
International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

 - 166 -

Abstract—In an open real-time system, the coexistence of

different kinds of real-time and non real-time applications
makes the system scheduling mechanism face new requirements
and challenges. One two-level scheduling scheme of the open
real-time systems was introduced. Through analysis, we find
that the scheduling strategy for non real-time applications in
original two-level scheduling scheme is too simple: it may make
real-time applications unschedulable if non real-time
applications contain non-preemptive sections (NPS). In order to
avoid that, this paper proposes four pointed scheduling rules.
Then by integrating the improved scheduling algorithm for
non-real-time applications, we can solve problems existing in
non real-time applications scheduling. Ultimately, the
schedulability of real-time applications and non-real time
applications can be guaranteed.

Index Terms—Non-preemptable section (NPS), non real-time
application, open real-time system (ORTS), schedulability,
two-level scheduling scheme.

I. INTRODUCTION
With the development of information technology,

application of computer systems is getting more and more
widespread. Growing requirement of dealing with real-time
information makes the increasingly close relationship
between real-time systems and people. Early real-time
system, which has single type of task, scheduling approach
and scheduling object, and tasks cannot join or withdraw
from the system dynamically, is named closed real-time
system. To this day, that kind of closed real-time system has
been unable to meet the people’s needs, while the
corresponding one, named open real-time system (ORTS),
has become more and more popular. The ORTS’s uppermost
characteristic is openness, and it has two aspects. The first is
openness of application types. In ORTS, multi-types
applications including hard real-time applications, soft
real-time applications, and non-real time applications, may
be concurrent at the same time. The second is openness
during runtime. During system’s runtime, kinds of
applications may join or withdraw from the system
dynamically according to some conditions. So those primary
scheduling approaches, which are proposed for closed
real-time system and suitable for simplex scope, have already
not meet people’s demand.

This paper focuses on the two-level scheme [1], through

Yong-xian JIN is with College of Mathematics, Physics and Information

Science, Zhejiang Normal University, China.

analysis, we find that the scheduling strategy for
non-real-time applications in original two-level scheduling
scheme is too simple: it may make real-time applications
unschedulable if non-real-time applications contain
non-preemptive sections (NPS). In order to avoid that, this
paper proposes four pointed scheduling rules and scheduling
algorithm for non-real-time applications that can perfect it.
Finally, feasibility is analysed

The rest of this paper is organized as follows. Section II
describes related works. In section III, we analyse the present
two-level scheduling scheme of open real-time system.
Section IV analyses scheduling of real-time and non-real
time applications in two-level scheduling scheme. Section V
gives existing problems and solving approaches of non-real
time applications scheduling of two-level scheduling scheme
for ORTS. We conclude with a short summary in Section VI.

II. RELATED WORKS
At present, scheduling mechanism of ORTS include two

kinds: the first is the method integrating a variety of
scheduling algorithms based on servers within the
hierarchical scheduling framework [1]. It is one of the
bandwidth reservation algorithms using CUS (constant
utilization server) and TBS (total bandwidth server). The
two-level scheduling framework is established based on that.
It focuses on individualized task scheduling to the application
system; the second is the method syncretizing a variety of
scheduling algorithms within a unified architecture [2]. It
employs a unified system-scheduling model which contains
some different scheduling strategies. It permits to configure
multiple scheduling strategies in a unified structure, but the
system can use only one strategy when running. On the basis
of the two kinds of scheduling mechanism, researchers have
brought forward lots of scheduling algorithms for kinds of
scheduling objects existing simultaneity in an ORTS.

