• Feb 08, 2023 News!IJCTE Vol. 14, No. 4 has been indexed by SCOPUS.   [Click]
  • Feb 01, 2023 News!IJCTE Vol.15, No.1 has been published.   [Click]
  • Nov 29, 2022 News!IJCTE Vol. 14, No. 1-No. 3 have been indexed by SCOPUS.   [Click]
General Information
    • ISSN: 1793-8201 (Print)
    • Abbreviated Title: Int. J. Comput. Theory Eng.
    • Frequency: Quarterly
    • DOI: 10.7763/IJCTE
    • Editor-in-Chief: Prof. Mehmet Sahinoglu
    • Associate Editor-in-Chief: Assoc. Prof. Alberto Arteta
    • Executive Editor: Ms. Mia Hu
    • Abstracting/Indexing: Scopus (Since 2022), INSPEC (IET), CNKI,  Google Scholar, EBSCO, etc.
    • E-mail: ijcte@iacsitp.com
Prof. Mehmet Sahinoglu
Computer Science Department, Troy University, USA
I'm happy to take on the position of editor in chief of IJCTE. We encourage authors to submit papers concerning any branch of computer theory and engineering.

IJCTE 2013 Vol.5(6): 850-855 ISSN: 1793-8201
DOI: 10.7763/IJCTE.2013.V5.810

Application of Pattern Recognition Techniques to Predict Severe Thunderstorms

Himadri Chakrabarty, C. A. Murthy, and Ashish Das Gupta

Abstract—Thunderstorm forecasting is a challenging job. Machine learning techniques are being applied nowadays in meteorological fields for prediction purpose. This study presents the application of different machine learning tools based on multiple correlation, Multi-layer Perceptron (MLP), K-nearest neighbor (K-nn) method, and modified K-nn method to predict seasonal severe thunderstorms associated with squall occurring in Kolkata, North-East India. The models are trained and tested with the radiosonde data recorded in the early morning at 00:00UTC. The predictors are moisture difference and dry adiabatic lapse rate at different geopotential heights of the atmosphere. Our aim in this paper is to find how much correctly one can nowcast 10 to 14 hours before the ‘occurrence’/ ‘no occurrence’ of evening squall-storms by using a few upper air diagnostic predictors. Modified K-nn method is found to yield very promising prognostic information with high prediction accuracy. The results indicate that forecasting can be done correctly up to 82.02% both for ‘squall-storm/no storm’ events, and up to 91.11% for ‘squall-storm’ events using modified K-nn based approach. In this article, modified K-nn method is proved as the best method in comparison with the other methods for the squall-storm prediction.

Index Terms—Terms—Back propagation, K-nearest neighbor, multilayer perceptron, multiple correlation, squall-storm.

H. Chakrabarty is with Surendranath College, and he is also with Institute of Radiophysics and Electronics, Calcutta University, Kolkata, India (e-mail: hima.c@rediffmail.com). C. A. Murthy is with Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India (e-mail: murthy@isical.ac.in). A. DasGupta is with S. K. Mitra Center for Research in Space Environment, Calcutta University, Kolkata, India (e-mail: adgbkpr@gmail.com).


Cite:Himadri Chakrabarty, C. A. Murthy, and Ashish Das Gupta, "Application of Pattern Recognition Techniques to Predict Severe Thunderstorms," International Journal of Computer Theory and Engineering vol. 5, no. 6, pp. 850-855, 2013.

Copyright © 2008-2023. International Association of Computer Science and Information Technology. All rights reserved.