTS
and prove the schedulability of them, so the scheme in this
paper not only guarantees schedulability of non-real time
applications including NPS or using global resources
severely, but also guarantees thiskind of application does not
affect schedulahility of other kinds of applications.

The three latter rules resolve the remaining problems
addressed respectively. The time-sharing algorithm used by
rule 3 guarantees execution fairness of all the jobs in the
ready queue and eliminates the disadvantages of two primary
time-sharing ways. Rule 4 makes full use of spare resources
in the system when there are lots of jobs in the ready queue,
so that it can improve the response speed and QOS of
non-rea time applications greatly. Setting about the server
deadline in rule 2 guarantees that non-real time applications

-171-

International Association of
Computer Science and Information Technology
WWW.IACSIT.ORG

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

will not occupy the bandwidth of real-time applications, that
is to say, they will not affect real-time applications
scheduling. So the schemeisfeasible.

V1. CONCLUSION

By studying the scheduling approaches for the real-time
and non-real time applications in the ORTS based on the
two-level scheduling scheme, this paper points out
limitationsin non-real time applications scheduling, and then
proposes one solving scheme. Finaly feasibility is analysed.
In conclusion, the schedulability of all applications in the
system is guaranteed.

REFERENCES

[1] Z.Deng, JW.S. Liu. Scheduling Rea-Time Applications in an Open
Environment. In: Proc. of the 18th IEEE Real-Time Systems
Symposium. |EEE Computer Society, 1997, pp.1-25.

[2] Y.C .Wang, K.J. Lin. Implementing a General Real-Time Scheduling
Framework in the RED-Linux Real-Time Kernel. In: Proc. of the 20th
|EEE Real-Time Systems Symposium. | EEE Computer Society, 1999,
pp. 246-255.

[3] A.K. Parekh. A generalized processor sharing approach to flow control in
integrated services networks [Ph.D. Thesis]. Massachusetts I nstitute of
Technology, 1992.

[4] T.W. Kuo, W.R. Yang, K.J. Lin. EGPS: a class of real-time scheduling
agorithms based on processor sharing. In: Proc. of the 10th Euromicro
Workshop on Real Time Systems. IEEE Computer Society, 1998,
pp.27-34.

[5] L.Abeni, G.Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In: Proc. of the 19" IEEE Real-Time Systems
Symposium(RTSS’98). | EEE Computer Society, 1998, pp. 4-13.

[6] L.Abeni, G.Buttazzo. Resource Reservation in Dynamic Real-Time
Systems. Real-Time Systems, 2004, 27: pp.123-167.

[7] G.Lipari, S.Baruah. A Hierarchical Extension to the Constant Bandwidth
Server Framework. In: Proc. of the 7" IEEE Rea Time Technology
and Applications Symposium.|IEEE Computer Society, 2001, pp.
26-35.

[8] A. Marchand, M. Silly-Chetto. Dynamic Real-time Scheduling of Firm
Periodic Tasks with Hard and Soft Aperiodic Tasks. Rea-Time
Systems, 2006, 32(1-2): pp.21-47.

[9] W.Li, K.Kavi, R.AKl. A non-preemptive scheduling algorithm for soft
real-time systems. Computers and Electrical Engineering, 2007, 33(1):
pp.12-29.

[10] U.C. Devi, JH.Anderson. Tardiness bounds under globa EDF
scheduling on a multiprocessor. Real-Time System, 2008, 38(2):
pp.133-189.

[11] G.Lipai, JCarpenter, SBaruah. A Framework for Achieving
Inter-Application Isolation in Multiprogrammed Hard Rea-Time
Environments. In: Proc. of the 21% IEEE Rea-Time Systems
Symposium. |EEE Computer Society, 2000, pp. 217-226.

[12] Y.C. Gong, L.G. Wang, et al. A Hybrid Rea-Time Scheduling
Algorithm Based on Rigorously Proportional Dispatching of Serving.
Journal of Software, 2006, 17(3): pp. 611-619.(in Chinese)

[13] X.Y.Hual, Y.Zou, M.S.Li. An Open Adaptive Scheduling Algorithm for
Open Hybrid Real-Time Systems. Journal of Software, 2004, 15(4): pp.
487-496. (in Chinese)

[14] P.L. Tan, H.Jin, M.H. Zhang. Two-Dimensional Priority Real-Time
Scheduling for Open Systems. Acta Electronica Sinica, 2006, 34(1): pp.
1773-1777. (in Chinese)

[15] B. B. Brandenburg, JH. Anderson. Integrating Hard/Soft Real-Time
Tasks and Best-Effort Jobs on Multiprocessors. In: Proceedings of the
19" Euromicro Conference on Real-Time Systems. |EEE Computer
Society, 2007, pp. 61-70.

[16] Y.Zou, M.S. Li, Q.Wang. Analysis for scheduling theory and approach
of open real-time system. Journal of Software, 2003, 14(1):pp.83-90.
(in Chinese)

[17] Deng.Z, Liu WS, Sun J. A scheme for scheduling hard-real-time
applicationsin open environment. In: Proceedings of the 9" Euromicro
Workshop on Real-Time Systems. Los Alamitos, CA: |IEEE Computer
Society Press, 1997.pp.191-199.

[18] Deng. Z, Liu WS, Sun J. Dynamic Scheduling of Hard Real-Time
Applications in Open System Environment. Technical Report
UIUCDCSR-96-1981, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1996.

-172 -