GPS（Generalized Processor Sharing） algorithm [3]
idealizes real-time applications to be a work-flow whose
granularity can be subdivided infinitely, and then each
real-time task will be allocated certain CPU bandwidth
according to its demand. EGPS algorithm [4] inherits the
thought in [3]. CBS（Constant Bandwidth Server）[5, 6] and
H-CBS（Hierarchical CBS） algorithm[7] focuses on the
problem of providing efficient run-time support to
multimedia applications in a real-time system, where
different types of tasks can coexist. The bandwidth
reservation mechanism allows real-time tasks to execute in a
dynamic environment under a temporal protection
mechanism, so that each task will never exceed a predefined
bandwidth, independently of its actual request. EDL-RTO

Scheduling for Non-Real Time Applications of
ORTS Based on Two-Level Scheduling Scheme

 YongXian JIN and JingZhou Huang

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

- 167 -

（Earliest Deadline as Late as possible-Red Tasks Only） and
EDL-BWP（Blue When Possible） [8] are two on-line
algorithms, and the objective is to minimize the average
response time of soft aperiodic request, while ensuring that
the QoS (Quality of Service) of periodic tasks will never be
less than a specified bound. Reference [9] presents the
non-preemptive Group-EDF algorithm for soft
multimedia-application systems. The experiment suggests
this algorithm is more efficient in executing soft multimedia
applications. Reference [10] focuses on scheduling soft
real-time applications of the multiprocessor platform. It
points out that compared with partitioned EDF, global EDF
can get a higher system utilization. PShED（ Processor
Sharing with Earliest Deadlines First ） algorithm [11]
provides independence among scheduling tasks. RPDS
（Rigorously Proportional Dispatching Server） algorithm
[12] establishes a new hierarchical scheduling framework,
and it schedules types of tasks using time chip as the basic
unit. OARTS（Open Adaptive Real-Time Scheduling）
framework [13], which imports auto control ideas into ORTS
scheduling, can adjust real-time priorities of tasks depending
on local resources. However, it do not think about
characteristics of tasks such as NPS, global resources etc.
And they increase burden of the system because of a mass of
computing. Reference [14] presents TDPRTS
(Two-Dimensional Priority Real-Time Scheduling), and the
system allocates different priorities and corresponding
bandwidth for different algorithms, but the bandwidth can not
be adjusted dynamically. The mechanism is not agile enough
so that it is difficult to make full use of system resources.
Reference [15] presents a multiprocessor scheduling
framework for integrating hard and soft and best-effort (non
real-time) tasks. It ensures that hard real-time deadlines are
met and that of soft ones are less than a bound.

 Research above does not synthetically think about the
type of tasks (periodic or aperiodic), the characteristic of
tasks (if they contain NPS, if they require global resources)
and so on. By contrast, the two-level scheme [1] has its own
advantage. The reason is that it admits real-time and non
real-time applications and tasks with different characteristics,
and it can schedule real-time and non real-time applications
in a complex open real-time environment.

III. TWO-LEVEL SCHEDULING SCHEME OF THE ORTS

A. Related Concepts
Definition 1 Open Real-Time System : Non-relevant

real-time applications and non-real time applications may be
developed and validated independently, and global
schedulability analysis is not necessary when the system is
extended dynamically[1].

Definition 2 Task: Software entity that can accomplish
some function. It is a basic unit of real-time scheduling. An
execution during the task’s lifetime is called a job of this task.
Application is defined by a set consists of multiple tasks.

Definition 3 Server: In this paper it presents a special task
established by the system’s scheduling mechanism and
provides service for scheduling objects [16]. There is more
than one server in system and each server is equivalent to a

slow processor.
Definition 4 Server Speed: It is assumed that the speed of

system processor is 1. Consider one server as a virtual
processor, and then the ratio of the speed of virtual processor
and the system processor is Server Speed. The server speed

of kS is: 1kσ < .

B. Two-level scheduling scheme

Fig. 1 Two-level scheduling architecture of open real-time system

 Fig.1 shows the architecture of ORTS supported by the

two-level hierarchical scheduling scheme. The system has a
single processor whose speed is one. The workload of the
processor consists of a variable number N of real-time

applications, called 1A , 2A , …, NA , together with non
real-time applications. All non-real time applications are

executed by a server 0S , while each real-time application is

executed by a server kS (1k ≥). The servers 0S , 1S , …, NS
are at the upper level (application level). Each server

kS (1k ≥) has a ready queue containing ready jobs of the

real-time application kA , and ready queue of the server 0S
contains ready jobs of all the non real-time applications. The

server scheduler of the server 0S uses a time-sharing
algorithm to schedule ready jobs of all non real-time
applications in order to ensure impartiality. At the lower level
(OS level), the scheduler provided by the operating system,
which we call OS scheduler, maintains all the servers in the
system. It replenishes the server budget and sets the server
deadline for every server according to the characteristics of
the applications the server executes. A server is ready when
its budget is nonzero and its ready queue is not empty. The
OS scheduler also has a ready queue, which contains all the
ready servers in the system. It schedules all the ready servers
according to the EDF algorithm.

 SCHEDULING OF REAL-TIME AND NON-REAL TIME
Applications In Two-Level Scheduling Scheme

A1 A2 AN

time sharing
scheduler

 S0

RM-PCP
scheduler

S1

EDF-SBP
scheduler

S2

cyclic executive
scheduler
 SN

 ready queue

OS Scheduler
(EDF)

operating system

non-rea-time
applications

real-time
application

real-time
application

real-time
application

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

 - 168 -

 The two-level scheduling scheme, which is based on two
kinds of servers called CUS (Constant Utilization Server) and
TBS (Total Bandwidth Server), is one of server scheduling

strategies. Server iS shown in Fig.1 may be CUS or TBS,
and it must participate in scheduling of the system with
deadline. The following explanation is necessary:
 Assume that iS is a CUS server in ORTS. If its deadline is

,i kd at time t, ,i kd is calculated as follows:

, , 1 , ,max{ , } /i k i k i k i kd t d e σ−= + (1)

Here ,i kσ denotes the speed of server iS , and ,i ke denotes the

remaining WCET (worst case execution time). iS
replenishes its budget at time , 1max{ , }i kt d − , and the budget

value is ,i ke [16]. The deadline setting of TBS is the same to

CUS, and the difference between them is replenishment time.
Suppose job ,i kJ is released at time t: if , 1i kt d −≥ , they are the

same; if , 1i kt d −< , TBS can replenish its budget as soon as the

job , 1i kJ − is finished, while CUS has to wait till to time

, 1i kd −
[17].

A. Scheduling of Real-Time Applications
 Reference [17] proposed some schedulability conditions

of real-time applications (including hard real-time
applications and soft real-time applications) that do not have
NPS or use global resources in an ORTS, however, the
schedulability of all kinds of applications has not been
guaranteed yet, because we have to think about the following
problems:

(1) If applications include aperiodic or aporadic tasks
(2) If applications are predictable
(3) If applications are scheduled by a preemptive algorithm
(4) If applications include NPS or use global resources

Reference [1] solved the upper four problems for

real-time applications, but it did not consider the case that
non-real time applications may include NPS or use global
resources. The latter two problems are mentioned in this
paper, so the solutions to them are followed. Let’s see an

example related to Fig.2. The application kA in the example

uses the EDF algorithm to schedule its two jobs, 1(0,10,44)J

and 2(40 ,1,44)J a a− − , where 0 40a< < . The

application kA is schedulable if it executes alone on a slow
processor with speed 0.25, as shown in Fig.2 (a). Now

suppose that the release time of the jobs in kA are known, the

application kA is executed by a CUS whose server speed is
0.25, as shown in Fig.2 (b). Everything goes well until job

2J completes and server kS is no longer ready to execute.

Before the server becomes ready again at 44 a− , the

processor executes a job J in another application whose

server has a deadline later than 44, and the job J enters its

NPS right before 44 a− . Server kS cannot execute the

remaining piece of job 1J until the job J leaves its NPS. If

the length of the NPS is longer than a , 1J misses its

deadline at 44. However, if the application kA is executed by
a TBS with server speed 0.25, it is schedulable, as shown in

Fig.2 (c). When the job 2J completes at time 44 a− , the
budget of the server is replenished immediately and the
deadline is set to 44. The server remains ready to execute at
this time. Consequently, the job J of the application whose
server deadline is after 44 cannot execute before the job 1J
completes [1].

Fig.2 Schedules of real-time application kA

Since the case in Fig.2 (b) may lead to un-schedulability of

some applications, Reference [1] deals with that like this: If
an application is scheduled by a preemptive algorithm when
it enter the system, the system will check out if there have
been applications including NPS. If any, the server type will
be set to TBS; If not, the server type will be set to CUS. And
the system will change CUSs scheduled by preemptive
algorithms to TBSs if it accepts the first application including
NPS.

B. Scheduling of Non-Real Time Applications

 OS scheduler will establish a TBS 0S firstly when the
ORTS starts. The system accepts all the non-real time

applications. Then they will be executed by 0S . The server
0S is scheduled by time-sharing algorithm [18]. In reference

[16] characteristics of CUS has been described. Suppose

complete time of a job is t , and the server deadline is
't (

't t<). Then during the interval
'(,)t t (called

background time) the processor is available, so 0S can make
use of this time interval to execute non real-time applications
on it.

40-a 44-a 44 0

r1 d1

J2
40-a 44-a

r2 d2

(a).Slow Processor with Speed
0.25

J1
40-a 44-a 44 0

r1 d1

J2
40-a 44-a

r2 d2

(b).Fast Processor (executed by a CUS)

nonpreemptable section

J1

40-a 44-a 44 0

r1 d1

J2
40-a 44-a

r2 d2

(c).Fast Processor (executed by a TBS)

J1

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

- 169 -

V. EXISTING PROBLEMS AND SOLVING SCHEME OF
NON-REAL TIME APPLICATIONS SCHEDULING

A. Problems Description and Analysis
 In front scheduling approaches for real-time applications

and non-real time applications have been described, where
description about non-real time applications scheduling is too
simple. By analysis, the following problems are addressed:

The first problem: All the jobs released by non-real time
applications are scheduled by time-sharing algorithm on
server 0S , and then can it guarantee the fairness and
schedulability of executing all the jobs?

The second problem: The ORTS always admits non-real
time applications, and non-real time applications do not
provide any characteristic when they enter the system. Then
can it affect the schedulability of the existent real-time
applications?

The third problem: The system may execute non-real
time applications by making use of background time of CUS;
however, is it reasonable that non-real time applications are
scheduled by current ways? And how does the server
replenish its budget under the premise that the server is
scheduled by time-sharing algorithm?

The analysis about the former three problems is as follows:
Analysis of the first Problem: Reference [1] uses a

time-sharing algorithm in order to guarantee fairness of
scheduling all the non-real time applications, so that jobs in
the ready queue can be executed for the time divided equally
from the budget. That’s perfect, but perhaps the actual case is
not so simple. Suppose:

(1) Every time if the server schedules job, and every job is
executed by fixed time units, when there are amount of jobs
the server may only execute some of jobs in the ready queue.
If the number of jobs is so large that every time the server has
to execute the latter jobs of the ready queue, then the former
jobs in the ready queue will not be executed in a very long
time. Then the case “starvation” appears. Since the case
should not appear, the best solution is to increase the server

speed. However, the server speed of 0S is fixed when the
system starts. Then how could we solve this problem? If all
the jobs in the ready queue can obtain equal time units
divided from budget every time the server is scheduled, every
job will get very little time when there are lots of jobs. At this
point the cost of context switching cannot be neglected, and
how to solve this problem? Through the above description,
disadvantages of the two time-sharing approaches can be
seen clearly. What means should we use to avoid the two
disadvantages?

(2) If NPS are included by jobs released by non-real time
applications, the jobs may occupy the time that does not
belong to them, so it will influence the following jobs’
execution. If the task, which releases this kind of job, is
periodic, it will destroy fairness of the time-sharing algorithm
seriously. Then how could we deal with it? Assume a job
which has NPS is executed at last in one scheduling, and at
some point the job is been executing in its NPS, but the server
budget runs out, then how should the server response?

Analysis of the second problem: in section III.A, there is
an example describing the solution for potential

unschedulability of real-time applications in ORTS. From the
analysis two necessary conditions of unschedulability are
obtained: one is application including NPS; the other is CUS
scheduled by a preemptive algorithm. At first it limits the
second condition, in other words, the type of server on which
there are applications scheduled by preemptive algorithms,
but preemption may occur all the same. And then it limits the
first condition at the acceptance test, that is,

{ }1max / 1t k j N j jU U B δ≤ ≤+ + ≤ , where { }maxj i j iB L≠= and N

is total number of applications in the system including kA [1],
so this problem is solved. Please refer to reference [1] to get
more details. However, non-real time applications are not
tested when they enter the system, so the system cannot get
characteristics about NPS of them. Thus it is possible that the
length of some non-preemptable section in non-real time
applications is longer than that in real-time applications. So
the potential unschedulability brought by the first necessary
condition could not be avoided and schedulability conditions
proposed by reference [1] could not be met. Then some
real-time applications in the system may be not schedulable
because of that.

Analysis of the third problem: The server 0S may make
full use of the background time of CUS if the system has
some CUSs. However, perhaps the following cases appear:

 (1) In a period of time, there are only TBSs in the system

and the server speed 0U of 0S is small. If amount of jobs are
in the ready queue, the case described in the first problem

may appear. At that time the server 0S can use spare
bandwidth in the system temporarily. By doing this QOS
(Quality of Service) of non-real time applications can be
improved and the influence brought by inadequacy of

bandwidth of the server 0S can be eased too.
(2) How could it replenish the server budget when the

budget runs out? We can do it like real-time applications:
replenish the remaining WCET of the head job of the ready
queue. However, the following problems may be found: the
head job in the ready queue has been executed for many times
and its WCET (assume it isT) is little. Suppose the server
replenishes its budget withT . As mentioned above, if the
second time-sharing way has been applied, the server will
have divided its budget equally to all the jobs on it. Then

every job can be executed for /T N , and at this time the

WCET of the head job will change to /T T N− . If TN >> ,

then /T T T N≈ − . The expression shows us that all the jobs
in the ready queue cannot be executed basically. At the same
time the cost of context switching will not be neglected
because it occupies a large proportion of executing time.

Thus the server 0S will participate in scheduling frequently
with little budget. It increases burden of scheduling and even
leads to unsteadiness of the system.

B. Scheduling Rules and Algorithm of Non-Real Time
Applications

 The section above addresses some problems that may

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

 - 170 -

appear when all the non-real time applications are executed

on 0S of the TBS and analyses them in detail. These
problems are brought by NPS of non-real time applications or
using global resources, and inconsequence of scheduling
non-real time applications.

 It is existence of NPS or using global resources that
destroys fairness and schedulability of scheduling non-real
time applications. And it even results in some real-time
applications unschedulable. This kind of application has its
own particularity so it should not be scheduled together with
other kinds of non-real time applications. The problem will
be solved if these two kinds of applications are separated and
non-real time applications including NPS or using global
resources are scheduled together with real-time applications.

 The second problem and the unschedulability problem of
the first one are solved by making non-real time applications
including NPS or using global resources join the real-time
applications scheduling. Now concentrate on the remaining
problems, namely: non-real time applications that do not

have NPS or use global resources are scheduled on 0S of a
TBS, then how to avoid starvation of some jobs and improve
QOS of other jobs as far as possible at the same time when
the number of jobs in the ready queue increases? What kind
of time strategy should the server use to schedule jobs? What
way should the server use to replenish its budget? How to
make use of the background time? Then the approaches are as
follows:

 Set two variables λ and
'λ to denote bandwidth and one

variable N to memorize the number of jobs in the ready

queue of 0S . Initial value of
'λ is 0 and λ is 01 U− (where 0U is

the server speed of 0S). When real-time applications enter or

quit from the system, new value of λ is calculated by this
formula:

11 max { / }t j j jU Bλ δ≥= − − (2)

Where, jB
is the execution time of the longest NPS of all

the other applications other than kA , and jδ is the shortest

relative deadline of tasks in kA , and tU is the current total
processor utilization of system. (i) If there is no background
time, the server will replenish its budget with a fixed

budget B and the deadline of it is set according to
'

0U λ+ . (ii)
If there is background time, the budget will be the length of
the background time and the deadline is set to the deadline of
the CUS server.

Suppose the shortest time unit that a job is executed each
time is L . At first the server calculates the ratio between the

current budget
'B and the number N before it executes jobs.

(i) If the inequation
' /L B N≤ is true, then the budget will

be divided equally for every job. If WCET of some jobs is
less than the budget assigned, the remaining budget will be
used to execute the next job. Keep doing this till the server
budget runs out. If the budget is nonzero when all the jobs
complete, OS scheduler will reclaim the budget. (ii) If the

inequation
' /L B N> is true, then L will be assigned to the

front jobs of the ready queue. If some jobs have remaining
budget, it will be dealt with like above.

If the number of jobs in the ready queue continues to

increase and it is larger than a critical value MN , the server
will borrow the spare bandwidth temporarily to increase its
speed till the number of jobs in the ready queue reduces to a

value smaller than mN , here, M mN N> and there is a

remainder between MN and mN . (i) If mN N≤ , then

set
' 0λ = and the server will participate in scheduling with

its own server speed; (ii) If MN N> , then set
'λ λ= and the

server will participate in scheduling with speed
'

0U λ+ .

Compare λ with
'λ if the value of λ changes when 0S is

executing its jobs or in the ready queue: (i) If
'λ λ≥ , it will

do nothing; (ii) If
'λ λ< , the server will stop executing or

quit from the server ready queue immediately, make
'λ λ=

and set the remaining budget to new server budget. Then the
server participates in scheduling over again.

According to analysis above, four scheduling rules are
induced to resolve these problems addressed.

 Scheduling Rule 1: acceptance rule of non-real time
applications.

 In the original framework non real-time applications join
the scheduling queue of non real-time applications without
accepting particular detections, while the our rules need to
check if they contain NPSs and then deal with them
depending on different circumstances.

All the non-real time applications must provide their
parameter of NPS before they enter the system. If one
application includes NPS or needs to use global resources, its
priority will be improved and it will be tested and scheduled
by the system as real-time applications; if not, the application

will join in the server 0S . Following is the process of
acceptance test (shown in Fig. 3).

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

- 171 -

 Fig.3 Acceptance test

(1)Check if the current application is a non real-time

application. If it is, turn to (2), else to (3).
(2)Check if the current application contains NPS. If it does

not, put it into the scheduling queue of non real-time
applications, else turn to (3).

(3)The application provides necessary characteristic
parameters for system, and then the system will determine a
server type and allocate the corresponding bandwidth for it.

(4)Check if the total bandwidth allocated meets
schedulable conditions. If it does, accept the application, else
refuse it.

There is an issue to demonstrate. The system schedules
hard, soft and non real-time applications depending on
different priorities, but in the process of accept test, the
system only differentiates real-time applications from non
real-time ones. This indicates that there are no differences
when the system chooses real-time applications, that is to say,
hard real-time applications will not be chosen firstly just
because they have higher priorities. It is the arrival order that
determines if an application is chosen firstly, and fairness of
acceptance test is reflected by doing this.

 Scheduling Rule 2: replenishment rule of server budget.

 When budget of the server 0S is 0 and the ready queue is
not empty: (1) If there is no background time, set the budget

of the server to B and its relative deadline to
'

0/()B U λ+ , then
put it into the server ready queue of OS level;

(2) If there is background time from CUS, set budget of the

server 0S to the length of the background time and deadline
to the deadline of the current CUS. And then the server
executes jobs immediately.

 Scheduling Rule 3: executing rule of jobs in the ready

queue.

 Suppose server budget is
'B when the server is scheduled:

1) if the inequation
' /L B N≤ is true, then the server

budget will be divided equally. Every job can be executed

for
' /B N ; 2) if the inequation

' /L B N> is true, execute
ready jobs circularly from the next job of the last one in the
previous execution. Every job can be executed for L .

Scheduling Rule 4: borrowing rule of spare bandwidth.

(1) If mN N≤ , then set
' 0λ = and the server 0S will

participate in scheduling with its own server speed;

(2) If MN N> , then set
'λ λ= and the server 0S will

participate in scheduling with speed
'

0U λ+ .
 According to the rules mentioned above, one scheduling

algorithm of non-real time applications is proposed as
following:

 (1) If the job ready queue of the server 0S is empty, wait;
(2) If there is background time, set the budget of the

server 0S to the length of the background time and deadline to
the deadline of the current CUS. Execute jobs in the ready
queue according to rule 3, go to (5);

(3) Set the sever budget to B and execute rule 4;

(4) Execute rule 3. Compare λ with
'λ if the value of λ

changes when 0S is executing its jobs or in the ready queue:

if
'λ λ< , the server will stop executing or quit from the

server ready queue immediately and set the remaining budget
to new server budget, execute rule 4, go to (4);

(5) If the budget of server 0S runs out or the ready queue is
empty then go to (1).

C. Validity Analysis of the Scheduling Scheme
In the four rules proposed: The first rule separates the

non-real time applications including NPS or using global
resources from other non-real time applications, and by
improving priorities of them and making them participate in
scheduling as real-time applications, the adverse effects
brought by them are eliminated. Thus the problem addressed
about non-real time applications including NPS or using
global resources has been solved. Reference [1] has dealt
with all kinds of real-time applications properly in an ORTS
and prove the schedulability of them, so the scheme in this
paper not only guarantees schedulability of non-real time
applications including NPS or using global resources
severely, but also guarantees this kind of application does not
affect schedulability of other kinds of applications.

The three latter rules resolve the remaining problems
addressed respectively. The time-sharing algorithm used by
rule 3 guarantees execution fairness of all the jobs in the
ready queue and eliminates the disadvantages of two primary
time-sharing ways. Rule 4 makes full use of spare resources
in the system when there are lots of jobs in the ready queue,
so that it can improve the response speed and QOS of
non-real time applications greatly. Setting about the server
deadline in rule 2 guarantees that non-real time applications

real-time
application?

enters the system

contains NPS? provides necessary
parameters

meets acceptance
conditions?

Y

N

Y

Y

N

N

application

refuse accept

put it into the non
real-time queue

determine a server type
and allocate bandwidth

International Journal of Computer Theory and Engineering, Vol. 1, No.2,June2009
1793-8201

 - 172 -

will not occupy the bandwidth of real-time applications, that
is to say, they will not affect real-time applications
scheduling. So the scheme is feasible.

VI. CONCLUSION
 By studying the scheduling approaches for the real-time

and non-real time applications in the ORTS based on the
two-level scheduling scheme, this paper points out
limitations in non-real time applications scheduling, and then
proposes one solving scheme. Finally feasibility is analysed.
In conclusion, the schedulability of all applications in the
system is guaranteed.

REFERENCES
[1] Z.Deng, J.W.S. Liu. Scheduling Real-Time Applications in an Open

Environment. In: Proc. of the 18th IEEE Real-Time Systems
Symposium. IEEE Computer Society, 1997, pp.1-25.

[2] Y.C .Wang, K.J. Lin. Implementing a General Real-Time Scheduling
Framework in the RED-Linux Real-Time Kernel. In: Proc. of the 20th
IEEE Real-Time Systems Symposium. IEEE Computer Society, 1999,
pp. 246-255.

[3] A.K. Parekh. A generalized processor sharing approach to flow control in
integrated services networks [Ph.D. Thesis]. Massachusetts Institute of
Technology, 1992.

[4] T.W. Kuo, W.R. Yang, K.J. Lin. EGPS: a class of real-time scheduling
algorithms based on processor sharing. In: Proc. of the 10th Euromicro
Workshop on Real Time Systems. IEEE Computer Society, 1998,
pp.27-34.

[5] L.Abeni, G.Buttazzo. Integrating Multimedia Applications in Hard
Real-Time Systems. In: Proc. of the 19th IEEE Real-Time Systems
Symposium(RTSS’98). IEEE Computer Society, 1998, pp. 4-13.

[6] L.Abeni, G.Buttazzo. Resource Reservation in Dynamic Real-Time
Systems. Real-Time Systems, 2004, 27: pp.123-167.

[7] G.Lipari, S.Baruah. A Hierarchical Extension to the Constant Bandwidth
Server Framework. In: Proc. of the 7th IEEE Real Time Technology
and Applications Symposium.IEEE Computer Society, 2001, pp.
26-35.

[8] A. Marchand, M. Silly-Chetto. Dynamic Real-time Scheduling of Firm
Periodic Tasks with Hard and Soft Aperiodic Tasks. Real-Time
Systems, 2006, 32(1-2): pp.21-47.

[9] W.Li, K.Kavi, R.Akl. A non-preemptive scheduling algorithm for soft
real-time systems. Computers and Electrical Engineering, 2007, 33(1):
pp.12-29.

[10] U.C. Devi, J.H.Anderson. Tardiness bounds under global EDF
scheduling on a multiprocessor. Real-Time System, 2008, 38(2):
pp.133-189.

[11] G.Lipai, J.Carpenter, S.Baruah. A Framework for Achieving
Inter-Application Isolation in Multiprogrammed Hard Real-Time
Environments. In: Proc. of the 21st IEEE Real-Time Systems
Symposium. IEEE Computer Society, 2000, pp. 217-226.

[12] Y.C. Gong, L.G. Wang, et al. A Hybrid Real-Time Scheduling
Algorithm Based on Rigorously Proportional Dispatching of Serving.
Journal of Software, 2006, 17(3): pp. 611-619.(in Chinese)

[13] X.Y.Huai, Y.Zou, M.S.Li. An Open Adaptive Scheduling Algorithm for
Open Hybrid Real-Time Systems. Journal of Software, 2004, 15(4): pp.
487-496. (in Chinese)

[14] P.L. Tan, H.Jin, M.H. Zhang. Two-Dimensional Priority Real-Time
Scheduling for Open Systems. Acta Electronica Sinica, 2006, 34(1): pp.
1773-1777. (in Chinese)

[15] B. B. Brandenburg, J.H. Anderson. Integrating Hard/Soft Real-Time
Tasks and Best-Effort Jobs on Multiprocessors. In: Proceedings of the
19th Euromicro Conference on Real-Time Systems. IEEE Computer
Society, 2007, pp. 61-70.

[16] Y.Zou, M.S. Li, Q.Wang. Analysis for scheduling theory and approach
of open real-time system. Journal of Software, 2003, 14(1):pp.83-90.
(in Chinese)

[17] Deng.Z, Liu JWS, Sun J. A scheme for scheduling hard-real-time
applications in open environment. In: Proceedings of the 9th Euromicro
Workshop on Real-Time Systems. Los Alamitos, CA: IEEE Computer
Society Press, 1997.pp.191-199.

[18] Deng. Z, Liu JWS, Sun J. Dynamic Scheduling of Hard Real-Time
Applications in Open System Environment. Technical Report
UIUCDCS-R-96-1981, Department of Computer Science, University of
Illinois at Urbana-Champaign, 1996.

